Сайт о телевидении

Сайт о телевидении

» » Роботы как люди в японии. Сколько стоит робот-друг. Пластичный гуманоид Alter

Роботы как люди в японии. Сколько стоит робот-друг. Пластичный гуманоид Alter

April 13th, 2015

Компания Токио Дэнрёку, являющаяся оператором аварийной атомной электростанции «Фукусима дай-ити», прекратила попытки вернуть назад робот-зонд, который остается без движения внутри одного из реакторов АЭС. Токио Дэнрёку впервые запустила этот робот с дистанционным управлением внутрь защитной оболочки реактора №1 в пятницу. Этот змееобразный робот длиной 60 сантиметров должен был провести изучение повреждений внутри защитной оболочки. Однако он остановился, продвинувшись примерно на 10 метров.

Представители компании также отложили планы проведения в понедельник аналогичного изучения внутри той же защитной оболочки с использованием другого робота. Как они объяснили, такое решение было принято из-за того, что кабель первого робота в канале защитной оболочки препятствует прохождению туда второго зонда.

Эх, и это ЯПОНИЯ! В моем воспаленном мозгу там уже «по улицам роботы должны ходить» !

Тем временем в «дикой России» …

Специальный мобильный робот СТР-1, участвовавший в ликвидации последствий аварии на Чернобыльской АЭС.

В 2009 году компания ЗАО «Диаконт» работала на Билибинской АЭС, где первый энергоблок подошел к окончанию 30-летнего проектного срока эксплуатации. Станция состоит из четырех одинаковых энергоблоков общей электрической мощностью 48 МВт с реакторами ЭГП-6 (водно-графитовый гетерогенный реактор канального типа). Там с применением робототехнических аппаратов провели диагностику кожуха реактора и металла бака биологической защиты (ББЗ) энергоблока № 1. Процесс контролировался с помощью специальной телевизионной системы. Такие комплексы выявляют дефекты сварных соединений. Изобретения, которые содержит конструкция, позволяют повысить качество диагностики и существенно сократить дозозатраты. Робот может управляться всего одним человеком. Комплекс состоит из двух роботов, первый из которых – диагностический – обследует металл и зачищает поверхность, а второй – ремонтный – наносит на дефекты герметизирующую наплавку для их устранения. Комплекс сконструирован так, что робот должен проникать в реакторное пространство через отверстие диаметром со спичечный коробок. Уникальность комплекса в том, что он способен перемещаться не только по сложным горизонтальным участкам, но и по вертикальным, и проводить контроль в автономном режиме. Также к ремонту билибинского блока подключили ООО «Пролог». Его специалисты провели осмотр газового контура реактора и бака биологической защиты первого энергоблока Билибинской АЭС. Они выполнили вырезку образцов основного металла верхней плиты реактора для дальнейшего исследования его состояния. Вся работа заняла больше полутора лет, в настоящее время этот блок находится в эксплуатации.

или еще раз по простому: корпуса реакторов за время прохудились и требовался или серьёзный ремонт корпуса или заглушение. Для ремонта требовался доступ внутрь активной зоны. Естественно это было крайне противопоказано. Однако же наши робототехники сумели сделать двух змееобразных роботов, которые провели обследование корпуса и сварочные работы. диаметр механизма был 5 см. Только через эту трубу был доступ. Первый робот с ультразвуковым сканером произвёл обследование, второй со сварочным аппаратом и механизмом замены электродов (по типу степлерных скоб было размещение) произвёл сварку на прохудившихся местах.

Робот MIS осматривает внутреннюю часть корпуса реактора в ходе планового ремонта АЭС «Бюже», Франция.

И опять про «Фукусиму»:

Удивительно и то, что для работы на аварийной «Фукусиме» потребовались роботы иностранных компаний, ведь Япония уже в 1980-е годы лидировала в разработке и производстве роботов и робототехники. К тому же толчком к разработке роботов, действующих в жесткой радиационной обстановке, стал инцидент 1999 года, произошедший именно на японском топливном заводе «Токаимура», в ходе которого трое рабочих получили переоблучение, причем двое из них умерли. В то время все согласились, что в чрезвычайных ситуациях робот незаменим. И в 2001 году были изготовлены шесть роботов, плод совместных разработок четырех компаний, в том числе Hitachi, Mitsubishi и Toshiba. Но, когда в марте 2011 года эти роботы действительно потребовались, оказалось, что устройства списаны и разобраны.

Что же произошло? Эксплуатирующие компании были так твердо уверены, что никакой аварии на АЭС произойти не может (а возражения воспринимали как сомнения в квалификации персонала и как упрек себе лично), а работники так противились присутствию роботов, что экспертная группа, в которую вошли представители TEPCO, KEPCO и государства, постановила: роботы на АЭС не нужны. И от роботов избавились. А ведь за 10 лет практической эксплуатации на АЭС можно было бы существенно улучшить их характеристики. Один из участников оперативной группы по устранению последствий аварии на АЭС «Фукусима» в раздражении бросил: «У всех роботов атомной отрасли есть одна общая черта: их нет, когда они нужны больше всего».

Все эти битвы поднимают вопрос более широкого плана. Первопроходец разработки искусственного интеллекта Марвин Мински писал о своем потрясении неспособностью атомной отрасли приготовиться к непредвиденной ситуации. Самую большую проблему он видит в том, что АЭС проектируются без учета возможности работы удаленно управляемых устройств. И это при том, что другие сферы человеческой деятельности давно стали учитывать возможности и нужды роботов. Например, в оборудовании, предназначенном для подводных работ, напротив, многие клапаны и приводы разработаны с учетом возможности использования роботизированных манипуляторов. Заводы по производству автомобилей ныне проектируются с приоритетной интеграцией робототехники, и даже существует медицинское оборудование, специально разработанное для робототехнических платформ.

Медленный прогресс роботов для АЭС объяснить непросто, существуют лишь мнения и идеи. Одно из таких мнений заключается в том, что тема роботов и атомной энергетики тесно переплетена с их восприятием обществом и политикой. Эйдзи Коянаги, заместитель директора японского научно-технического центра «Будущее робототехники», полагает, что финансирование японской робототехники ядерного реагирования иссякло после аварии 1999 года на заводе «Токаимура», потому что страна пыталась создать впечатление кропотливой работы по созданию практически абсолютно безопасной атомной энергетики. А выделение финансирования означало бы, что ситуация может оказаться настолько опасной, что вместо людей понадобятся роботы. Изменится ли такое отношение после «Фукусимы» и каким образом Япония восстановит доверие к своему важнейшему источнику энергии, нам еще предстоит узнать.

СЛАБОСТИ РОБОТОВ

Отчего выполнить восстановительные работы на станции оказалось сложнее, чем остановить утечку нефти на тысячеметровой морской глубине? С одной стороны, станция усеяна обломками, что усложняет доступ даже для спасательных команд. Разумеется, в опасные районы можно отправить роботов и не рисковать человеческими жизнями. Но застрявший робот означает не только потерю дорогостоящего устройства, но и ухудшение доступа других роботов к труднодоступным местам.

У малого робота ограничена производительность, а большой – неповоротлив. К примеру, на «Фукусиме» слабосильному роботу PackBot (компания iRobot) никак не удавалось открыть дверь, снабженную круглой ручкой. А когда iRobot прислала робота побольше, оказалось, что у него трудности с прохождением лестничных клеток. Один из японских роботов Quince стоимостью в $ 6 млн застрял в ограниченном пространстве станции и спустя 2,5 года после аварии все еще остается в плену.

Помимо трудностей с ловкостью передвижения и управления устройством, роботы на АЭС из-за интенсивного облучения сталкиваются с проблемами надежности беспроводной связи. Ионизирующее излучение может повредить электронику физически, нарушив структуру полупроводниковых кристаллов порождением лавины электронов и смещая порог открывания полевых транзисторов. В любом случае меняются рабочие характеристики отдельных электронных компонентов, что приводит к отказу. Устройства, защищенные от радиоактивного излучения, тестируются путем измерения получаемой ими полной дозы (чаще в зивертах) до наступления неисправности. Но радиоактивные повреждения носят статистический характер, поэтому «выживание» устройства никогда не гарантируется. Передаваемые роботами изображения здания АЭС «Фукусима» искажались по мере приближения устройства к радиационно «горячим» точкам.

Могут возникать и проблемы со связью. После «Фукусимы» в NEDO разработали гибридную сотовую сеть для удаленного управления роботами, в которую входили как проводные, так и беспроводные ячейки. Реакторные здания были относительно невелики и полностью покрывались гибридной сетью. Тем не менее, их толстые бетонные стены, блокирующие гамма-лучи, делали вероятным трудности с беспроводной связью или ее невозможность.

Другой проблемой стал японский закон о радио. Из-за плотной населенности страны этот закон очень строг в отношении напряженности электрического поля и допускает мощность передатчика максимум в 10 мВт. В этом случае расстояние беспроводной связи внутри помещения составляет максимум 50 метров. Поэтому для использования более мощных радиоволн с целью управления роботами на аварийной «Фукусиме» потребовалось получить специальное разрешение от Министерства внутренних дел и коммуникаций. Выбрали устройства 2.4 GHz Contec (для робота – FX-DS540-STDM с дипольной антенной, а для операторского центра FX-DS540-LNKM-S с антенной Yagi), а также одноваттные усилители.

ПЕРСПЕКТИВНЫЕ НАРАБОТКИ

Что же дальше? Недавно Mitsubishi представила устойчивых к радиации роботов MEISTeR (Maintenance Equipment Integrated System of Telecontrol Robot), которые смогут более производительно работать на очистке АЭС «Фукусима». Эти роботы могут сгибаться, как человеческая рука, благодаря семи степеням подвижности, каждый из них способен поднимать до 15 кг груза. Наконечник манипулятора разработан таким образом, чтобы на него можно было быстро и легко закрепить различные инструменты, например, пилу, перфоратор или дрель. Компания утверждает, что разработала специальный инструмент, который может взять пробы поверхности стен и бетонных полов в загрязненных районах с глубины до 70 мм (около 2,5 дюйма). MEISTeR весит 440 кг, имеет размеры 130 см в высоту, 70 см в ширину и 125 см в длину. Он может двигаться со скоростью до 2 км / ч, причем как по ровной горизонтальной поверхности, так и по пересеченной местности. Робот даже может подниматься и спускаться по лестнице с высотой лестничных ступеней до 22 см, благодаря четырем независимо движущимся танковым трекам. Действия робота дистанционно управляемы, ожидаемая продолжительность времени работы в автономном режиме составляет два часа. Он оборудован электроникой, которая будет надежно работать в условиях радиации. Важно, что эти устройства снабжены логическими схемами, которые в случае, скажем, утечки в гидравлике смогут послать сигнал тревоги прежде, чем наступит отказ. А это означает, что их можно быстро и дешево отремонтировать.

Помимо роботов-аварийщиков, существуют интересные разработки, позволяющие проводить инспекции, так сказать, «в мирное время» – без останова реактора и без риска для операторов. Так, корпорация AREVA в 2007 году создала группу NETEC (Non-Destructive Examinations Solutions Technical Center) – технический центр по решениям недеструктивных инспекций, – в котором трудятся более 50 ученых и инженеров. Здесь разрабатывают новые технологии осмотров и новые датчики. Из разработок АREVA на сегодня испытаны и протестированы, к примеру, системы инспекции корпуса реактора MIS7 и TWS, существенно уменьшившие время остановки реактора.

Подводный робот SUSI может плавать в теплоносителе первичного контура реактора, что с помощью ультразвукового и визуального тестирования позволяет осмотреть внутриреакторные конструкции с целью подтверждения безопасности этих компонентов для дальнейшей эксплуатации. Этот робот недавно уже был применен для осмотра одной из АЭС США, название которой не раскрывается.

JASPER позволяет осуществить безопасную инспекцию стержневой сборки системы управления и защиты ядерного реактора. Новый RANGER для осмотра трубопроводов парогенераторов легко вводится на место, подлежащее осмотру.

Однако большинство подобных перспективных разработок, хоть и протестировано, но пока не прошло испытание в боевых условиях аварий или неисправности работы реактора.

источники

http://atomicexpert.com/content/%D1%81%D0%BB%D1%83%D0%B6%D0%B8%D1%82%D1%8C-%D0%B8-%D0%B7%D0%B0%D1%89%D0%B8%D1%89%D0%B0%D1%82%D1%8C

http://www3.nhk.or.jp/nhkworld/russian/top/news09.html

И еще что мы уже обсуждали про Фукусиму: вот и еще . А вот кстати, когда то была и был вот такой . Вспомним, Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Японцы очень любят роботов и все, что с ними связано. Выражается это не только в их культуре (вспомнить хотя бы многочисленные аниме-сериалы вроде Gundam), но и в повседневности. Многие японцы приобретают себе роботов для разных бытовых целей, а для детей - игрушки в форме роботов.

В этом плане жители Страны восходящего солнца далеко опередили жителей США или Германии, хотя там робототехника не менее развита. Разгадка - в самих японцах. Их древняя культура восприняла роботов совершенно органично.

Миф о роботах как угрозе для духовности

Традиционная религия в Японии - синто ("путь богов") - обожествляет природные силы и явления. Испокон веков японцы считают, что духовная сущность - ками - есть даже у неодушевленных вещей. Синто видит ками в камне, в предмете быта, в механическом устройстве. Как же было не увидеть ками в роботе?

На взгляд японца, утверждать, что роботы - это угроза для духовности, может только духовно пустой человек. Угрозу для духовности создают не вещи, а люди.

Трейлер аниме-сериала Gundam

Это отношение проявляется сызмальства. На Западе дети иногда плачут и кричат от ужаса при виде роботов, что неудивительно после просмотра многочисленных фильмов о бешеных машинах-убийцах. Но для японских детей роботы - это родственные души, игривые и всегда готовые помочь.

Маленькие японцы не только играют с роботами, а и сами создают их. Из чего? Из всего, что под руку попадется, от одноразовых вилок до овощей и плюшевых игрушек. Эта забава не чужда и взрослым, судя по чемпионату Hebocon (heboi можно перевести как "плохой" или "убогий"). Первый конкурс был проведен в июле 2014 г., последний - в августе 2016-го. Следующее большое соревнование намечено на середину 2017-го, а в 2020-м планируется масштабный ивент, который будет проходить параллельно с Олимпийскими играми в Токио.

"Чтобы сделать heboi-робота, вам потребуется купить только самые простые материалы или использовать то, что вы сможете найти валяющимся на улице возле своего дома. Вам не нужно думать о сложности движений и функциях, вам даже не требуется сложное конструирование. Просто сделайте так, чтобы ваш робот мог двигаться, а как - это уже неважно. И даже если ваш робот не может начать двигаться самостоятельно, подтолкните его, в этом нет ничего зазорного", - рассказывает организатор чемпионата Дайджу Ишикава. А чтобы получился "лучший худший робот в мире", советует Ишикава, "оставьте изготовление самой важной части пятилетнему ребенку".

Быть может, не столь ребячески настроены хотя бы жители сельской местности? Все-таки их должна волновать судьба живой природы, полей, садов. Но в Японии именно на роботов возлагают надежды сберечь сельское хозяйство.

Миф о роботах как антиподе природы

В прошлом году министерство сельского хозяйства Японии разработало новую социально-экономическую программу, основной идеей которой является замена уходящих на пенсию фермеров роботами. Как отмечает министр Хироси Морияма, средний возраст японских фермеров сегодня составляет 67 лет. По мере выхода фермеров на пенсию остается все меньше трудоспособных людей, занятых в сельском хозяйстве. Это угрожает продовольственным кризисом.

Нелишне напомнить, что во многих европейских странах проблему нехватки рабочих рук на фермах решают, привлекая сезонных трудовых мигрантов. В Японии иммиграцию, мягко говоря, не поощряют. Вместо иностранной рабочей силы там решили разводить роботов.

Согласно программе должны быть разработаны 20 новых типов роботов, например, машина, которая будет заниматься сортировкой зрелых и перезрелых персиков непосредственно во время сбора урожая. Каждый уходящий на пенсию фермер будет заменяться несколькими типами роботов, включая и беспилотные трактора. Разработкой таких машин занимается корпорация Kubota . Уже создан прототип беспилотного трактора, который определяет границы рабочего поля по GPS, может самостоятельно анализировать состояние почвы, а также вспахивать поле и удобрять его. Компании Iseki и Yanmar создают различного типа комбайны, а Hitachi занимается разработкой систем для аграрных роботов.

Но японцы вовсе не собираются вытеснять фермеров роботами. Для тех, кто хочет работать в сельском хозяйстве, робототехника создает новые возможности. Та же Kubota объявила о разработке специального легкого экзоскелета , который облегчит фермерам сборку урожая и переноску контейнеров с фруктами и овощами.

Миф о роботах как конкурентах людей

Тем не менее проблема вытеснения людей роботами существует. Воочию убедиться в роботизации Японии в скором времени смогут пассажиры международного аэропорта Нарита в восточной части Большого Токио, когда им начнут помогать роботы-ассистенты Hospi(R) от Panasonic. В прошлом месяце тех уже протестировали на территории аэропорта и в прилегающем к нему отеле ANA Crowne Plaza.

В лаборатории JSK Токийского университета уже несколько лет работают над созданием гуманоидных роботов, имитирующих особенности человеческого тела. Недавно JSK представила нового робота Kengoro, который точно копирует наш опорно-двигательный аппарат и мускулатуру. Поклонники “Терминатора” уже нарекли его предтечей T-800, но сами разработчики планируют использовать его исключительно в мирных целях. Например, такой робот может стать отличным помощником инструктора по фитнесу. Он реалистично показывает эффект от тренировок разных групп мышц и даже потеет.

Ранее в JSK Lab (Jouhou System Kougaku Laboratory) были созданы роботы Macra (похожий на младенца) и робот Kenshiro (имитирующий подростка). Макра обладает высокой тактильной чувствительностью при небольшом количестве датчиков – их всего 49. Они фиксируют не только силу нажатий, но и их векторы, поэтому получили название “3D Force”. Эти сенсоры расположены под общим гибким слоем, имитирующим мягкие ткани. Контроллер обрабатывает данные от всех датчиков одновременно и с помощью математических алгоритмов детализирует информацию о прикосновениях.

Робот Macra. Изображение: jsk.t.u-tokyo.ac.jp

Кенширо имитирует тринадцатилетнего мальчика ростом 158 см. и массой 50 кг. В нём специалисты JSK Lab начали воплощать отдельные анатомические и физиологические особенности человека. Если другие гуманоидные роботы создавались на основе теорий механики, то при проектировании Кенширо использовали методы биомимикрии. Он копирует скелетно-мышечную структуру и разветвления нервной системы, наглядно демонстрируя их взаимосвязь и поведение в различных ситуациях.

Скелетная структура Kenshiro в основном изготовлена из алюминиевого сплава A5052. Суставные поверхности и другие части сложной формы выполнены методом 3D-печати из ABS пластика и нержавеющей стали марки 420 SS. Упругие рёбра изготовлены отливкой из другого алюминиевого сплава – JIS-AC4C.

Новый Kengoro – ещё более продвинутая модель. Его скелетная структура состоит из комбинации особо прочного дюралюминия (A7075) и пластика ABS, армированного углеродным волокном. Некоторые фрагменты также выполнены методом 3D-печати. Встраиваемые в трубчатые “кости” Li-Fe аккумуляторы обеспечивают его автономную работу до 20 минут.

Кенгоро настолько реалистичен, что даже “потеет” во время тренировок. Как и люди, робот делает это, чтобы избежать перегрева. В искусственных мышцах Кенгоро циркулирует охлаждающая жидкость. Разработчики протестировали разные составы и остановились на обычной деионизированной воде. У неё рекордная теплоёмкость, низкая себестоимость и она безопасна для электроники, поскольку не проводит электрический ток.

Во время работы капли полностью обессоленной воды выдавливаются наружу через миниатюрные отверстия, изготовленные лазером во всех участках корпуса. Она быстро испаряется и понижает его температуру. Получается саморегулирующаяся система: чем интенсивнее работает искусственная мыщца, тем быстрее она охлаждается.

Постоянное испарение жидкости не так эффективно, как её циркуляция в закрытом охлаждающем контуре. Её приходится подливать примерно по одному-двум стаканам в час. Однако пористая структура и отказ от массивных радиаторов позволили сделать робота легче. Производительности “потеющей” системы охлаждения достаточно, чтобы Kengoro выполнял интенсивные нагрузки и успевал демонстрировать разные упражнения. Например, он может отжиматься в упоре лёжа 11 минут без остановки… а сколько сможете вы?

Успехи JSK Lab показывают, что сейчас в робототехнике прослеживается новое разделение. Среди гуманоидных роботов можно встретить представителей двух основных типов: с осевым управлением и с использованием искусственных сухожилий. Первая группа имеет исполнительные механизмы в каждом суставе и обладает небольшим числом степеней свободы –до 35. Наиболее известными представителями этой группы являются роботы Honda ASIMO и HPR-2 Promet .

Вторая группа представлена более современными и гибкими роботами. В них частично имитируются анатомические особенности суставов человека, но большая гибкость достигается в ущерб их мощности и прочности.

Даже таким роботам ещё очень далеко до человека: за счёт гибкого позвоночника и особенностей суставных поверхностей у нас гораздо большая подвижность. Западные врачи спортивной медицины обычно называют 220 – 260 степеней, а их японские коллеги и вовсе выделяют 548 степеней свободы (или 419, если не считать голову и руки).

Манипуляторы с мелкой моторикой всегда были наиболее сложной частью. В Кенширо удалось реализовать 64 степени свободы, а в Кенгоро – 174 (из них 60 приходятся на руки). Важно и то, что при создании Кенгоро разработчики смогли обеспечить баланс между пластичностью его движений и силой искусственных мышц. Кенгоро способен висеть на одной руке, выполнять подъём на носки стоя и держать равновесие практически в любой позе.

Если большинство гуманоидных роботов лишь отдалённо напоминают очертаниями человека, то Кенширо и Кенгоро выполнены со строгим соблюдением пропорций. Их отклонение от параметров среднего японца не превышает одного процента по длине любого участка тела и шестнадцати процентов по общей массе. Фактически эти роботы больше похожи на людей, чем многие из нас.

Основные области применения новых роботов – интерактивные занятия фитнесом, разработка спортивного снаряжения, изучение биомеханики, выполнение трюков и продвинутых краш-тестов. Существующие манекены позволяют оценить только пассивную безопасность автомобилей. Они всегда остаются неподвижны до момента удара. “Миметические гуманоиды”, как их называют сами разработчики, способны имитировать поведение водителя и пассажиров в момент аварии.

Еще в прошлом веке робот ассоциировался с неуклюжим механизмом, который передвигается со скрежетом и больше похож на груду металла в путанице разноцветных проводов, чем на человека. Однако наука не стояла на месте, инженеры научились создавать умные машины самых разнообразных форм, в том числе роботов-животных, а венцом творения стали антропоморфные конструкции, имеющие невероятное сходство с человеком.

Современные человекоподобные роботы умеют считывать эмоции собеседника, вести осмысленную беседу, запоминать лица – с каждым годом они выглядят все более реалистично и ведут себя все естественнее.

Почему человек, окруженный шестью миллиардами себе подобных, так стремится придать механизму антропоморфный облик, остается загадкой. Возможно, каждому хочется быть творцом и создать по своему образу и подобию существо с необычными способностями.

Geminoid DK – клон профессора психологии

Ни для кого не секрет, что самые человекоподобные роботы в мире создаются в Стране восходящего солнца. И Geminoid DK – не исключение. Этот антропоморфный ультрареалистичный киборг разработан профессором Университета Осаки Хироши Исигуро в тандеме с коллегами из Японского научно-исследовательского института международных телекоммуникаций.

Geminoid DK – первый японский робот с европейской внешностью.

Андроид спроектирован по образу Хенрика Шарфа – преподавателя из Ольборгского университета в Дании. Удивительная особенность этого механизма в том, что «эффект зловещей долины» при взгляде на него появляется не сразу, а только в момент движения и жестикулирования модели. Сидящий неподвижно клон выглядит очень реалистично.

Хенрик Шарф с университетскими коллегами планирует использовать андроида для изучения взаимодействия человека и робота. Geminoid-DK будет встречаться с посетителями и общаться с ними на философские темы. Ученые хотят изучить так называемый эффект смешанного присутствия: они попытаются понять, изменяется ли наша реакция на человека, когда мы беседуем с ним дистанционно, в то время как он транслирует свои эмоции через мимику робота с помощью специального оборудования. Судя по уже проведенным экспериментам, в такой ситуации человек склонен испытывать замешательство и демонстрировать нестандартный феномен восприятия.

Geminoid F – очаровательная девушка-андроид

Geminoid F – еще одно творение инженера Хироши Исигуро из Японии. У робота внешность двадцатилетней девушки с темными волосами, и он невероятно фотогеничен: умеет реалистично улыбаться, хмуриться и изображать некоторые другие чувства.

Эмоциями антропоморфного механизма можно управлять дистанционно: оператор-человек садится напротив компьютера с камерами, с помощью софта обрабатывается изображение его лица, и мимика оператора отображается на лице . Процесс синхронизации занимает доли секунды, и происходящее выглядит эффектно.

Изначально разработчики планировали сделать мимику андроида максимально естественной, не используя при этом большое количество актуаторов. Основная задача состояла в том, чтобы наделить Geminoid F. дружелюбной убедительной улыбкой – и это удалось. Исигуро и его коллеги планируют тестировать робота в больницах, отправлять его на презентации в научных музеях и в другие публичные места.

Социальный андроид Надин

Роботы, похожие на людей, могут вызывать эффект «зловещей долины», но в случае с этим киборгом все наоборот. Девушка-гуманоид была разработана в Технологическом университете Наньянг в Сингапуре. Она способна говорить на разные темы, запоминать вещи, о которых вы упоминали ранее, и узнавать собеседника про прошествии времени благодаря современному программному обеспечению.

В будущем социальные андроиды могут стать аналогом робота C-3PO (Си-Трипио) из саги «Звездные войны», который знал множество языков и владел правилами этикета.

Надин – социальный компаньон, предназначенный для взаимодействия и общения с людьми. Таких роботов можно использовать в качестве нянь и сиделок для пожилых людей, страдающих деменцией. Особенно хорошо гуманоиды поладят с аутичными детьми, которым тяжело воспринимать живые человеческие эмоции. Надин подстраивается под каждого человека, ее настроение может меняться в зависимости от поведения собеседника (так на грубость в свой адрес робот может всерьез обидеться). При взаимодействии с «особенными» детьми андроид сохраняет нейтральность, добиваясь их внимания и симпатии.

Внешне робот представляет двойника своего создателя, профессора Надежды Тельман. Чтобы Надин вращалась в социальной среде и оттачивала мастерство общения, ее сделали секретарем на ресепшен университета.

Пластичный гуманоид Alter

Японцы из лабораторий в Токио и Осаке создали антропоморфного робота Alter. Несмотря на то, что умная машина выглядит недостроенной и не является точным дубликатом человека, у него есть удивительная черта, которая рушит идеальный образ более совершенно выглядящих андроидов: движения Alter лишены рваной механичной шарнирности, они невероятно плавные, завораживающие и неотличимы от человеческих.

В теле робота 42 пневматических привода, его хаотичными на первый взгляд движениями управляют алгоритмы нейронной сети, основываясь на показаниях датчиков, которые заменяют роботу человеческие чувства и реагируют на шум, влажность, приближение людей, изменение окружающей температуры и т.д.

Исходя из поступающих извне данных, робот сам решает, как двигаться и какое выражение лица ему принять.

Alter даже умеет петь. Сейчас на андроида можно посмотреть в Национальном музее развивающейся науки и инноваций Токио.

BINA48 – клон разума

Это интеллектуальный робот-гуманоид, созданный в 2010 году, является копией Бины Ротблатт. И не только внешне – в «мозг» антропоморфного механизма загружены воспоминания, взгляды и чувства женщины – настоящая Бина обучала умную машину говорить и двигаться в ее стиле, а также имитировать мимику.

Андроид умеет поддерживать беседу, в том числе на сложные философские темы, и даже шутить. На загрузку своей личности у Бины ушло более 100 часов. При этом BINA48 способен обучаться – его словарный запас и знания обновляются с каждой новой беседой.

Возможно, в будущем традиция помещать личность умершего человека в робота станет обыденным делом, но для этого сперва необходимо разобраться с морально-этической стороной вопроса.

Джиа-Джиа – андроид из Китая

Чэнь Сяопин и его коллеги из Китайского университета науки и технологий вслед за японскими инженерами создали робота, похожего на человека. Джиа-Джиа наделена искусственным интеллектом, умеет говорить, имитировать эмоции и считывать мимику людей, ориентироваться в пространстве благодаря облачным технологиям.

Роботесса удивительно похожа на человека, при этом сообразительна и остроумна. Ее мозг представляет собой внушительную онлайн-базу данных, позволяет обрабатывать эмоции и распознавать речь, и этот навык все время совершенствуется.

Джиа-Джиа – чудный собеседник, она быстро формирует ответ (менее чем за секунду). У робота много фанатов, есть даже неофициальное прозвище «робот-богиня» – настолько величественно и располагающе она выглядит.

Когда поклонники пожелали сделать совместное фото с Джиа-Джиа, она решила пошутить: попросила не приближать камеру слишком близко к ее лицу, чтобы не выглядеть толстой на снимке.

Андроид непринужденно переводит взгляд с одного собеседника на другого, а движения губ синхронизированы с речью. Пожалуй, это самый совершенный робот на сегодняшний день. Создатель не планирует налаживать массовое производство гуманоидов – он хочет видеть свое детище уникальным и будет обучать его новым алгоритмам.

Андроид-подросток Asuna

Asuna была сконструирована в A-Lab в 2014 году. Создатели придумали ей историю: это 15-летняя девушка, рожденная в Токио, а для большей правдоподобности от ее имени ведется дневник на сайте компании.

Рост робота полтора метра, вес – 43 кг.

С первого взгляда в симпатичной девушке непросто опознать андроида, настолько реалистично выполнена конструкция.

Инженеры постарались предельно точно воссоздать внешность и движения живого человека. Даже материал, из которого состоит «кожа» гуманоидного робота, на ощупь очень трудно отличить от настоящей.

Matsukoroid – клон ТВ-ведущего

Очередное детище, произведенное компанией A-Lab в тандеме с уже известным нам профессором Исигуро из Университета Осаки. Этот андроид стал копией ведущего телевизионного вечернего шоу, трансвестита под псевдонимом Мацуко Делюкс. Антропоморф произвел полный фурор на зрителей, и двойники должны были вести ТВ-шоу в паре.

Робот-клон смотрит в глаза собеседнику, его жесты и мимика выглядят очень натурально – в общем, он социализирован больше, чем среднестатистический человек-интроверт.

Обходительный англичанин Джулс

В 2006 году Девид Хенсон спроектировал в Бристольской лаборатории робототехники андроида с функцией голосового общения с человеком. У Джулса располагающая улыбка, он дружелюбен, артистичен и по-английски безупречно вежлив.

Удивительно складно говорит, задействуя при общении компьютерное зрение, чтобы отслеживать и распознавать лица для полной имитации человеческой коммуникации. Но не обошлось и без недостатков в виде заминки длиной несколько секунд перед ответом собеседнику. Зато Джулс фантастически человечно изображает стеснение, заминки, непроизвольные повторы слов, что этот небольшой минус простителен.

AIST – робот-манекенщица

Японские человекоподобные роботы осваивают профессию моделей. В Национальном институте наук и технологий Страны восходящего солнца создали андроида, фигура, движения и поведение которого максимально приближены к человеческим.

Гуманоид умеет распознавать речь и поддерживать разговор. Правда, походка пока «хромает»: из-за отсутствия чувства равновесия робоманекенщик двигается слишком резко и отрывисто, мимика тоже временами подвисает и AIST замирает на несколько секунд, открыв рот. Несмотря на это, антропоморфа можно успешно использовать на демонстрациях, и это большой прорыв в робототехнике.

К роботам в Японии привыкают с детства, так как нехватка рабочей силы сказывается в том числе на детских садах. Как и во многих других областях, этот пробел заполняют роботами. Например, прошлым летом Global Bridge Holdings, стартап из Токио, представил робота-няню. Небольшой робот с головой игрушечного медведя называется Vevo. Он узнает детей в лицо, приветствует их, когда они приходят в детский сад, и заодно может измерить их температуру.

Гостиницы

Работа на ресепшене требует настоящей выдержки: надо отвечать на одни и те же вопросы и выполнять рутинные операции, например регистрировать гостей, не теряя при этом доброжелательности.

Заменить человека в этом нелегком деле могут такие роботы, как RecepROID японской компании Kyoei Sangyo или французский Nao, представленные на прошлой неделе на выставке RoboDEX. От человека их выгодно отличает не только неутомимость и стрессоустойчивость, но и владение языками. RecepROID разговаривает на четырех, Nao - на 15.

Такие роботы уже используются: два года назад в Нагасаки открылся отель, в котором основной персонал - это роботы. Они встречают гостей, забирают их багаж и принимают заказы на обслуживание в номере. К счастью, не все из них выглядят как ожившие манекены из ночных кошмаров: антропоморфному роботу на ресепшене помогают два симпатичных динозавра.

Заводы

Разработки еще одного участника выставки, Kawasaki Heavy Industries, фокусируются на тех областях, где обычно работают люди, поскольку для машин выполняемые операции пока что слишком сложны, так как требуют человеческой экспертизы: туго ли закручена гайка при сборке механизма, как сильно можно надавить на поверхность при ее полировке. Автоматизация такой работы требует непропорциональных расходов: использования большого количества сенсоров и переоборудований линий производства. Система, которую компания разработала для решения этих проблем, называется Successor .

Идея такая: сначала человек управляет роботом при помощи пульта, который сделан так, чтобы как можно точнее передавать ощущения при работе. Робот, оснащенный искусственным интеллектом, обучается нужным операциям и в дальнейшем может их воспроизводить.

Госпитали

Еще одна тяжелая, как морально так и физически, работа - ухаживать за больными и немощными. В Японии для этого тоже есть роботы. Robobear, разработанный в японском Центре исследования взаимодействия роботов и людей, создан для того, чтобы поднимать лежачих больных, переносить их, помогать усаживаться в инвалидную коляску.

А для улучшения психологического состояния пациентов в Японии разработали робота-тюлененка. Оснащенный кучей датчиков, он реагирует на прикосновение, свет, температуру, звуки, откликается на свое имя и может обучаться: если его погладить, он будет повторять те действия, после которых его погладили, а если шлепнуть, то -наоборот.

Похороны

Небольшой робот Pepper, разработанный компанией SoftBank Robotics, - мастер на все руки. Он встречает людей в торговых центрах и ресторанах, продает арбузы - в общем, у него много применений. Одно из них - читать молитвы на похоронах.

Учитывая, что смерть в Японии - дело дорогое, а услуги живого священника обходятся более чем в 2000 долларов за похороны, робот, которого можно арендовать за 500, выглядит весьма привлекательной альтернативой.