Сайт о телевидении

Сайт о телевидении

» » Сортировка методом пузырька c. Сортировка методом пузырька

Сортировка методом пузырька c. Сортировка методом пузырька

Сортировка пузырьком – простейший алгоритм сортировки, применяемый чисто для учебных целей. Практического применения этому алгоритму нет, так как он не эффективен, особенно если необходимо отсортировать массив большого размера. К плюсам сортировки пузырьком относится простота реализации алгоритма.

Алгоритм сортировки пузырьком сводится к повторению проходов по элементам сортируемого массива. Проход по элементам массива выполняет внутренний цикл. За каждый проход сравниваются два соседних элемента, и если порядок неверный элементы меняются местами. Внешний цикл будет работать до тех пор, пока массив не будет отсортирован. Таким образом внешний цикл контролирует количество срабатываний внутреннего цикла Когда при очередном проходе по элементам массива не будет совершено ни одной перестановки, то массив будет считаться отсортированным. Чтобы хорошо понять алгоритм, отсортируем методом пузырька массив, к примеру, из 7 чисел (см. Таблица 1).
исходный массив: 3 3 7 1 2 5 0

Таблица 1 — Сортировка пузырьком
№ итерации Элементы массива Перестановки
исх. массив 3 3 7 1 2 5 0
0 3 3 false
1 3 7 false
2 1 7 7>1, true
3 2 7 7>2, true
4 5 7 7>5, true
5 0 7 7>0, true
тек. массив 3 3 1 2 5 0 7
0 3 3 false
1 1 3 3>1, true
2 2 3 3>2, true
3 0 3 3>0, true
4 3 5 false
5 5 7 false
тек. массив 3 1 2 0 3 5 7
0 1 3 3>1, true
1 2 3 3>2, true
2 0 3 3>0, true
3 3 3 false
4 3 5 false
5 5 7 false
тек. массив 1 2 0 3 3 5 7
1 2 false
0 2 2>0, true
2 3 false
3 3 false
3 5 false
5 7 false
тек. массив 1 0 2 3 3 5 7
0 1 1>0, true
1 2 false
2 3 false
3 3 false
3 5 false
5 7 false
конечный массив 0 1 2 3 3 5 7
Конец сортировки

Для того чтобы отсортировать массив хватило пяти запусков внутреннего цикла, for . Запустившись, цикл for срабатывал 6 раз, так как элементов в массиве 7, то итераций (повторений) цикла for должно быть на одно меньше. На каждой итерации сравниваются два соседних элемента массива. Если текущий элемент массива больше следующего, то меняем их местами. Таким образом, пока массив не будет отсортирован, будет запускаться внутренний цикл и выполняться операция сравнения. Обратите внимание на то, что за каждое полное выполнение цикла for как минимум один элемент массива находит своё место. В худшем случае, понадобится n-2 запуска внутреннего цикла, где n – количество элементов массива. Это говорит о том, что сортировка пузырьком крайне не эффективна для больших массивов.

Разработаем программу, в которой сначала необходимо ввести размер одномерного массива, после чего массив заполняется случайными числами и сортируется методом пузырька.

// bu_sort.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include #include #include using namespace std; void bubbleSort(int *, int); // прототип функции сортировки пузырьком int main(int argc, char* argv) { srand(time(NULL)); setlocale(LC_ALL, "rus"); cout << "Введите размер массива: "; int size_array; // длинна массива cin >> size_array; int *sorted_array = new int ; // одномерный динамический массив for (int counter = 0; counter < size_array; counter++) { sorted_array = rand() % 100; // заполняем массив случайными числами cout << setw(2) << sorted_array << " "; // вывод массива на экран } cout << "\n\n"; bubbleSort(sorted_array, size_array); // вызов функции сортировки пузырьком for (int counter = 0; counter < size_array; counter++) { cout << setw(2) << sorted_array << " "; // печать отсортированного массива } cout << "\n"; system("pause"); return 0; } void bubbleSort(int* arrayPtr, int length_array) // сортировка пузырьком { int temp = 0; // временная переменная для хранения элемента массива bool exit = false; // болевая переменная для выхода из цикла, если массив отсортирован while (!exit) // пока массив не отсортирован { exit = true; for (int int_counter = 0; int_counter < (length_array - 1); int_counter++) // внутренний цикл //сортировка пузырьком по возрастанию - знак > //сортировка пузырьком по убыванию - знак < if (arrayPtr > arrayPtr) // сравниваем два соседних элемента { // выполняем перестановку элементов массива temp = arrayPtr; arrayPtr = arrayPtr; arrayPtr = temp; exit = false; // на очередной итерации была произведена перестановка элементов } } }

Результат работы программы показан на рисунке 1.

Рисунок 1 — Сортировка пузырьком


Расположим массив сверху вниз, от нулевого элемента - к последнему.

Идея метода: шаг сортировки состоит в проходе снизу вверх по массиву. По пути просматриваются пары соседних элементов. Если элементы некоторой пары находятся в неправильном порядке, то меняем их местами.

После нулевого прохода по массиву "вверху" оказывается самый "легкий" элемент - отсюда аналогия с пузырьком. Следующий проход делается до второго сверху элемента, таким образом второй по величине элемент поднимается на правильную позицию...

Делаем проходы по все уменьшающейся нижней части массива до тех пор, пока в ней не останется только один элемент. На этом сортировка заканчивается, так как последовательность упорядочена по возрастанию.

Template void bubbleSort(T a, long size) { long i, j; T x; for(i=0; i < size; i++) { // i - номер прохода for(j = size-1; j > i; j--) { // внутренний цикл прохода if (a > a[j]) { x=a; a=a[j]; a[j]=x; } } } }

Среднее число сравнений и обменов имеют квадратичный порядок роста: Theta(n 2), отсюда можно заключить, что алгоритм пузырька очень медленен и малоэффективен.
Тем не менее, у него есть громадный плюс: он прост и его можно по-всякому улучшать. Чем мы сейчас и займемся.

Во-первых, рассмотрим ситуацию, когда на каком-либо из проходов не произошло ни одного обмена. Что это значит?

Это значит, что все пары расположены в правильном порядке, так что массив уже отсортирован. И продолжать процесс не имеет смысла(особенно, если массив был отсортирован с самого начала!).

Итак, первое улучшение алгоритма заключается в запоминании, производился ли на данном проходе какой-либо обмен. Если нет - алгоритм заканчивает работу.

Процесс улучшения можно продолжить, если запоминать не только сам факт обмена, но и индекс последнего обмена k. Действительно: все пары соседих элементов с индексами, меньшими k, уже расположены в нужном порядке. Дальнейшие проходы можно заканчивать на индексе k, вместо того чтобы двигаться до установленной заранее верхней границы i.

Качественно другое улучшение алгоритма можно получить из следующего наблюдения. Хотя легкий пузырек снизу поднимется наверх за один проход, тяжелые пузырьки опускаются со минимальной скоростью: один шаг за итерацию. Так что массив 2 3 4 5 6 1 будет отсортирован за 1 проход, а сортировка последовательности 6 1 2 3 4 5 потребует 5 проходов.

Чтобы избежать подобного эффекта, можно менять направление следующих один за другим проходов. Получившийся алгоритм иногда называют "шейкер-сортировкой ".

Template void shakerSort(T a, long size) { long j, k = size-1; long lb=1, ub = size-1; // границы неотсортированной части массива T x; do { // проход снизу вверх for(j=ub; j>0; j--) { if (a > a[j]) { x=a; a=a[j]; a[j]=x; k=j; } } lb = k+1; // проход сверху вниз for (j=1; j<=ub; j++) { if (a > a[j]) { x=a; a=a[j]; a[j]=x; k=j; } } ub = k-1; } while (lb < ub); }

Насколько описанные изменения повлияли на эффективность метода? Среднее количество сравнений, хоть и уменьшилось, но остается O(n 2), в то время как число обменов не поменялось вообще никак. Среднее(оно же худшее) количество операций остается квадратичным.

Дополнительная память, очевидно, не требуется. Поведение усовершенствованного (но не начального) метода довольно естественное, почти отсортированный массив будет отсортирован намного быстрее случайного. Сортировка пузырьком устойчива, однако шейкер-сортировка утрачивает это качество.

На практике метод пузырька, даже с улучшениями, работает, увы, слишком медленно. А потому - почти не применяется.

Всем привет!

Сегодня мы разберем сортировку методом "пузырька". Данный алгоритм часто проходится в школах и университетах, поэтому будем использовать язык Pascal. И, так, что такое сортировка? Сортировка - это упорядочение элементов от меньшего к большему (сортировка по возрастанию) или от большего элемента к меньшему (сортировка по убыванию). Сортируют обычно массивы.

Существуют различные алгоритмы сортировки. Некоторые, хорошо сортируют большое количество элементов, другие, более эффективны при очень маленьком количестве элементов. Наш метод пузырька характерен:


Плюсы:
  • Простота реализации алгоритма
  • Красивое название
Минусы:
  • Один из самых медленных методов сортировки (Время выполнения квадратично зависит от длины массива n 2)
  • Почти не применяется в реальной жизни (используется в основном в учебных целях)
Пусть есть у нас некий массив: 3 1 4 2

Алгоритм: Берем элемент массива, сравниваем со следующим, если наш элемент, больше следующего элемента, то мы их меняем местами. После прохождения всего массива, мы можем быть уверены, что максимальный элемент будет "вытолкнут" - и стоять самым последним. Таким образом, один элемент у нас уже точно стоит на своём месте. Т.к. нам надо их все расположить на свои места, следовательно, мы должны повторить данную операцию, столько раз, сколько у нас элементов массива минус 1. Последний элемент встанет автоматически, если остальные стоят на своих местах.

Вернемся к нашему массиву:3 1 4 2
Берем первый элемент "3" сравниваем со следующим "1". Т.к. "3" > "1", то меняем местами:
1 3 4 2
Теперь сравниваем "3" и "4", тройка не больше четвёрки, значит ничего не делаем. Далее, сравниваем "4" и "2". Четыре больше, чем два - значит меняем местами: 1 3 2 4 . Цикл закончился. Значит самый большой элемент уже должен стоять на своём месте!! Видим, что у нас так и произошло. Где бы "4" (наш самый большой элемент) не находился - он всё равно, после прохождения циклом всего массива, будет последним. Аналогия - как пузырёк воздуха всплывает в воде - так и наш элемент, всплывает в массиве. Поэтому и алгоритм, называется "Пузырьковая сортировка". Чтобы расположить следующий элемент, необходимо, начать цикл сначала, но последний элемент можно уже не рассматривать, потому что он стоит на своём месте.


Сравниваем "1" и "3" - ничего не меняем.
Сравниваем "3" и "2" - Три больше двух, значит меняем местами. Получается:1 2 3 4 . Второй цикл закончили. Мы сделали уже два цикла - значит, с уверенностью можно сказать, что у нас, два последних элемента уже отсортированы. Осталось нам отсортировать третий элемент, а четвёртый, встанет в нужное место, автоматически. Ещё раз, сравниваем первый элемент и второй - видим, что у нас уже всё на своих местах, значит, массив, можно считать, отсортированный по возрастанию элементов.

Теперь осталось запрограммировать данный алгоритм на языке Pascal. const n = 4; {Заводим константу, это будет длина массива} var i, j, k:integer; {Две переменные для вложенного цикла, одна для того чтобы элементы менять местами } m:array of integer; {Заводим массив} begin {Будем запрашивать массив с клавиатуры:} Writeln("Введите массив:"); for i:=1 to n do begin Writeln(i, " элемент:"); Readln(m[i]); end; {Внешний цикл отвечает за то, что мы должны повторить внутренний цикл столько раз, сколько у нас элементов массива минус 1.} for i:=1 to n-1 do begin {Внутренний цикл уже перебирает элементы и сравнивает между собой.} for j:=1 to n-i do begin {Если элемент, больше следующего, то меняем местами.} if m[j]>m then begin k:=m[j]; m[j]:=m; m:=k; end; end; end; {Выводи результат:} for i:=1 to n do Write(m[i], " "); end.
Вот результат:

А вот видеоурок

Не только не считается самым быстрым методом, более того, она замыкает перечень самых медленных способов упорядочивания. Однако и у нее есть свои плюсы. Так, сортировка методом пузырька - самое что ни на есть логичное и естественное решение проблемы, если необходимо расставить элементы в определенном порядке. Обычный человек вручную, к примеру, воспользуется именно им - просто по интуиции.

Откуда взялось такое необычное название?

Название метода придумали, используя аналогию с воздушными пузырьками в воде. Это метафора. Подобно тому, как маленькие пузыри воздуха поднимаются наверх - ведь их плотность больше, чем какой-либо жидкости (в данном случае - воды), так и каждый элемент массива, чем меньше он по значению, тем больше он постепенно пробирается к началу перечня чисел.

Описание алгоритма

Сортировка пузырьком выполняется следующим образом:

  • первый проход: элементы массива чисел берутся по два и также парами сравниваются. Если в какой-то двойке элементов первое значение оказывается больше второго, программа производит их обмен местами;
  • следовательно, попадает в конец массива. В то время как все остальные элементы остаются, как и были, в хаотичном порядке и требуют еще сортировки;
  • поэтому и необходим второй проход: производится он по аналогии с предыдущим (уже описанным) и имеет число сравнений - минус один;
  • у прохода номер три сравнений на единицу меньше, чем у второго, и на двойку, чем у первого. И так далее;
  • подытожим, что каждый проход имеет (всего значений в массиве, конкретное число) минус (номер прохода) сравнений.

Еще короче алгоритм будущей программы можно записать так:

  • массив чисел проверяется до тех пор, пока не будут найдены какие-либо два числа, причем второе из них обязано быть больше первого;
  • неправильно расположенные по отношению друг к другу элементы массива программа меняет местами.

Псевдокод на основе описанного алгоритма

Самая простая реализация выполняется так:

Процедура Sortirovka_Puzirkom ;

Начало

цикл для j от nachalnii_index до konechii_index ;

цикл для i от nachalnii_index до konechii_index-1 ;

если massiv[i]>massiv

(меняем значения местами);

Конец

Конечно, здесь простота только усугубляет ситуацию: чем проще алгоритм, тем более в нем проявляются все недостатки. Затратность времени слишком велика даже для небольшого массива (тут вступает в дело относительность: для обывателя количество времени может казаться маленьким, но в деле программиста каждая секунда или даже миллисекунда на счету).

Потребовалась реализация получше. Например, учитывающая обмен значений в массиве местами:

Процедура Sortirovka_Puzirkom ;

Начало

sortirovka = истина;

цикл пока sortirovka = истина;

sortirovka = ложь;

цикл для i от nachalnii_index до konechii_index-1 ;

если massiv[i]>massiv (первый элемент больше второго), то:

(меняем элементы местами);

sortirovka = истина; (обозначили, что обмен был произведен).

Конец.

Недостатки метода

Основной минус - продолжительность процесса. Сколько же времени выполняется пузырьком?

Время выполнения рассчитывается из квадрата количества чисел в массиве - конечный результат ему пропорционален.

При наихудшем варианте массив будет пройден столько же раз, сколько в нем имеется элементов минус одно значение. Так происходит потому, что в конечном итоге остается только один элемент, который не с чем сравнивать, и последний проход по массиву становится бесполезным действом.

Кроме того, эффективен метод сортировки простыми обменами, как его еще называют, только для массивов небольшого размера. Большие объемы данных с его помощью обработать не получится: результатом станут либо ошибки, либо сбой работы программы.

Достоинства

Сортировка пузырьком весьма проста для понимания. В учебных программах технических ВУЗов при изучении упорядочивания элементов массива ее проходят в первую очередь. Метод легко реализуется как на языке программирования Delphi (Д (Делфи), так и на C/C++ (Си/Си плюс плюс), невероятно простой алгоритм расположения значений в верном порядке и на Сортировка пузырьком идеально подходит для начинающих.

По причине недостатков алгоритм не применяют во внеучебных целях.

Наглядный принцип сортировки

Изначальный вид массива 8 22 4 74 44 37 1 7

Шаг 1 8 22 4 74 44 37 1 7

8 22 4 74 44 1 37 7

8 22 4 74 1 44 37 7

8 22 4 1 74 44 37 7

8 22 1 4 74 44 37 7

8 1 22 4 74 44 37 7

1 8 22 4 74 44 37 7

Шаг 2 1 8 22 4 74 44 7 37

1 8 22 4 74 7 44 37

1 8 22 4 7 74 44 37

1 8 22 4 7 74 44 37

1 8 4 22 7 74 44 37

1 4 8 22 7 74 44 37

Шаг 3 1 4 8 22 7 74 37 44

1 4 8 22 7 37 74 44

1 4 8 22 7 37 74 44

1 4 8 7 22 37 74 44

1 4 7 8 22 37 74 44

Шаг 4 1 4 7 8 22 37 44 74

1 4 7 8 22 37 44 74

1 4 7 8 22 37 44 74

1 4 7 8 22 37 44 74

Шаг 5 1 4 7 8 22 37 44 74

1 4 7 8 22 37 44 74

1 4 7 8 22 37 44 74

Шаг 6 1 4 7 8 22 37 44 74

1 4 7 8 22 37 44 74

Шаг 7 1 4 7 8 22 37 44 74

Пример сортировки пузырьком на языке Pascal

Пример:

const kol_mas=10;

var massiv:array of integer;

a, b, k: integer;

writeln ("input", kol_mas, "elements of array");

for a:=1 to kol_mas do readln(massiv[a]);

for a:=1 to kol_mas-1 do begin

for b:=a+1 to kol_mas do begin

if massiv[a]>massiv[b] then begin

k:=massiv[a]; massiv[a]:=massiv[b]; massiv[b]:=k;

end;

writeln ("after sort");

for a:=1 to kol_mas do writeln(massiv[a]);

Пример сортировки пузырьком на языке С (Си)

#include

#include

int main(int argc, char* argv)

int massiv = {36, 697, 73, 82, 68, 12, 183, 88},i, ff;

for (; ;){

ff = 0;

for (i = 7; i>0; i--){

if (massiv[i] < massiv) {

swap (massiv[i],massiv);

if (ff == 0) break;

getch(); // задержка экрана

Существует довольно большое количество алгоритмов сортировки, многие из них весьма специфические и разрабатывались для решения узкого круга задач и работы с конкретными типами данных. Но среди всего этого многообразия самым простейшим алгоритмом заслуженно является пузырьковая сортировка, которую можно реализовать на любом языке программирования. Несмотря на свою простоту, она лежит в основе многих довольно сложных алгоритмов. Другим ее не менее важным достоинством является ее простота, а, следовательно, ее можно вспомнить и реализовать сходу, не имея перед глазами какой-либо дополнительной литературы.

Введение

Весь современный интернет представляет из себя огромное количество разнотипных структур данных, собранных в базы данных. В них хранится всевозможная информация, начиная от личных данных пользователей и заканчивая семантическим ядром высокоинтеллектуальных автоматизированных системами. Стоит-ли говорить о том, что сортировка данных играет крайне важную роль в этом огромном количестве структурированной информации. Сортировка может стать обязательным шагом перед поиском какой-либо информации в базе, и знание алгоритмов сортировки играет крайне важную роль в программировании. Существует довольно большое количество алгоритмов сортировки, многие из них весьма специфические и разрабатывались для решения узкого круга задач и работы с конкретными типами данных. Но среди всего этого многообразия самым простейшим алгоритмом заслуженно является пузырьковая сортировка , которую можно реализовать на любом языке программирования. Несмотря на свою простоту, она лежит в основе многих довольно сложных алгоритмов. Другим ее не менее важным достоинством является ее простота, а, следовательно, ее можно вспомнить и реализовать сходу, не имея перед глазами какой-либо дополнительной литературы.

Сортировка глазами машины и глазами человека

Давайте представим, что вам нужно отсортировать по возрастанию 5 столбиков разной высоты. Под этими столбиками может пониматься какая угодно информация (цены на акции, пропускная способность канала связи и пр.), можете представить какой-то свой вариант этой задачи, чтобы было более наглядно. Ну а мы, в качестве примера, будем сортировать мстителей по росту:

Вам, в отличие от компьютерной программы сортировка не составит никого труда, ведь вы способны видеть картину в целом и сразу сможете прикинуть, какого героя, куда нужно переместить, чтобы сортировка по росту была выполнена успешно. Вы уже наверняка догадались, что для сортировки по возрастанию этой структуры данных достаточно поменять местами Халка и Железного человека:

Done!

И на этом сортировка будет успешно завершена. Однако, вычислительная машина в отличие от вас несколько туповата не видит всю структуру данных целиком. Ее программа управления может сравнивать лишь два значения в один промежуток времени. Для решения этой задачи ей продеться помесить в свою память два числа и выполнить над ними операцию сравнения, после чего перейти к другой паре чисел, а так до тех пор, пока не будут проанализированы все данные. Поэтому любой алгоритм сортировки очень упрощенно можно представить виде трех шагов:
  • Сравнить два элемента;
  • Поменять местами или скопировать один из них;
  • Перейти к следующему элементу;
Разные алгоритмы могут по-разному выполнять эти операции, ну а мы перейдем к рассмотрению принципа работы пузырьковой сортировки.

Алгоритм пузырьковой сортировки

Пузырьковая сортировка считается самой простой, но перед тем как описывать этот алгоритм давайте представим, как бы вы отсортировали мстителей по росту, если бы могли, как и машина сравнивать между собой лишь двух героев в один промежуток времени. Скорее всего, вы бы поступили (самым оптимальным) следующим образом:
  • Вы перемещаетесь к нулевому элементу нашего массива (Черная Вдова);
  • Сравниваете нулевой элемент (Черную Вдову) с первым (Халком);
  • Если элемент на нулевой позиции оказался выше, вы меняете их местами;
  • Иначе, если элемент на нулевой позиции меньше, вы оставляете их на своих местах;
  • Производите переход на позицию правее и повторяете сравнение (сравниваете Халка с Капитаном)

После того, как вы пройдете с таким алгоритмом по всему списку за один проход, сортировка будет произведена не полностью. Но зато, самый большой элемент в списке будет перемещен в крайнюю правую позицию. Это будет происходить всегда, ведь как только вы найдете самый большой элемент, вы все время будете менять его местами пока не переместите в самый конец. То есть, как только программа «найдет» Халка в массиве, она будет двигать его дальше в самый конец списка:

Именно поэтому этот алгоритм называется пузырьковой сортировкой, так как в результате его работы самый большой элемент в списке оказывается в самом верху массива, а все более мелкие элементы будут смещены на одну позицию влево:

Чтобы завершить сортировку нужно будет вернуться к началу массива и повторить описанные выше пять шагов еще раз, снова перемещаясь слева направо, сравнивая и по необходимости перемещая элементы. Но на этот раз вам нужно остановить алгоритм за один элемент до конца массива, ведь мы уже знаем, что в крайней правой позиции абсолютно точно находится самый большой элемент (Халк):

Таким образом, программа должна иметь два цикла. Для большей наглядности, перед тем как мы перейдем к рассмотрению программного кода, по этой ссылке можно ознакомиться с визуализацией работы пузырьковой сортировки: Визуализация работы пузырьковой сортировки

Реализация пузырьковой сортировки на языке Java

Для демонстрации работы сортировки на Java, приведем программный код, который:
  • создает массив на 5 элементов;
  • загружает в него рост мстителей;
  • выводит на экран содержимое массива;
  • реализует пузырьковую сортировку;
  • осуществляет повторный вывод на экран отсортированного массива.
С кодом можно ознакомиться ниже, и даже загрузить его в свою любимую IntelliJ IDE. Его разбор будет производиться ниже: class ArrayBubble { private long a; //ссылка на массив private int elems; //количество элементов в массиве public ArrayBubble (int max) { //конструктор класса a = new long [ max] ; //создание массива размером max elems = 0 ; //при создании массив содержит 0 элементов } public void into (long value) { //метод вставки элемента в массив a[ elems] = value; //вставка value в массив a elems++ ; //размер массива увеличивается } public void printer () { //метод вывода массива в консоль for (int i = 0 ; i < elems; i++ ) { //для каждого элемента в массиве System. out. print (a[ i] + " " ) ; //вывести в консоль System. out. println ("" ) ; //с новой строки } System. out. println ("----Окончание вывода массива----" ) ; } private void toSwap (int first, int second) { //метод меняет местами пару чисел массива long dummy = a[ first] ; //во временную переменную помещаем первый элемент a[ first] = a[ second] ; //на место первого ставим второй элемент a[ second] = dummy; //вместо второго элемента пишем первый из временной памяти } public void bubbleSorter () { for (int out = elems - 1 ; out > < out; in++ ) { //Внутренний цикл if (a[ in] > a[ in + 1 ] ) toSwap (in, in + 1 ) ; } } } } public class Main { public static void main (String args) { ArrayBubble array = new ArrayBubble (5 ) ; //Создаем массив array на 5 элементов array. into (163 ) ; //заполняем массив array. into (300 ) ; array. into (184 ) ; array. into (191 ) ; array. into (174 ) ; array. printer () ; //выводим элементы до сортировки array. bubbleSorter () ; //ИСПОЛЬЗУЕМ ПУЗЫРЬКОВУЮ СОРТИРОВКУ array. printer () ; //снова выводим отсортированный йсписок } } Не смотря на подробные комментарии в коде, приведем описание некоторых методов, представленных в программе. Ключевые методы, осуществляющую основную работу в программе написаны в классе ArrayBubble. Класс содержит конструктор и несколько методов:
  • into – метод вставки элементов в массив;
  • printer – выводит содержимое массива построчно;
  • toSwap – переставляет местами элементы в случае необходимости. Для этого используется временная переменная dummy , в которую записывается значение первого числа, а на место первого записывается значение из второго числа. После этого содержимое из временной переменной записывается во второе число. Это стандартный прием перестановки местами двух элементов;

    и, наконец, главный метод:

  • bubbleSorter – который производит основную работу и сортирует данные, хранящиеся в массиве, еще раз приведем его отдельно:

    public void bubbleSorter () { //МЕТОД ПУЗЫРЬКОВОЙ СОРТИРОВКИ for (int out = elems - 1 ; out >= 1 ; out-- ) { //Внешний цикл for (int in = 0 ; in < out; in++ ) { //Внутренний цикл if (a[ in] > a[ in + 1 ] ) //Если порядок элементов нарушен toSwap (in, in + 1 ) ; //вызвать метод, меняющий местами } } }
Здесь следует обратить внимание на два счетчика: внешний out , и внутренний in . Внешний счетчик out начинает перебор значений с конца массива и постепенно уменьшается с каждым новым проходом на единицу. Переменная out с каждым новым проходом смещается все левее, чтобы не затрагивать значения, уже отсортированные в правую часть массива. Внутренний счетчик in начинает перебор значений с начала массива и постепенно увеличивается на единицу на каждом новом проходе. Увеличение in происходит до тех пока, пока он не достигнет out (последнего анализируемого элемента в текущем проходе). Внутренний цикл in производит сравнение двух соседних ячеек in и in+1 . Если в in хранится большее число, чем в in+1 , то вызывается метод toSwap , который меняет местами эти два числа.

Заключение

Алгоритм пузырьковой сортировки является одним из самых медленных. Если массив состоит из N элементов, то на первом проходе будет выполнено N-1 сравнений, на втором N-2, далее N-3 и т.д. То есть всего будет произведено проходов: (N-1) + (N-2) + (N-3) + … + 1 = N x (N-1)/2 Таким образом, при сортировке алгоритм выполняет около 0.5х(N^2) сравнений. Для N = 5 , количество сравнений будет примерно 10, для N = 10 количество сравнений вырастит до 45. Таким образом, с увеличением количества элементов сложность сортировки значительно увеличивается:

На скорость алгоритма влияет не только количество проходов, но и количество перестановок, которые потребуется совершить. Для случайных данных количество перестановок в среднем составляет (N^2) / 4, то есть примерно в половину меньше, чем количество проходов. Однако, в худшем случае количество перестановок также может составить N^2 / 2 – это в том случае, если данные изначально отсортированы в обратном порядке. Не смотря на то, что это достаточно медленный алгоритм сортировки, знать и понимать как он работает довольно важно, к тому же, как было сказано ранее, он является основой для более сложных алгоритмов. Jgd!