Сайт о телевидении

Сайт о телевидении

» » Решение задачи с помощью Excel и симплекс-методом. Поиск решения MS EXCEL. Знакомство

Решение задачи с помощью Excel и симплекс-методом. Поиск решения MS EXCEL. Знакомство

1. Преобразовываем неравенства в равенства

2. Находим начальное допустимое базисное решение

3. На основе условия оптимальности определяется вводимая переменная. Если вводимых переменных нет, то процесс закончен.

4. На основе условия допустимости выбираем исключаемая переменная

5. Вычисляем элементы новой ведущей строки

новая ведущая строка = текущая строка/ведущий элемент

6. Вычисляем элементы остальных строк, включая z-строку

новая строка = текущая строка – ее коэффициенты в ведущем столбце * новую ведущую строку

Переходим к шагу 3.

Для удобства записи итерационного процесса все значения записываем в Симплекс-таблицу.

2. Пример решения задачи лп с использованием пакета ms excel

Для многих задач оптимизации удобно применять модель линейного программирования. Суть задачи заключается в составлении системы неравенств, описывающих соответствующие ограничения задачи и задания функции оптимизации.

Для нахождения решения в подобных моделях, можно использовать средство MS EXCEL – ПОИСК РЕШЕНИЯ.

Рассмотрим, как составить модель линейного программирования и найти ее решение на примере.

2.1. Постановка задачи

На трех станках обрабатываются детали двух видов (А и Б), причем каждая деталь проходит обработку на всех станках. Известно время обработки деталей на каждом станке, время работы станков в течение одного цикла производства и прибыль от продажи одной детали каждого вида (данные в таблице). Составить план производства, обеспечивающий наибольшую прибыль.

2.2. Построение математической модели

Обозначим через х 1 и х 2 количество единиц деталей видов А и Б, планируемое к выпуску. Тогда время обработки х 1 деталей вида А на первом станке составляет 1* х 1 ; х 2 деталей вида Б соответственно 2*х 2 . Суммарное время работы станка I для изготовления планируемого количества деталей равно х 1 +2*х 2 , оно ограничено 16 часами работы этого станка в течение одного цикла производства. Поэтому должно выполняться неравенство:

х 1 +2*х 2 <=16;

Аналогично для станков II и III получаем неравенства соответственно:

х 1 + х 2 <=10;

3*х 1 + х 2 <=24;

Кроме того, по смыслу определения веденных величин х 1 и х 2 , должны выполняться условия: х 1 >=0; х 2 >=0;

Таким образом, получаем систему неравенств, называемую системой ограничений задачи:

Любое решение (х 1 ; х 2) системы ограничений называется планом выпуска продукции или допустимым планом задачи.

Прибыль от реализации х 1 единиц деталей вида А равна 4 . х 1 , а прибыль от реализации х 2 единиц деталей вида Б равна 2х 2. Суммарная прибыль от реализации продукции, выпущенной согласно плану (х 1 ; х 2) равна:

F 1 ; х 2 )=4х 1 +2х 2 (тыс. руб).

Линейная функция F 1 ; х 2 ) называется целевой функцией задачи.

По условию задачи требуется найти такой план (х 1 ; х 2) при котором прибыль была бы максимальной.

Таким образом, построена математическая модель задачи как задачи линейного программирования:

F 1 ; х 2 )=4х 1 +2х 2 max

Для реализации трех групп товаров коммерческое предприятие располагает тремя видами ограниченных материально-денежных ресурсов в количестве b 1 = 240, b 2 = 200, b 3 = 160 единиц. При этом для продажи 1 группы товаров на 1 тыс. руб. товарооборота расходуется ресурса первого вида в количестве a 11 = 2 единицы, ресурса второго вида в количестве a 21 = 4 единицы, ресурса третьего вида в количестве a 31 = 4 единицы. Для продажи 2 и 3 групп товаров на 1 тыс. руб. товарооборота расходуется соответственно ресурса первого вида в количестве a 12 = 3, a 13 = 6 единицы, ресурса второго вида в количестве a 22 = 2, a 23 = 4 единицы, ресурса третьего вида в количестве a 32 = 6, a 33 = 8 единиц. Прибыль от продажи трех групп товаров на 1 тыс. руб. товарооборота составляет соответственно c 1 = 4, c 2 = 5, c 3 = 4 (тыс. руб.). Определить плановый объем и структуру товарооборота так, чтобы прибыль торгового предприятия была максимальной.

К прямой задаче планирования товарооборота, решаемой симплекс методом , составить двойственную задачу линейного программирования.
Установить сопряженные пары переменных прямой и двойственной задачи.
Согласно сопряженным парам переменных из решения прямой задачи получить решение двойственной задачи , в которой производится оценка ресурсов , затраченных на продажу товаров.

Решение задачи симплекс методом

Пусть x 1 , x 2 , x 3 - количество реализованных товаров, в тыс. руб., 1, 2, 3 - ей групп, соответственно. Тогда математическая модель задачи имеет вид:

F = 4·x 1 + 5·x 2 + 4·x 3 ->max

0}}}{~}" title="delim{lbrace}{matrix{4}{1}{{2x_1 + 3x_2 + 6x_3= 0}}}{~}">

Решаем симплекс методом.

Вводим дополнительные переменные x 4 ≥ 0, x 5 ≥ 0, x 6 ≥ 0, чтобы неравенства преобразовать в равенства.

В качестве базиса возьмем x 4 = 240; x 5 = 200; x 6 = 160.

Данные заносим в симплекс таблицу

Симплекс таблица № 1

Целевая функция:

0 · 240 + 0 · 200 + 0 · 160 = 0

Вычисляем оценки по формуле:

Δ 1 = 0 · 2 + 0 · 4 + 0 · 4 - 4 = - 4
Δ 2 = 0 · 3 + 0 · 2 + 0 · 6 - 5 = - 5
Δ 3 = 0 · 6 + 0 · 4 + 0 · 8 - 4 = - 4
Δ 4 = 0 · 1 + 0 · 0 + 0 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 0 · 0 - 0 = 0
Δ 6 = 0 · 0 + 0 · 0 + 0 · 1 - 0 = 0

Поскольку есть отрицательные оценки, то план не оптимален. Наименьшая оценка:

Вводим переменную x 2 в базис.

Определяем переменную, выходящую из базиса. Для этого находим наименьшее неотрицательное отношение для столбца x 2 .

= 26.667

Наименьшее неотрицательное: Q 3 = 26.667. Выводим переменную x 6 из базиса

3-ю строку делим на 6.
Из 1-й строки вычитаем 3-ю строку, умноженную на 3
Из 2-й строки вычитаем 3-ю строку, умноженную на 2


Вычисляем:

Получаем новую таблицу:

Симплекс таблица № 2

Целевая функция:

0 · 160 + 0 · 440/3 + 5 · 80/3 = 400/3

Вычисляем оценки по формуле:

Δ 1 = 0 · 0 + 0 · 8/3 + 5 · 2/3 - 4 = - 2/3
Δ 2 = 0 · 0 + 0 · 0 + 5 · 1 - 5 = 0
Δ 3 = 0 · 2 + 0 · 4/3 + 5 · 4/3 - 4 = 8/3
Δ 4 = 0 · 1 + 0 · 0 + 5 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 5 · 0 - 0 = 0
Δ 6 = 0 · (-1)/2 + 0 · (-1)/3 + 5 · 1/6 - 0 = 5/6

Поскольку есть отрицательная оценка Δ 1 = - 2/3, то план не оптимален.

Вводим переменную x 1 в базис.

Определяем переменную, выходящую из базиса. Для этого находим наименьшее неотрицательное отношение для столбца x 1 .

Наименьшее неотрицательное: Q 3 = 40. Выводим переменную x 2 из базиса

3-ю строку делим на 2/3.
Из 2-й строки вычитаем 3-ю строку, умноженную на 8/3


Вычисляем:

Получаем новую таблицу:

Симплекс таблица № 3

Целевая функция:

0 · 160 + 0 · 40 + 4 · 40 = 160

Вычисляем оценки по формуле:

Δ 1 = 0 · 0 + 0 · 0 + 4 · 1 - 4 = 0
Δ 2 = 0 · 0 + 0 · (-4) + 4 · 3/2 - 5 = 1
Δ 3 = 0 · 2 + 0 · (-4) + 4 · 2 - 4 = 4
Δ 4 = 0 · 1 + 0 · 0 + 4 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 4 · 0 - 0 = 0
Δ 6 = 0 · (-1)/2 + 0 · (-1) + 4 · 1/4 - 0 = 1

Поскольку отрицательных оценок нет, то план оптимален.

Решение задачи:

Ответ

x 1 = 40; x 2 = 0; x 3 = 0; x 4 = 160; x 5 = 40; x 6 = 0; F max = 160

То есть необходимо реализовать товар первого вида в объеме 40 тыс. руб. Товар 2-го и 3-го видов реализовывать не надо. При этом максимальная прибыль составит F max = 160 тыс. руб.

Решение двойственной задачи

Двойственная задача имеет вид:

Z = 240·y 1 + 200·y 2 + 160·y 3 ->min

Title="delim{lbrace}{matrix{4}{1}{{2y_1 + 4y_2 + 4y_3>=4} {3y_1 + 2y_2 + 6y_3>=5} {6y_1 + 4y_2 + 8y_3>=4} {y_1, y_2, y_3>= 0}}}{~}">

Вводим дополнительные переменные y 4 ≥ 0, y 5 ≥ 0, y 6 ≥ 0, чтобы неравенства преобразовать в равенства.

Сопряженные пары переменных прямой и двойственной задач имеют вид:

Из последней симплекс таблицы № 3 прямой задачи, находим решение двойственной задачи:

Z min = F max = 160;
y 1 = Δ 4 = 0; y 2 = Δ 5 = 0; y 3 = Δ 6 = 1; y 4 = Δ 1 = 0; y 5 = Δ 2 = 1; y 6 = Δ 3 = 4;

x 1

+x 2

+x 3

x 1

+x 2

+x 3

x 1

+x 2

+x 3

≤ = ≥

≤ = ≥

≤ = ≥

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Симплекс метод

Примеры решения ЗЛП симплекс методом

Пример 1. Решить следующую задачу линейного программирования:

Правая часть ограничений системы уравнений имеет вид:

Запишем текущий опорный план:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-3), следовательно в базис входит вектор x при . min (40:6, 28:2)=20/3 соответствует строке 1. Из базиса выходит вектор x 3 . Сделаем исключение Гаусса для столбца x 2 , учитывая, что ведущий элемент соответствует строке 1. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 2, 3, 4 со строкой 1, умноженной на -1/3, 1/6, 1/2, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Данный опорный план не является оптимальным, так как в последней строке есть отрицательный элемент (-3), следовательно в базис входит вектор x 1 . Определяем, какой вектор выходит из базиса. Для этого вычисляем при . min(44/3:11/3, 62/3:5/3)=4 соответствует строке 2. Из базиса выходит вектор x 4 . Сделаем исключение Гаусса для столбца x 1 , учитывая, что ведущий элемент соответствует строке 2. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 1, 3, 4 со строкой 2, умноженной на 1/11, -5/11, 9/11, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Текущий опорный план является оптимальным, так как в строках 4 под переменными нет отрицательных элементов.

Решение можно записать так: .

Значение целевой функции в данной точке: F (X )=.

Пример 2. Найти максимум функции

Р е ш е н и е.

Базисные векторы x 4 , x 3 , следовательно, все элементы в столбцах x 4 , x 3 , ниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца x 4 , кроме ведущего элемента. Для этого сложим строку 3 со строкой 1, умноженной на 4. Обнулим все элементы столбца x 3 , кроме ведущего элемента. Для этого сложим строку 3 со строкой 2, умноженной на 1.

Симплекс таблица примет вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательный элемент (-11), следовательно в базис входит вектор x 2 . Определяем, какой вектор выходит из базиса. Для этого вычисляем при . Все следовательно целевая функция неограничена сверху. Т.е. задача линейного программирования неразрешима.

Примеры решения ЗЛП методом искусственного базиса

Пример 1. Найти максимум функции

Р е ш е н и е. Так как количество базисных векторов должен быть 3, то добавляем искусственное переменное, а в целевую функцию добавляем это переменное, умноженное на −M, где M, очень большое число:


Матрица коэффициентов системы уравнений имеет вид:

Базисные векторы следовательно, все элементы в столбцах ниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца кроме ведущего элемента. Для этого сложим строку 5 со строкой 3, умноженной на -1.

Симплекс таблица примет вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-5), следовательно в базис входит вектор Определяем, какой вектор выходит из базиса. Для этого вычисляем при соответствует строке 3. Из базиса выходит вектор Сделаем исключение Гаусса для столбца учитывая, что ведущий элемент соответствует строке 3. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строку 5 со строкой 3, умноженной на 1. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-3), следовательно в базис входит вектор Определяем, какой вектор выходит из базиса. Для этого вычисляем при соответствует строке 1. Из базиса выходит вектор x 2 . Сделаем исключение Гаусса для столбца x 1 , учитывая, что ведущий элемент соответствует строке 1. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 2, 3, 4 со строкой 1, умноженной на 3/2, -1/10, 3/2, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-13/2), следовательно в базис входит вектор x 3 . Определяем, какой вектор выходит из базиса. Для этого вычисляем при соответствует строке 3. Из базиса выходит вектор x 5 . Сделаем исключение Гаусса для столбца x 3 , учитывая, что ведущий элемент соответствует строке 3. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 1, 2, 4 со строкой 3, умноженной на 5/3, 25/9, 65/9, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Текущий опорный план является оптимальным, так как в строках 4−5 под переменными нет отрицательных элементов.

Решение исходной задачи можно записать так:

Пример 2. Найти оптимальный план задачи линейного программирования:

Матрица коэффициентов системы уравнений имеет вид:

Базисные векторы x 4 , x 5 , x 6 , следовательно, все элементы в столбцах x 4 , x 5 , x 6 , ниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца x 4 , кроме ведущего элемента. Для этого сложим строку 4 со строкой 1, умноженной на -1. Обнулим все элементы столбца x 5 , кроме ведущего элемента. Для этого сложим строку 5 со строкой 2, умноженной на -1. Обнулим все элементы столбца x 6 , кроме ведущего элемента. Для этого сложим строку 5 со строкой 3, умноженной на -1.

Симплекс таблица примет вид:

В строке 5 элементы, соответствующие переменным x 1 , x 2 , x 3 , x 4 , x 5 , x 6 неотрицательны, а число находящийся в пересечении данной строки и столбца x 0 отрицательнo. Тогда исходная задача не имеет опорного плана. Следовательно она неразрешима.

Урок 1. Решение задачи линейного программирования в Excel с помощью надстройки "Поиск решения"

Экономико-математические методы и модели. Задача распределения ресурсов. Классический пример и решения задачи линейного программирование. Описание как пользоваться надстройкой Поиск решения в Excel. Условие задачи здесь - , еще примеры решения задач по ЭМММ -

#ЭМММ #Excel #Матпрограммирование #ПоискРешения #Easyhelp

Решение задачи линейного программирования при помощи надстройки Поиск решения

Использование надстройки Поиск решения для решения задач линейного программирования. Поставьте класс, если видео оказалось Вам полезно.

Простая задача линейного программирования №2. Симплекс-метод для поиска максимума.

Решение простой задачи линейного программирования симплекс-методом для поиска максимума. Для более детального пояснения доступны субтитры.




.

Простая задача линейного программирования №1. Симплекс-метод для поиска минимума.

Решение простой задачи линейного программирования симплекс-методом для поиска минимума. Для дополнительного пояснения доступны субтитры.


- Простая задача линейного программирования №3. Симплекс-метод для поиска минимума.
- Решение задачи линейного программирования алгоритмом двойственного симплекс-метода
- Решения прямой, двойственной задач ЛП, построение двойственной задачи ЛП.
- Решение задачи линейного программирования с неоднотипными неравенствами симплекс-методом
- Задача линейного программирования с системой уравнений

Лекция 2: Задача линейного программирования. Задача о ресурсах

Рассматривается решение задачи линейного программирования симплекс-методом.
Лекция и тесты в НОУ ИНТУИТ

Линейное программирование

Решение задачи линейного программирования с помощью Поиск решения MS Excel
Текстовый материал на сайте находится по адресу:

Урок 2. Решение двойственной задачи линейного программирования в Excel

Анализ устойчивости для прямой и двойственной задач линейного программирования в Excel. Условие задачи смотрите здесь - , еще примеры решений задач здесь -

#Excel #матпрограммирование #easyhelp

Симплекс-метод Excel VBA (Решение задачи линейного программирования с помощью макросов)

Демонстрация работы макроса в Excel. Решение задачи линейного программирования Симплекс-методом.
Заказать макрос - [email protected]

Решение лабораторных работ в Excel на заказ

Симплексный метод решения задач линейного програмирования

линейное программирование. Симплексная таблица. Разрешающий элемент. Разрешающая строка. Разрешающий столбец. Симплексное отношение
Графический метод решения задач оптимизации.

Программа, реализующая симплекс-метод

Программа доступна по ссылке ниже:

Решение транспортной задачи в Excel с помощью надстройки "Поиск решения"

Задача линейного программирования. Транспортная задача. Решение в Excel, анализ устойчивости. Условие задачи здесь - , еще примеры решения задач по мат.программированию здесь -

#excel #матпрограммирование #ТранспортнаяЗадача #ЛинейноеПрограммирование #ПоискРешения #easyhelp #АнализУстойчивости

Двойственный метод

Методы оптимизации 12. Линейное программирование, симплекс-метод

Вирішуємо симплекс-метод вручну

Вирішуємо симплекс-метод вручну

Простая задача линейного программирования №3. Симплекс-метод для поиска минимума.

Очень подробное решение простой задачи линейного программирования симплекс-методом для поиска минимума.

Простая задача линейного программирования №1. Симплекс-метод для поиска минимума.
- Простая задача линейного программирования №2. Симплекс-метод для поиска максимума.
- Решение задачи линейного программирования алгоритмом двойственного симплекс-метода
- Решения прямой, двойственной задач ЛП, построение двойственной задачи ЛП.
- Решение задачи линейного программирования с неоднотипными неравенствами симплекс-методом
- Задача линейного программирования с системой уравнений

Решение задачи линейного программирования графическим методом

Построив в предыдущем видеоуроке модель задачи линейного программирования, необходимо найти ее решение. Одним из самых распространенных методов оптимизации является графический метод. Он может использоваться, если число неизвестных переменных Х не превышает двух. К достоинствам метода относится его простота, к недостаткам - точность полученного решения зависит от того, насколько правильно мы соблюдали масштаб при построении. Наш видеоурок научит вас этому.

Если данное видео принесло вам реальную пользу и вы хотите отблагодарить автора:
WMR: R370550256930
WMZ: Z939960413056

В нашей подборке вы можете найти больше видеоуроков по работе с электронными таблицами Microsoft Excel:

Еще больше других обучающих видеоуроков вы сможете найти на нашем сайте:

Решение задач линейного программирование с помощью Excel

Задачи оптимизации, задачи линейного программирования, динамическое программирование - решение с помощью электронных таблиц

Решение ЗЛП симплексным методом с использованием таблиц EXCEL

Пусть исходная ЗЛП приведена к каноническому виду, а ее система ограничений имеет предпочтительный вид. Например, для “Задачи об использовании сырья” математическая модель соответствующего вида будет такова:

Первая симплексная таблица на рабочем листе EXCEL будет иметь вид (рис. 10):



Считая, что студент знаком с алгоритмом табличного симплекс-метода, опишем основные этапы его реализации с помощью таблиц EXCEL.

Этап 1. Выбрать разрешающие столбец и строку и выделить разрешающий элемент (см. рис. 11).

Этап 2. Заменить в новой таблице столбцы “Базис” и ”С б ” согласно правилам их заполнения.



    Элементы разрешающей строки делятся на разрешающий элемент и записываются в соответствующей по номеру строке новой таблицы:

, при i = r . (*)

    Все остальные элементы новой таблицы рассчитываются по формулам:

, при i ≠ r (**)

где - элемент новой симплекс-таблицы, a ij , - элемент предыдущей симплекс-таблицы, a rk - разрешающий элемент, a ik - элемент разрешающего столбца, a rj - элемент разрешающей строки.

Примечание . Для использования возможности EXCEL копирования формул с модификацией адресов входящих в них ячеек целесообразно программировать формулы (*) и (**) только для ячеек столбца ”В”, поставив не изменяющимся ячейкам абсолютные адреса. Затем данные формулы копируются во все оставшиеся ячейки каждой строки новой таблицы.

Этап 4. Элементы последней строки новой таблицы заполняются или по формулам (**), или по правилу заполнения данной строки.

Результаты расчетов в таблицах EXCEL для нашего примера приводятся на рис 11, а формулы, использовавшиеся при данных расчетах – на рис. 12.



    Акулич И.Л. Математическое программирование в примерах и задачах: Учеб. пособие для студентов эконом. спец. вузов. - М.: Высш. шк., 1986.-319с., ил.

    Сакович В.А. Исследование операций (детерминированные методы и модели): Справочное пособие. - Мн.: Выш. шк., 1984.-256с.

    Таха Х. Введение в исследование операций: в 2-х книгах. Кн.1. Пер. с англ. – М.: Мир, 1985.-479с., ил.

    Методические указания к практическим занятиям по дисциплине «Математическое программирование» (линейное программирование) для студентов экономических специальностей / Сост. Туровцев Г.В., Нудный И.П. – Запорожье, ЗГИА, 1984.-31с.

    Математическое программирование. Конспект лекций для студентов экономических специальностей дневного и заочного отделений /Глущевский В.В., Исаенко А.Н. – Запорожье: ЗГИА, 2003. – 150с.