Сайт о телевидении

Сайт о телевидении

» » Тип lcd матрицы va. Как мы это видим? Матрица TN. Самая старая и самая распространенная

Тип lcd матрицы va. Как мы это видим? Матрица TN. Самая старая и самая распространенная

Аббревиатуры обычно применяются для обозначения характеристик или специфики. В данном случае в отношении сравнения экранов IPS и TFT возникает ужасная путаница, потому что технология (матрица) IPS – это разновидность матриц TFT и только. Невозможно сравнивать между собой эти 2 технологии.

НО! Есть технология TN-TFT – вот между ней и IPS можно делать выбор и сравнивать. Поэтому, когда мы говорим о том, какой экран лучше: IPS или TFT, мы имеем в виду TFT-экраны в любом случае, но изготовленные на основе разных технологий: TN и IPS.

Кратко о TN-TFT и IPS

TN-TFT – это технология, на основе которой выполнена матрица жидкокристаллического экрана. Здесь кристаллы, когда на их ячейки не подается напряжение, «смотрят» друг на друга под углом 90 градусов. Они располагаются по спирали, и когда на них подается напряжение, то они поворачиваются таким образом, чтобы образовать нужный цвет.

IPS – эта технология отличается тем, что здесь кристаллы располагаются параллельно друг другу в единой плоскости экрана (в первом случае спирально). Все это сложно… на практике отличие между экранами на основе матриц TN и IPS заключается в том, что IPS идеально отображает черный цвет, в результате чего картинка получается более четкой и насыщенной.

Что касается TN-TFT, то качество цветопередачи данной матрицы не внушает доверия. Здесь каждый пиксель может иметь свой собственный оттенок, следовательно, цвета искажаются. IPS-матрицы показывают картинку гораздо лучше, а также более бережно обращаются с цветами. Также IPS позволяют наблюдать за происходящим на экране под большим углом. Если смотреть на экран TN-TFT под таким же углом, то цвета будут искажены настолько, что будет сложно разобрать картинку.

Преимущества TN

Однако матрицы TN-TFT обладают своими преимуществами. Главное из них – более низкая скорость отклика пикселей. IPS нужно больше времени, чтобы весь массив параллельных кристаллов повернуть в нужный угол. Поэтому если речь идет о выборе монитора для игр или для отображения динамических сцен, когда очень важна скорость прорисовки, то лучше всего выбирать именно экраны на основе технологии TN-TFT.

С другой стороны, при обычной работе с ПК разницу во времени отклика пикселей заметить невозможно. Она видна только при просмотре динамических сцен, что часто бывает в боевиках и видеоиграх.

Еще один плюс – низкое потребление электроэнергии. IPS-матрицы энергоемкие, т.к. для поворота массива кристаллов им необходимо большое напряжение. Следовательно, экраны на основе TFT лучше подходят для мобильных гаджетов, где остро стоит вопрос экономии энергии аккумулятора.

И еще – матрицы TN-TFT дешевые. Не найти сегодня монитора (не считая б/у или ЭЛТ модели), который бы был дешевле модели на основе технологии TN. Любое бюджетное устройство электроники с экраном обязательно будет использовать матрицу TN-TFT.

Итак, какой же экран лучше: TFT или IPS:

  1. IPS менее отзывчивы за счет большего времени отклика (плохо для игр и экшн-сцен);
  2. IPS гарантируют практически идеальную цветопередачу и контрастность;
  3. IPS обладает более широким углом обзора;
  4. IPS энергозатратны и потребляют больше электричества;
  5. Они также более дорогие, в то время как TN-TFT дешевые.

Вот, в принципе, и вся разница между данными матрицами. Если учитывать все преимуществ и недостатки, то, конечно же, легко прийти к конкретному выводу: IPS экраны гораздо лучше.


Отправить ответ

Что важно при выборе монитора? Разрешение, диагональ экрана, частота обновления, время отклика? Несомненно, но важно также определиться, какая матрица необходима, ибо от ее типа зависит ряд характеристик, которые непосредственно влияют на выбор. В ряде случаев требования одни, для которых подойдут те или иные мониторы. В других случаях требуются другие характеристики, и некоторые экраны однозначно придется исключить из выбора. Какие типы матриц монитора существуют, чем различаются, в чем их различия – об этом и поговорим.

Современные мониторы

Ушли в прошлое CRT-дисплеи, изготавливаемые с применением вакуумной трубки (кинескопа). Они были громоздкие, тяжелые, и, естественно, для использования в мобильной технике не подходили абсолютно. Вытеснены они мониторами, экраны которых выполнены на жидких кристаллах, отсюда и название их ЖК-дисплеи, или по-иностранному – LCD (Liquid Crystal Displays).

О достоинствах и недостатках распространяться не буду, они известны, да и не столь важны сейчас, не об этом сегодня разговор. Надо разобраться, какие типа матриц используются в мониторах, в чем их отличие, в каких случаях разумнее использовать один вид, а в каких – другой.

TN (Twisted Nematic)

Один из самых старых типов матриц, до сих пор актуальный и используемый. В настоящее время применяется ее модифицированная версия, маркируемая TN+film. Популярность ее зиждется на двух основных преимуществах: быстродействии (низкое время отклика и задержки) и низкой цене. Действительно, время отклика порядка 1 мс – это в порядке вещей.

Даже недостатки, присущие этой технологии изготовления экранов, не в силах отправить ее на покой. А минусов хватает. Это и небольшие углы обзора, и неважная цветопередача, и невысокая контрастность, и недостаточная глубина черного цвета. Хотя, если экран расположен прямо перед глазами владельца, то проблема с углами обзора несколько снижает свою остроту.

Ухудшается положение еще и тем, что разные матрицы от разных производителей могут серьезно отличаться друг от друга. Если в дорогих игровых моделях ноутбуков или игровых мониторах может устанавливаться вполне сносный экран, то в бюджетных устройствах качество дисплея может быть весьма посредственным.

Как это работает

Сам экран представляет собой «бутерброд» из двух поляризующих фильтров, между которыми расположены электроды на прозрачных подложках с обеих сторон экрана, двух металлических пластин и, в середине, слоя жидких кристаллов. С внешней стороны экрана устанавливается светофильтр.

На стеклянные пластины нанесены бороздки, причем во взаимно перпендикулярном направлении, что задает первоначальную ориентацию кристаллов. Благодаря такому расположению бороздок, жидкие кристаллы закручены в спираль, откуда, собственно, и пошло название технологии Twisted Nematic.

Если напряжения на электродах нет, то расположенные по спирали кристаллы поворачивают плоскость поляризации света таким образом, что он проходит через второй (наружный) поляризационный фильтр. Если напряжение на электроны подано, то, в зависимости от уровня этого напряжения, жидкие кристаллы разворачиваются, изменяя интенсивность проходящего света. При определенном напряжении плоскость поляризации света не будет изменяться, и второй фильтр полностью поглотит свет.

Наличие двух электродов позволяет улучшить энергоэффективность, а частичный поворот кристаллов благотворно влияет на быстродействие матрицы.

Из-за того, что при отсутствии напряжения кристаллы пропускают свет, при возникновении дефектов в матрице («битые пиксели») они представляют собой светящуюся белую точку. В других технологиях такие точки темные.

Идентифицировать «на глаз» матрицу TN можно, если посмотреть на включенный экран под углом. И чем больше он (угол) будет, тем более блеклыми будут становиться цвета, тем менее контрастным будет становиться изображение. В некоторых случаях возможно даже инвертирование цветов.

IPS (In-Plane Switching)

Мониторы с такой матрицей сейчас наиболее частые конкуренты мониторам с TN-экраном. Практически все недостатки последних удалось побороть, к сожалению, пожертвовав теми достоинствами, которые были у предыдущей технологии. Мониторы с IPS матрицей априори дороже и имеют большее время отклика. Для игровых систем это может оказаться существенным аргументом для того, чтобы сделать выбор в пользу TN.

Зато для того, кто профессионально работает с изображениями, кому необходима качественная цветопередача, широкий цветовой охват, мониторы с такой матрицей — оптимальный выбор. К тому же с углами обзора тут проблем нет, черный цвет гораздо больше похож на черный, а не выглядит неким оттенком серого, как это нередко бывает на TN-экранах.

Как это работает

Между двумя поляризационными фильтрами располагается слой управляющих микропленочных транзисторов и слой жидких кристаллов, имеющих светофильтры трех основных цветов. Кристаллы расположены вдоль плоскости экрана.

Плоскости поляризации фильтров перпендикулярны друг другу, поэтому, при отсутствии напряжения, свет, проходящий через первый фильтр и поляризуемый в одной плоскости, задерживается вторым фильтром, обеспечивая глубокий черный цвет. Кстати, именно поэтому в случае появления «битого пикселя» на экране он выглядит как черная точка, а не белая, как бывает в случае с TN-матрицами.

При появлении напряжения на управляющих электродах кристаллы поворачиваются опять-таки вдоль плоскости экрана, пропуская свет. Отсюда вытекает один из недостатков технологии – большее время отклика. Это связано именно с необходимостью поворота всего массива кристаллов, на что тратится время. Зато обеспечиваются углы обзора вплоть до 178° и отличная цветопередача.

Есть и еще минусы у этой технологии. Это большее энергопотребление, т. к. расположение электродов только с одной стороны вынудило увеличить напряжение для обеспечения поворота всего массива кристаллов. Используемые лампы так же более мощные, чем в случае с TN, что дополнительно увеличивает потребление энергии.

Варианты IPS

Технология не стоит на месте, в нее вносятся улучшения, которые позволили существенно снизить время отклика и цену. Так, существуют следующие варианты IPS-матриц:

  • S-IPS (Super-IPS). Второе поколение технологии IPS. Экран имеет несколько измененную пиксельную структуру, сделаны улучшения для снижения времени отклика, приблизившись по этому параметру к характеристикам TN-матриц.
  • AS-IPS (Advanced Super-IPS). Следующее улучшение технологии IPS. Главная цель состояла в повышении контрастности панелей S-IPS и увеличении их прозрачности, став ближе по этому параметру к S-PVA.
  • H-IPS. Изменилась структура пикселей, увеличилась плотность их размещения, что позволило еще больше увеличить контрастность и сделать изображение более однородным.
  • H-IPS A-TW (Horizontal IPS with Advanced True Wide Polarizer). Разработка компании LG. За основу взята панель H-IPS, в которую добавлен цветовой фильтр TW (True White - «настоящий белый»), что улучшило белый цвет. Применение поляризационной пленки компании NEC (технология Advanced True Wide Polarizer) позволило избавиться от возможных засветов при больших углах обзора («глоу-эффект») и, одновременно, увеличить эти углы. Этот тип матриц применяется в профессиональных мониторах.
  • IPS-Pro (IPS-Provectus). Разработка компании BOE Hydis. Уменьшено межпиксельное расстояние, увеличены углы обзора и яркость.
  • AFFS (Advanced Fringe Field Switching, иногда называют – S-IPS Pro).
  • e-IPS (Enhanced IPS). Увеличение светопроницаемости позволило использовать более экономичные и дешевые лампы подсветки. Уменьшилось время отклика, достигнув значений в 5 мс. Мониторы с такими матрицами обычно имеют диагональ до 24 дюймов.
  • P-IPS (Professional IPS). Профессиональные матрицы с 30-битной глубиной цвета, увеличенным количеством возможных ориентаций субпикселей (1024 против 256 у остальных), что улучшило цветопередачу.
  • AH-IPS (Advanced High Performance IPS). Матрицы этого типа отличаются самыми большими углами обзора, высокой яркостью и контрастностью, малым временем отклика.
  • Разработка компании Samsung, внесшая улучшения в исходную технологию IPS. Подробности компанией не разглашаются, но удалось снизить энергопотребление, время отклика сделать сходным с S-IPS. Правда, контрастность несколько ухудшилась, да и с равномерностью подсветки не так все гладко.

VA (Vertical Alignment)/MVA (Multi-Domain Vertical Alignment)

Технология, разработанная компанией Fujitsu. Во многом такие экраны занимают промежуточное положение между TN и IPS вариантами. Так, углы обзора и цветопередача лучше, чем у TN, но похуже, чем у IPS. Аналогично и со временем отклика. В то же время стоимость их ниже, чем у IPS.

Как это работает

Принцип действия следует из названия (ну или название отражает принцип действия данной технологии). Кристаллы расположены вертикально, т. е. перпендикулярно подложке. При отсутствии напряжения ничто не мешает прохождению света через кристаллы, а второй поляризационный фильтр полностью задерживает свет и обеспечивает глубокий черный цвет. Это одно из достоинств технологии.

При приложении напряжения кристаллы разворачиваются, пропуская цвет. В первых матрицах угол обзора был очень мал. Это удалось исправить в модифицированном варианте технологии – MVA, где использовались несколько кристаллов, расположенных друг за другом и отклоняющихся синхронно.

Варианты VA/MVA

Существует несколько разновидностей этой технологии, к развитию которой «приложили руку» разные компании:

  • PVA (Patterned Vertical Alignment). Свой вариант технологии представила компания Samsung. Подробности не разглашаются, но PVA имеет чуть лучшую контрастность и немного меньшую стоимость. В целом, варианты весьма близки и часто между ними не делается различий, указывая MVA/PVA.
  • S-PVA (Super PVA). Совместная разработка Sony и Samsung. Улучшены углы обзора.
  • S-MVA (Super MVA). Разработка компании Chi Mei Optoelectronics/Innolux. Помимо увеличения углов обзора, улучшена контрастность.
  • A-MVA (Advanced MVA). Дальнейшее развитие S-MVA от компании AU Optronics. Удалось уменьшить время отклика.

Данный вариант матриц – оптимальный компромисс между дешевыми, но с кучей недостатков, TN, и более качественными, но более дорогими IPS. Единственный, пожалуй, недостаток MVA – это недостаток цветопередачи при увеличении угла обзора, особенно в полутонах. В повседневном использовании это практически незаметно, но у профессионалов, работающих с изображениями, могут быть сомнения по поводу таких матриц.

OLED (Organic Light Emitting Diode)

Технология, существенно отличающаяся от тех, что используются ныне. Стоимость матриц, особенно больших диагоналей, сложность производства пока что препятствуют широкому использованию этой технологии в производстве мониторов. Те модели, которые есть, стоят дорого и редки.

Как это работает

В основе технологии лежит использование углеродных органических материалов. Под напряжением они излучают определенный цвет, а при его отсутствии – полностью неактивны. Это позволяет, во-первых, полностью избавиться от подсветки, а во-вторых, обеспечить идеальную глубину черного цвета. Ведь ничего не светится и не фильтруется, посему и претензий к черному цвету быть не может.

Экраны OLED обеспечивают высокие значения яркости и контрастности, отличные углы обзора без искажений. Энергоэффективность на высоком уровне. Скорость отклика недоступна даже TN матрицам.

И все же ряд недостатков пока что сдерживает применение таких экранов. Это и небольшое время работы (экраны склонны к «выгоранию» — эффекту, который был присущ плазменным панелям), сложный процесс производства с довольно большим количеством брака, что повышает стоимость таких матриц.

QD (Quantum Dots)

Еще одна перспективная технология, основанная на использовании квантовых точек. На данный момент мониторов, выполненных по этой технологии, мало, да и стоят они недешево. Технология позволяет преодолеть практически все недостатки, присущие всем остальным вариантам матриц, используемых в дисплеях. Единственный недостаток – глубина черного не дотягивает до того уровня, что есть у OLED экранов.

Как это работает

В основе технологии лежит использование нанокристаллов размером от 2 до 10 нанометров. Разница в размерах не случайна, т. к. именно в этом и кроется вся хитрость. При подаче на них напряжения, они начинают излучать свет, причем с определенной длиной волны (т. е. определенного цвета), которая зависит от размеров этих кристаллов. Цвет также зависит от материала, из которых изготовлены нанокристаллы:

  • Красный цвет – размер 10 нм, сплав кадмия, цинка и селена.
  • Зеленый цвет – размер 6 нм, сплав кадмия и селена.
  • Синий цвет – размер 3 нм, соединение цинка и серы.

В качестве подсветки используются синие светодиоды, а квантовые точки, отвечающие за зеленый и красный цвет, наносятся на подложку, причем сами эти точки никак не упорядочены. Они просто смешаны друг с другом. Попадающий на них синий свет от светодиода заставляет их светиться с определенной длиной волны, формируя цвет.

Эта технология позволяет обойтись без установки светофильтров, т. к. уже заранее получен нужный цвет. Тем самым улучшаются яркость и контрастность, т. к. удается избавиться от одного из слоев, из которых состоит экран.

В отличие от OLED, глубина черного немного ниже. Стоимость таких экранов пока что высока.

Сравнение матриц, выполненных по разным технологиям

В таблице краткое сравнение описанных типов матриц, из которого может быть понятно, в чем сильны, а в чем проигрывают те или иные типы экранов.

Тип матрицы TN IPS MVA/PVA OLED QD
Время отклика Низкое Среднее Среднее Очень низкое Среднее
Углы обзора Малые Хорошие Средние Отличные Отличные
Цветопередача На низком уровне Хорошая Хорошая, чуть хуже, чем у IPS Отличная Отличная
Контрастность Средняя Хорошая Хорошая Отличная Отличная
Глубина черного Низкая Хорошая-отличная Отличная Отличная Чуть хуже, чем у OLED
Стоимость Низкая Средняя-высокая Средняя Высокая Высокая

Заключение. Типы матриц монитора – какие выбрать?

не избалованы выбором, в большинстве случаев используются либо TN, либо IPS экраны. За редким исключением каких-либо дорогих, статусных девайсов, где применяются более дорогие типы матриц.

Разве что можно выбрать между средними по качеству дисплеями «на каждый день» и более качественными, которые и для офиса подойдут, и отредактировать фотографии позволят.

Пользователи обычных мониторов могут выбрать все, что душе может быть угодно, а финансами позволено. Для экономии, если речь идет об играх или офисной работе, вполне сгодится монитор с TN экраном.

Универсальным решением является монитор с IPS матрицей, или, как вариант, MVA. Широкие углы обзора, черный цвет, больше похожий на действительно черный, отличная цветопередача вам обеспечены. Вопрос только в стоимости и большем, чем у TN, времени отклика. Впрочем, игровые мониторы на таких матрицах показывают себя отлично, и если цели сэкономить, во что бы то ни стало, нет, то, определенно, стоит рассмотреть такой вариант.

Ну а у профессионалов вообще, фактически, альтернатив нет. Выбор между просто IPS и опять-таки IPS, но с каким-либо дополнением — IPS-Pro, H-IPS и т. п.

Перспективные варианты пока что на рынке представлены слабо, но, если так уж хочется иметь что-то особенное, то почему нет?

В современных цифровых устройствах (мониторах, телевизорах, смартфонах, планшетах и др.) для отображения картинки чаще всего используются жидкокристаллические (ЖК) матрицы. Одной из технологий способа построения этой матрицы является IPS. Дословно, в переводе с английского – in plane switching – означает «переключение в одной плоскости».

Для того чтобы понять, что это за переключение и зачем оно нужно необходимо понять, каким именно образом строится картинка на экране ЖК.

Общие принципы построения ЖК матрицы

Пришедшая на смену электронно-лучевым трубкам, технология построения ЖК мониторов включает в себя в качестве ключевого элемента жидкокристаллическую матрицу . Эта матрица находится на передней поверхности монитора. Поскольку матрица только компонует картинку, то для нее требуется подсветка, которая входит в состав дисплея. Состоит ЖК матрица из следующих элементов, которые конструктивно реализованы в виде слоев:

  • цветовой фильтр;
  • горизонтальный фильтр;
  • прозрачный электрод (фронтальный);
  • собственно жидкокристаллический наполнитель;
  • прозрачный электрод (тыловой);
  • вертикальный фильтр.

В эту многослойную структуру также могут входить и специальные антибликовые слои, защитные покрытия, сенсорные слои (чаще емкостные), но они не являются ключевыми для отображения картинки. Сама картинка строится из пикселов, которые образуются из субпикселов базовых цветов (RGB): красного, зеленого и синего. Свет, проходя от тыловой стороны матрицы, проходит через оба поляризационных фильтра и ЖК слой, через цветовой фильтр. Цветовой фильтр как раз и окрашивает эти световые потоки в один из трех цветов RGB. Принцип построения пикселов из субпикселов — это отдельная обширная тема и в рамках данного обзора рассматриваться не будет.

Собственно, сама технология ЖК состоит в том , каким образом будет проходить прохождение светового пучка до пользователя. И если он будет проходить, то насколько он будет ярким. Кристаллы ЖК матриц в ячейках пропускают свет или нет в зависимости от того, какое напряжение подается на электроды. Эффективность работы матриц определяется технологией ее построения и используемого материала. На сегодняшний день наибольшее распространение получили матрицы TN и IPS и их усовершенствованные разновидности.

Технология построения TN матриц

Исторически этот тип матриц появился существенно раньше IPS . Дословно TN (англ. – «twisted nematic») означает «скрученный кристалл». Эта фраза как нельзя точно определяет способ его работы. Молекулы кристаллов в своем слое скручены на 90° друг относительно друга. Такое положение они занимают, если в своем субпикселе на электроды не подается напряжение. Свет при этом проходит свободно (за счет того, что угол поляризации второго фильтра на 90° отличается от первого).

При подаче напряжения на электроды, молекулы кристалла переходят из свободного состояния в упорядоченное: вдоль линии поляризации входного фильтра. Свет из-за этого за пределы второго фильтра не выходит и субпиксел окрашивается не в цвет светофильтра, а вырождается в черный.

  • Плюсы:
    • стоимость изготовления матриц минимальна,
    • время отклика самое быстрое, что очень важно для игровых компьютеров.
  • Минусы:
    • плохие углы обзора, яркость и цветопередача существенно меняются при просмотре на устройстве не под прямым углом;
    • очень низкая контрастность, за счет чего картинка блеклая и очень светлый черный цвет (совсем не подходит для профессиональной графики).
  • Битый пиксел при этом всегда имеет белый цвет (если нет напряжения на электродах, то светофильтр всегда открыт).

Технология построения IPS матриц

Переключение кристаллов в IPS происходи в одной плоскости, о чем, собственно, и говорит исходная форма ее названия (англ. – «in plane switching»). В таких матрицах все электроды расположены на одной – тыльной подложке. При отсутствии напряжения на электродах все молекулы кристалла занимают вертикальное положение, и свет не проходит через внешний поляризационный фильтр.

Включение переводит молекулы в перпендикулярное положение, и внешний фильтр перестает быть помехой: световой поток проходит свободно.

Ключевые особенности данной технологии следующие .

  • Плюсы:
    • яркие и насыщенные цвета за счет улучшенной контрастности, черный цвет всегда черный (можно использовать в профессиональной графике);
    • большой угол обзора до 178°.
  • Минусы:
    • время отклика увеличилось за счет того, что электроды теперь расположены только с одной стороны (критично для игровых приложений);
    • высокая стоимость.
  • Битый пиксел при этом всегда имеет черный цвет (если нет напряжения на электродах, то светофильтр всегда закрыт).

Как видно из списка, все недостатки и достоинства IPS симметричны TN. Это дополнительно подтверждает причину ее появления: технология является компромиссной и была предназначена для устранения ключевых минусов своей предшественницы. На сегодняшний день помимо названия IPS, используемого Hitachi, для нее можно встретить название SFT (super fine TFT), которое используется компанией NEC.

Битые пикселы вне зависимости от того какие они (белые или черные) не отнесены ни к плюсам ни к минусам . Это просто особенность. Если пиксел белый, то это может не сильно раздражать при обработке текстов на светлом фоне, но неудобно при просмотре темных сцен. Черный же наоборот: на темных сценах не будет заметен. Как бы то ни было, вид сбоя – битый пиксел – это всегда минус, но на разных матрицах он бывает различным.

Разновидности IPS матриц

С целью улучшения ключевых характеристик экранов мониторов были выпущены разновидности IPS матриц .

  • Super — IPS (S-IPS). Благодаря реализации технологии overdrive улучшена контрастность и уменьшено время отклика. В ее модификации Advanced super — IPS (AS-IPS) дополнительно была улучшена ее прозрачность.
  • Horizontal — IPS (H — IPS). Применяется в профессиональных графических приложениях. Применена технология Advanced True Wide Polarizer, благодаря чему однородность цвета по всей поверхности стала более равномерной. Также улучшена контрастность и оптимизирован белый цвет. Уменьшено время отклика.
  • Enhanced IPS (e-IPS). Расширила апертуру открытых пикселов. Это помогает использовать более дешевые лампы подсветки. Помимо этого, время отклика сокращено до 5 мс (очень близко к уровню TN). S-IPS 2 является ее улучшением. Уменьшен негативный эффект свечения пикселов.
  • Professional IPS (P — IPS). Существенно расширено число цветов, у субпикселей увеличено число потенциальных положений (в 4 раза).
  • Advanced high performance IPS (AH-IPS). В данной разработке выросло разрешение и число точек на дюйм. Энергопотребление при этом стало ниже и увеличена яркость.

Отдельно стоит отметить матрицу PLS (Plane to line switching) , которая является разработкой Samsung. Разработчик не стал предоставлять технического описания своей технологии. Было проведено исследование матриц под микроскопом. Отличий между PLS и IPS выявлено не было. Поскольку принципы построения этой матрицы схожи с IPS часто ее выделяют как разновидность, а не самостоятельное ответвление. В PLS пикселы расположены плотнее, яркость и энергопотребление лучше. Но при этом они существенно уступают по цветовому охвату.

Выбор монитора: TN или IPS

Экраны, построенные на технологиях TN и IPS, на сегодняшний день являются наиболее распространенными и охватывают практически весь спектр потребностей бюджетного и, частично, профессионального рынка. Существуют и другие типы матриц VA (MVA, PVA), AMOLED (с подсветкой уже каждого пикселя). Но они пока настолько дороги, что их распространение невелико.

Цветопередача и контрастность

Мониторы с IPS матрицей имеют контрастность намного лучше, чем у TN. При этом очень важно понимать: если вся картинка полностью темная или светлая, то такая контрастность – это просто возможности подсветки. Часто производители при равномерных заливках просто приглушают свет ламп подсветки. Чтобы убедиться в качестве контрастности, следует на экран вывести шахматную заливку и проверить насколько будут отличаться темные участки от светлых. Как правило, контрастность в таких тестах становится меньше 30 – 40 раз. Значение контрастности на шахматной доске в 160:1 – приемлемый результат.

Цветопередача IPS экранов осуществляется практически без искажений, в отличие от TN. Чем выше контрастность, тем насыщеннее получается картинка на экране. Это может быть полезно не только при работе с программами по обработке фотографий и видео, но также и при просмотре фильмов. Но есть усовершенствованные версии TN матриц, например, Retina от Apple, которые практически не теряют в цветопередаче.

Угол обзора и яркость

Пожалуй, этот параметр один из первых, который показывает преимущества IPS в сравнении со своим более дешевым конкурентом. Он достигает 170 — 178°, в то время как у улучшенной версии – «TN + film» он находится в диапазоне 90 — 150°. По этому параметру IPS выигрывает. Если вы смотрите маленькой компанией дома телевизор, то это не критично, но вот для случая смартфонов, когда хочется кому-то что-то показать на экране – искажение будет существенным. Поэтому на них чаще всего используются матрицы типа IPS.

По характеристикам яркости IPS экраны также выигрывают. Большие значения яркости и TN матриц делают картинку просто белесой без черных оттенков.

Время отклика и ресурсоемкость

Очень важный критерий , особенно если пользователь часто играет в приложения с динамически меняющимися сценами. У экранов на основе матрицы TN этот параметр достигает величины 1 мс, в то время как у лучших и дорогих версий S -IPS всего 5 мс. Хотя и этот результат хорош для IPS. Если пользователю важен высокий FPS и он не хочет созерцать шлейфы от объектов, то выбор стоит остановить на матрице типа TN.

Помимо скорости изменения картинки, у TN экранов есть еще два преимущества: низкая стоимость и небольшое энергопотребление.

Сенсорный экран и мобильные устройства

В последнее время стали очень распространенными устройства с емкостными сенсорными экранами . Как правило, они оснащаются матрицами IPS из-за высокого количества точек на дюйм. Чем выше плотность точек, тем более гладкими получаются шрифты на экране планшета (даже неразличимы пикселы для глаза). При использовании TN матриц в смартфонах или планшетах будет очень заметна зернистость картинки. В мониторах и телевизорах данный параметр не критичен.

Сенсорным покрытием, как правило, оснащаются именно устройства, где нужен тачскрин. Поскольку чаще всего TN матрицы берут из-за их дешевизны, то такой дорогостоящий атрибут, как емкостной экран на среднем бюджетном мониторе с разрешением 24 дюйма будет просто пустой тратой денег. В то время как на маленькой по площади поверхности планшета или смартфона (до 6 дюймов) емкостный экран просто необходим.

Именно из-за фактора дешевизны TN матрицу от IPS можно отличить нажатием : при нажатии на TN экран картинка под пальцем и вокруг начинает расплываться волнами со спектральным градиентом. Стало быть, при выборе мобильного устройства выбор в пользу IPS по этому параметру просто очевиден.

Итог

Выбирая монитор или телевизор , пользователь может еще задуматься, стоит ли ему тратиться на IPS экран. Площадь поверхности экрана у таких устройств предпочитают брать от 24 дюймов и выше. В результате чего дорогостоящая и энергоемкая матрица может не оправдать своих вложений, если не планируется выполнять профессиональные работы с графикой. К тому же, если монитор нужен для динамичных компьютерных игр, то TN матрица будет предпочтительнее.

Неоспоримо преимущество IPS матрицы при приобретении мобильного устройства: смартфона или планшета. Высокая плотность пикселов, качественная цветопередача и высокая контрастность – все эти качества помогут пользоваться экраном как на солнце, так и в помещении. Сравнение мониторов для работы с графикой всегда будет в пользу IPS. Такие вложения себя оправдают и будут меньше, чем приобретение более дорогостоящих устройств на VA матрицах.

Тип матрицы – это один из наиболее важных параметров современных жидкокристаллических мониторов. Это технология, по которой произведен дисплей. ЖК-матрица представляет собой плоский пакет пластин из стекла, между которыми находятся жидкие кристаллы или вещество на основе полимерных материалов.

Среди всего разнообразия в настоящее время по типу матрицы мониторы классифицируются таким образом:

  • TN (twisted nematic)
  • IPS (in-plane switching)
  • PLS (plane-to-line switching)

Стоит отметить, что существуют и другие, но они в настоящий момент не настолько популярны, как вышеперечисленные. В физическом исполнении данные технологии различаются геометрией поверхностей, фронтального электрода, полимера и управляющей пластины.

Какую матрицу выбрать

Подробно рассмотрим, что собой представляют эти 3 типа, преимущества и недостатки каждого из них. Дадим рекомендации , чем нужно руководствоваться, выбирая тот или иной монитор для покупки.

Мониторы с Tn матрицей

Наиболее простая технология и самая распространенная . Процент мониторов с этой матрицей в настоящее время превышает 80%. Причина этого в дешевизне их производства, потому их стоимость наименьшая.

Но это не единственный плюс. Такие дисплеи долговечны , их энергопотребление сравнительно невысокое. Многих геймеров порадует время отклика – от 2 мс, этот показатель недостижим для иных типов. Они обладают высокими частотными характеристиками, что также может пригодиться в некоторых динамичных играх.

Теперь о минусах – их довольно много. Во-первых, качество картинки этих мониторов оставляет желать лучшего – идеальную цветопередачу Вам получить не удастся. Для тех, у кого глаза очень чувствительны, эти дисплеи явно не подойдут – глаза будут быстро уставать. Кроме того такие экраны имеют наименьшие углы обзора.

Подведя итоги , этот тип матрицы подойдет, если Вы хотите сэкономить свой бюджет, проводите непродолжительное время за компьютером, а фильмы чаще смотрите в небольшом разрешении. Стоит ли экономить зависит от Ваших потребностей и толщины кошелька.

Технология IPS


Качество картинки
в этом случае максимально реалистичное . Огромное число отображаемых цветов и оттенков – свыше одного миллиарда. Существует много разновидностей IPS, все их объединяет лучшая контрастность и максимальный угол обзора в сравнении с TN.

На картинке видно явное различие матрицы TN (слева) от IPS (справа).

Повышенное время отклика в динамически меняющихся изображениях даст, возможно, наличие шлейфов. Себестоимость производства выше, отсюда – высокая цена . Но оно того стоит – IPS экраны уже могут составить конкуренцию плазменным панелям.

Экраны с PLS матрицей

PLS – это модификация IPS матрицы. Разработана компанией Samsung, как её альтернатива .

Что же изменилось? Благодаря большей плотности пикселей максимальная яркость и цветопередача повышена. Потребление энергии сравнимо с TN. Время отклика выше , чем IPS, но все еще не дотягивает до TN. Но в целом разница PLS и IPS при прочих равных (диагональ, соотношение сторон, разрешение, тип подсветки) мало ощутима . Что касается цены , то PLS несколько дешевле .

Резюмируя вышесказанное, если Вы заядлый геймер , профессиональный фотограф или дизайнер или стремитесь таким быть, то есть смысл потратиться и купить монитор с IPS или PLS матрицей. Если же компьютер используется для стандартных офисных задач и чертежной графики – присмотритесь к дисплеям на базе TN технологии . Руководствуйтесь личными предпочтениями и сделайте правильный выбор.

Для многих жидкокристаллические дисплеи (LCD) ассоциируются, прежде всего, с плоскими мониторами, "крутыми" телевизорами, ноутбуками, видеокамерами и сотовыми телефонами. Некоторые добавят сюда КПК, электронные игры, банковские автоматы. Но существует еще множество областей, где необходимы дисплеи с высокой яркостью, прочной конструкцией, работающие в широком диапазоне температур.

Плоские дисплеи нашли применение там, где критичными параметрами являются минимальные энергопотребление, вес и габариты. Машиностроение, автомобильная промышленность, железнодорожный транспорт, морские буровые установки, горное оборудование, наружные торговые точки, авиационная электроника, морской флот, специальные транспортные средства, системы безопасности, медицинское оборудование, вооружение - вот далеко не полный перечень применений жидкокристаллических дисплеев.

Постоянное развитие технологий в этой области позволило снизить стоимость производства LCD до такого уровня, при котором произошел качественный переход: дорогая экзотика стала обыденным явлением. Важным фактором быстрого распространения ЖК-дисплеев в промышленности стала и простота применения.

В этой статье рассматриваются основные параметры различные типов жидкокристаллических дисплеев, что позволит сделать осознанный и правильный выбор LCD для каждого конкретного применения (метод "побольше и подешевше" практически всегда оказывается слишком дорогим).

Все многообразие ЖК-дисплеев можно разделить на несколько типов в зависимости от технологии производства, конструкции, оптических и электрических характеристик.

Технология

В настоящее время при производстве LCD применяются две технологии (рис.1): пассивная матрица (PMLCD-STN) и активная матрица (AMLCD).

Технологии MIM-LCD и Diode-LCD не получили широкого распространения и поэтому не будем на них тратить время.

Рис. 1. Виды технологий жидкокристаллических дисплеев

STN (Super Twisted Nematic)- матрица, состоящая из ЖК-элементов с изменяемой прозрачностью.

TFT (Thin Film Transistor)- активная матрица, в которой каждый пиксел управляется отдельным транзистором.

По сравнению с пассивной матрицей, TFT LCD имеет более высокую контрастность, насыщенность, меньшее время переключения (нет "хвостов" у движущихся объектов).

Управление яркостью в жидкокристаллическом дисплее основано на поляризации света (курс общей физики): свет поляризуется, проходя через поляризационный фильтр (с определенным углом поляризации). При этом наблюдатель видит только снижение яркости света (почти в 2 раза). Если за этим фильтром поставить еще один такой фильтр, то свет будет полностью поглощаться (угол поляризации второго фильтра перпендикулярен углу поляризации первого) или полностью проходить (углы поляризации совпадают). При плавном изменении угла поляризации второго фильтра интенсивность проходящего света будет также плавно изменяться.

Принцип действия и "бутербродная" структура всех TFT LCD примерно одинакова (рис. 2). Свет от лампы подсветки (неоновая или светодиоды) проходит через первый поляризатор и попадает в слой жидких кристаллов, управляемых тонкопленочным транзистором (TFT). Транзистор создает электрическое поле, которое формирует ориентацию жидких кристаллов. Пройдя такую структуру, свет меняет свою поляризацию и будет - или полностью поглощен вторым поляризационным фильтром (черный экран), или не будет поглощаться (белый), или поглощение будет частичным (цвета спектра). Цвет изображения определяют цветовые фильтры (аналогично электронно-лучевым трубкам, каждый пиксел матрицы состоит из трех субпикселов - красного, зеленого и голубого).


Рис. 2. Структура TFT LCD

Пиксел TFT

Цветные фильтры для красного, зелёного и синего цветов интегрированы в стеклянную основу и расположены близко друг к другу. Это может быть вертикальная полоса, мозаичная структура или дельта-структура (рис. 3). Каждый пиксел (точка) состоит из трёх ячеек указанных цветов (субпикселей). Это означает, что при разрешении m x n активная матрица содержит 3m x n транзисторов и субпикселов. Шаг пиксела (с тремя субпикселами) для 15.1" TFT ЖК-дисплея (1024 x 768 точек) составляет примерно 0.30 мм, а для 18.1" (1280 x 1024 точки)- 0.28 мм. TFT LCD имеют физическое ограничение, которое определяется максимальной площадью экрана. Не ждите разрешения 1280 x 1024 при диагонали 15" и шаге точки 0.297 мм.


Рис. 3. Структура цветного фильтра

На близком расстоянии точки явственно различимы, но это не беда: при формировании цвета используется свойство человеческого глаза смешивать цвета при угле зрения менее 0,03°. На расстоянии 40 см от ЖК-дисплея при шаге между субпикселами 0,1 мм угол зрения составит 0,014° (цвет каждого субпиксела различит только человек с орлиным зрением).

Типы ЖК-дисплеев

TN (Twist Nematic) TFT или TN+Film TFT - первая технология, появившаяся на рынке ЖК-дисплеев, основное достоинство которой& - дешевизна. Недостатки: черный цвет больше похож на темно-серый, что приводит к низкой контрастности изображения, "мертвые" пиксели (при выходе из строя транзистора) очень яркие и заметные.

IPS (In-Pane Switching) (Hitachi) или Super Fine TFT (NEC, 1995 год). Характеризуется наибольшим углом обзора и высокой точностью цветопередачи. Угол обзора расширен до 170°, остальные функции - как у TN+Film (время отклика порядка 25мс), практически идеальный черный цвет. Преимущества: хорошая контрастность, "мертвый" пиксель - черный.

Super IPS (Hitachi), Advansed SFT (производитель - NEC). Достоинства: яркое контрастное изображение, искажения цвета почти незаметны, увеличены углы обзора (до 170° по вертикали и по горизонтали) и обеспечена исключительная четкость.

UA-IPS (Ultra Advanced IPS), UA-SFT (Ultra Advanced SFT) (NEC). Время реакции достаточно для обеспечения минимальных искажений цвета при просмотре экрана под разными углами, повышенная прозрачность панели и расширение цветовой гаммы при достаточно высоком уровне яркости.

MVA (Multi-Domain Vertical Alignment) (Fujitsu).Основное преимущество - наименьшее время реакции и высокая контрастность. Главный недостаток - высокая стоимость.

PVA (Patterned Vertical Alignment) (Samsung). Микроструктурное вертикальное размещение ЖК.

Конструкция

Конструкция жидкокристаллического дисплея определяется расположением слоев в "бутерброде" (включая и светопроводящий слой) и имеет наибольшее значение для качества изображения на экране (в любых условиях: от темного помещения до работы при солнечном свете). В настоящее время используются три основных типа цветных LCD:

  • пропускающий (transmissive), предназначенный в основном для оборудования, работающего в помещении;
  • отражающий (reflective) применяется в калькуляторах и часах;
  • проекционный (projection) используется в ЖК-проекторах.

Компромиссной разновидностью пропускающего типа дисплея для работы, как в помещении, так и при внешнем освещении, является полупрозрачный (transflective) тип конструкции.

Пропускающий тип дисплея (transmissive) . В этом типе конструкции свет поступает сквозь жидкокристаллическую панель с задней стороны (подсветка) (рис. 4).По этой технологии сделаны большинство ЖК-дисплеев, используемых в ноутбуках и карманных компьютерах. Transmissive LCD имеет высокое качество изображения в помещении и низкое (черный экран) при солнечном свете, т.к. отраженные от поверхности экрана солнечные лучи полностью подавляют свет, излучаемый подсветкой. Эта проблема решается (в настоящее время) двумя способами: увеличением яркости задней подсветки и уменьшением количества отраженного солнечного света.


Рис. 4. Конструкция жидкокристаллического дисплея пропускающего типа

Для работы при дневном освещении в тени необходима лампа подсветки, обеспечивающая 500 кд/м2, при прямом солнечном свете - 1000 кд/м 2 . Яркости в 300 кд/м 2 можно добиться путем предельного увеличения яркости одной лампы CCFL (Cold Cathode Fluorescent Lamp) или добавлением второй лампы, расположенной напротив. Модели жидкокристаллических дисплеев с повышенной яркостью используют от 8 до 16 ламп. Однако увеличение яркости подсветки увеличивает расход энергии батарей (одна лампа подсветки потребляет около 30% энергии, используемой устройством). Следовательно, экраны с повышенной яркостью можно использовать только при наличии внешнего источника питания.

Уменьшение количества отраженного света достигается нанесением антиотражающего покрытия на один или несколько слоев дисплея, заменой стандартного поляризационного слоя на минимально отражающий, добавлением пленок, повышающих яркость и, таким образом, увеличивающих эффективность источника света. В ЖК-дисплеях Fujitsu преобразователь заполняется жидкостью с коэффициентом рефракции, равным коэффициенту рефракции сенсорной панели, что значительно сокращает количество отраженного света (но сильно сказывается на стоимости).

Полупрозрачный тип дисплея (transflective) похож на пропускающий, но у него между слоем жидких кристаллов и подсветкой имеется т. н. частично отражающий слой (рис.5). Он может быть или частично серебряным, или полностью зеркальным со множеством маленьких отверстий. Когда такой экран используется в помещении, он работает аналогично transmissive LCD, в котором часть освещения поглощается отражающим слоем. При дневном освещении солнечный свет отражается от зеркального слоя и освещает слой ЖК, при этом свет проходит жидкие кристаллы дважды (внутрь, а затем наружу). Как следствие, качество изображения при дневном освещении ниже, чем при искусственном освещении в помещении, когда свет проходит LCD один раз.


Рис. 5. Конструкция жидкокристаллического дисплея полупрозрачного типа

Баланс между качеством изображения в помещении и при дневном освещении достигается подбором характеристик пропускающего и отражающего слоев.

Отражающий тип дисплея (reflective) имеет полностью отражающий зеркальный слой. Все освещение (солнечный свет или свет передней подсветки) (рис. 6), проходит сквозь ЖКИ, отражается от зеркального слоя и снова проходит сквозь ЖКИ. В этом случае качество изображения у дисплеев отражающего типа ниже, чем у полупропускающего (так как в обоих случаях используются сходные технологии). В помещении передняя подсветка не так эффективна, как задняя, и, соответственно, качество изображения - ниже.


Рис. 6. Конструкция жидкокристаллического дисплея отражающего типа

Основные параметры жидкокристаллических панелей

Разрешение. Цифровая панель, число пикселей в которой строго соответствует номинальному разрешению, должна корректно и быстро масштабировать изображение. Простой способ проверки качества масштабирования - изменение разрешения (на экране текст, написанный мелким шрифтом). По контурам букв легко заметить качество интерполяции. Качественный алгоритм дает ровные, но немного размытые буквы, тогда как быстрая целочисленная интерполяция обязательно вносит искажения. Быстродействие - второй параметр разрешения (для масштабирования одного кадра требуется время на интерполяцию).

Мертвые пиксели. На плоской панели могут не работать несколько пикселей (они всегда одного цвета), которые появляются в процессе производства и восстановлению не подлежат.

Стандарт ISO 13406-2 определяет предельные значения количества дефектных пикселов на миллион. В соответствии с таблицей ЖК-панели делятся на 4 класса.

Таблица 1

Тип 1 - постоянно светящиеся пиксели (белый); Тип 2 - "мертвые" пиксели (черный); Тип 3 - дефектные красные, синие и зеленые субпиксели.

Угол обзора. Максимальный угол обзора определяется как угол, при обзоре с которого контрастность изображения уменьшается в 10 раз. Но в первую очередь при изменении угла обзора от 90(видны искажения цвета. Поэтому, чем больше угол обзора, тем лучше. Различают горизонтальный и вертикальный угол обзора, рекомендуемые минимальные значения - 140 и 120 градусов соответственно (наилучшие углы обзора даёт технология MVA).

Время отклика (инерционность)- время, за которое транзистор успевает изменить пространственную ориентацию молекул жидких кристаллов (чем меньше, тем лучше). Для того чтобы быстро движущиеся объекты не казались смазанными, достаточно времени отклика 25 мс. Этот параметр состоит из двух величин: времени на включение пикселя (come-up time) и времени на выключение (come-down time). Время отклика (точнее, время выключения как наибольшее время, за которое отдельный пиксель максимально изменяет свою яркость) определяет частоту обновления изображения на экране

FPS = 1 с/время отклика.

Яркость - преимущество ЖК-дисплея, которая в среднем в два раза выше показателей ЭЛТ: с увеличением интенсивности лампы подсветки сразу возрастает яркость, а в ЭЛТ необходимо усиливать поток электронов, что приведёт к значительному усложнению её конструкции и повысит электромагнитное излучение. Рекомендуемое значение яркости - не менее 200 кд/м 2 .

Контрастность определяется как соотношение между максимальной и минимальной яркостью. Основная проблема заключается в сложности получения точки чёрного цвета, т.к. лампа подсветки включена постоянно и для получения тёмных тонов используется эффект поляризации. Чёрный цвет зависит от качества перекрытия светового потока подсветки.

ЖК-дисплеи как сенсоры. Снижение стоимости и появление моделей LCD, работающих в жестких условиях эксплуатации, позволило совместить в одном лице (в лице жидкокристаллического дисплея) средство вывода визуальной информации и средство ввода информации (клавиатура). Задача построения такой системы упрощается использованием контроллера последовательного интерфейса, который подключается, с одной стороны, к ЖК-дисплею, а с другой - непосредственно к последовательному порту (СОМ1 - СОМ4) (рис.7). Для управления, декодирования сигналов и подавления "дребезга" (если так можно назвать определение прикосновения) применяется PIC-контроллер (например, IF190 фирмы Data Display), обеспечивающий высокое быстродействие и точность определения точки прикосновения.


Рис. 7. Блок-схема TFT LCD на примере NL6448BC-26-01 дисплея фирмы NEC

Завершим на этом теоретические изыскания и перейдем к реалиям сегодняшнего дня, а точнее - к тому, что имеется сейчас на рынке жидкокристаллических дисплеев. Среди всех изготовителей TFT LCD рассмотрим продукцию NEC, Sharp, Siemens и Samsung. Выбор этих фирм обусловлен

  1. лидерством на рынке ЖК-дисплеев и технологий производства TFT LCD;
  2. доступностью продукции на рынке стран СНГ.

Компания NEC Corporation выпускает жидкокристаллические дисплеи (20% рынка) практически с момента их появления и предлагает не только широкий выбор, но и различные варианты исполнения: стандартный (Standard), специальный (Special) и особый (Specific). Стандартный вариант - компьютеры, офисное оборудование, домашняя электроника, коммуникационные системы и т.п. Специальное исполнение применяется на транспорте (любом: наземном и морском), системах управления движением, системах безопасности, медицинском оборудовании (не связанном с системами жизнеобеспечения). Для систем вооружений, авиации, космического оборудования, систем управления ядерными реакторами, систем жизнеобеспечения и других аналогичных предназначен особый вариант исполнения (понятно, что стоит это недешево).

Перечень выпускаемых ЖК-панелей для промышленного применения (инвертер для лампы подсветки поставляется отдельно) приведен в таблице 2, а блок-схема (на примере 10-дюймового дисплея NL6448BC26-01)- на рис. 8.


Рис. 8. Внешний вид дисплея

Таблица 2. Модели ЖК-панелей фирмы NEC

Модель Размер по диагонали, дюйм Количество пикселей Число цветов Описание
NL8060BC31-17 12,1 800x600 262144 Высокая яркость (350кд/м 2)
NL8060BC31-20 12,1 800x600 262144 Широкий угол обзора
NL10276BC20-04 10,4 1024x768 262144 -
NL8060BC26-17 10,4 800x600 262144 -
NL6448AC33-18A 10,4 640x480 262144 Встроенный инвертор
NL6448AC33-29 10,4 640x480 262144 Высокая яркость, широкий угол обзора, встроенный инвертор
NL6448BC33-46 10,4 640x480 262144 Высокая яркость, широкий угол обзора
NL6448CC33-30W 10,4 640x480 262144 Без подсветки
NL6448BC26-01 8,4 640x480 262144 Высокая яркость (450 кд/м 2)
NL6448BC20-08 6,5 640x480 262144 -
NL10276BC12-02 6,3 1024x768 16, 19M -
NL3224AC35-01 5,5 320x240 Full color
NL3224AC35-06 5,5 320x240 Full color Отдельный вход NTSC/PAL RGB, встроенный инвертор, тонкий
NL3224AC35-10 5,5 320x240 Full color Отдельный вход NTSC/PAL RGB, встроенный инвертор
NL3224AC35-13 5,5 320x240 Full color Отдельный вход NTSC/PAL RGB, встроенный инвертор
NL3224AC35-20 5,5 320x240 262, 144 Высокая яркость (400 кд/м 2)

Сыграла значительную роль в развитии LCD-технологий. Компания Sharp и сейчас находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975 г. уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. В 1976 г. Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы с разрешением 160х120 пикселов. Краткий перечень продукции - в таблице 3.

Таблица 3. Модели ЖК-панелей фирмы Sharp

Выпускает жидкокристаллические дисплеи с активной матрицей на низкотемпературных поликремниевых тонкопленочных транзисторах. Основные характеристики дисплеев с диагональю 10,5" и 15" приведены в таблице 4. Обратите внимание на диапазон рабочих температур и стойкость к ударам.

Таблица 4. Основные характеристики ЖК-дисплеев фирмы Siemens

Примечания:

I - встроенный инвертор l - в соответствии с требованиями стандарта MIL-STD810

Фирма выпускает жидкокристаллические дисплеи под торговой маркой "Wiseview™". Начав с выпуска 2-дюймовой TFT панели для поддержки Интернета и анимации в мобильных телефонах, Samsung теперь производит гамму дисплеев от 1,8" до 10,4" в сегменте малых и средних TFT LCD, причем некоторые модели предназначены для работы при естественном освещении (таблица 5).

Таблица 5. Основные характеристики ЖК-дисплеев Samsung малых и средних размеров

Примечания:

LED - светодиодная; CCFL - флуоресцентная лампа с холодным катодом;

В дисплеях используется технология PVA.

Выводы.

В настоящее время выбор модели жидкокристаллического дисплея определяется требованиями конкретного применения и в значительно меньшей степени - стоимостью LCD.