Сайт о телевидении

Сайт о телевидении

» » Рекурсия. Рекурсивный алгоритм

Рекурсия. Рекурсивный алгоритм

Рекурсии являются интересными событиями сами по себе, но в программировании они представляют особенную важность в отдельных случаях. Впервые сталкиваясь с ними, довольно значительное количество людей имеют проблемы с их пониманием. Это связано с огромным полем потенциального применения самого термина в зависимости от контекста, в котором «рекурсия» используется. Но можно надеяться, что эта статья поможет избежать возможного недоразумения или непонимания.

Что такое "рекурсия" вообще?

Слово "рекурсия" имеет целый спектр значений, которые зависят от области, в которой оно применяется. Универсальное обозначение является таким: рекурсии - это определения, изображения, описания объектов или процессов в самих объектах. Возможны они только в тех случаях, когда объект является частью самого себя. По-своему определяют рекурсию математика, физика, программирование и ряд других научных дисциплин. Практическое применение она нашла в работе информационных систем и физических экспериментах.

Что подразумевают под рекурсией в программировании?

Рекурсивными ситуациями, или рекурсией в программировании, называют моменты, когда процедура или функция программы вызывает саму себя. Как бы странно для тех, кто начал изучать программирование, это ни звучало, здесь нет ничего странного. Следует запомнить, что рекурсии - это не сложно, и в отдельных случаях они заменяют циклы. Если компьютеру правильно задать вызов процедуры или функции, он просто начнёт её выполнять.

Рекурсия может быть конечной или бесконечной. Для того чтобы первая прекратила сама себя вызывать, в ней же должны быть условия прекращения. Это может быть уменьшение значения переменной и при достижении определённого значения остановка вызова и завершение программы/переход к последующему коду, в зависимости от потребностей достичь определённых целей. Под бесконечной рекурсией подразумевают, что она будет вызываться, пока будет работать компьютер или программа, в которой она работает.

Возможна также организация сложной рекурсии с помощью двух функций. Допустим, есть А и Б. Функция А имеет в своем коде вызов Б, а Б, в свою очередь, указывает компьютеру на необходимость выполнить А. Сложные рекурсии - это выход из целого ряда сложных логических ситуаций для компьютерной логики.

Если читающий эти строки изучал программные циклы, то он, наверное, уже заметил схожесть между ними и рекурсией. В целом они действительно могут выполнять похожие или идентичные задания. С помощью рекурсии удобно делать имитацию работы цикла. Особенно это полезно там, где сами циклы использовать не очень удобно. Схема программной реализации не сильно различается у разных высокоуровневых языков программирования. Но всё же рекурсия в "Паскале" и рекурсия в С или другом языке имеет свои особенности. Может она быть успешно реализована и в низкоуровневых языках вроде "Ассемблера", но это является более проблематичным и затратным по времени.

Деревья рекурсии

Что такое "дерево" в программировании? Это конечное множество, состоящее как минимум из одного узла, который:

  1. Имеет начальный специальный узел, который называют корнем всего дерева.
  2. Остальные узлы находятся в количестве, отличном от нуля, попарно непересекающихся подмножеств, при этом они тоже являются деревом. Все такие формы организации называют поддеревьями главного дерева.

Другими словами: деревья содержат поддеревья, которые содержат ещё деревья, но в меньшем количестве, чем предыдущее дерево. Так продолжается до тех пор, пока в одном из узлов не останется возможности продвигаться далее, и это будет обозначать конец рекурсии. Есть ещё один нюанс насчет схематического изображения: обычные деревья растут снизу вверх, а в программировании они рисуются наоборот. Узлы, не имеющие продолжения, называются конечными узлами. Для удобства обозначения и для удобства используется генеалогическая терминология (предки, дети).

Зачем она применяется в программировании?

Своё применение рекурсия в программировании нашла в решении целого ряда сложных задач. Если необходимо сделать только один вызов, то более легким является применение интеграционного цикла, но при двух и более повторах, чтобы избежать построения цепочки и сделать их выполнение в виде дерева, и применяются рекурсивные ситуации. Для широкого класса задач организация вычислительного процесса таким способом является наиболее оптимальной с точки зрения потребления ресурсов. Так, рекурсия в "Паскале" или другом любом высокоуровневом языке программирования представляет собой вызов функции или процедуры до выполнения условий, независимо от количества внешних вызовов. Другими словами, в программе может быть только одно обращение к подпрограмме, но происходить оно будет до определённого заранее момента. В некотором роде это аналог цикла со своей спецификой использования.

Отличия рекурсии в различных языках программирования

Несмотря на общую схему реализации и конкретное применение в каждом отдельном случае, рекурсия в программировании имеет свои особенности. Это может привести к сложности во время поиска необходимого материала. Но всегда следует помнить: если язык программирования вызывает функции или процедуры, значит, и вызов рекурсии - дело осуществимое. Но наиболее значимые её отличия проявляются при использовании низких и высоких языков программирования. Особенно это касается возможностей программной реализации. Исполнение в конечном итоге зависит от того, какая задача поставлена, в соответствии с ней и пишется рекурсия. Функции и процедуры используются разные, но их цель всегда одна - заставить вызвать самих себя.

Рекурсия - это легко. Как просто запомнить содержание статьи?

Для начинающих понять её, может быть, поначалу сложно, поэтому нужны примеры рекурсии или хотя бы один. Поэтому следует привести небольшой пример из бытовой жизни, который поможет понять саму суть этого механизма достижения целей в программировании. Возьмите два или больше зеркал, поставьте их так, чтобы в одном отображались все остальные. Можно увидеть, что зеркала отображают себя многократно, создавая эффект бесконечности. Вот рекурсии - это, образно говоря, отражения (их будет множество). Как видите, понять несложно, было бы желание. А изучая материалы по программированию, далее можно понять, что рекурсия - это ещё и очень легко выполнимая задача.

Что такое рекурсия?

Под этим словом подразумевается процесс, обозначающий повторение одних и тех же элементов «самоподобным образом». Достойный пример такого процесса — русская матрешка, и если бы не предел возможностей, то такая бы игрушка повторяла себя до бесконечности.


Исходя из технических причин, рекурсия все-таки величина конечная.

В программировании под этим термином понимается процесс вызова функцией саму себя, либо вызов таковой изнутри. Естественно, рекурсивные вызовы должны иметь вполне выполнимые условия завершения, иначе программа с другими условиями зависнет и наступит аварийное завершение с наличием переполненного стека.

Примером математической рекурсии может служить уже всем изрядно надоевший пример — вычисление факториала. В действительности рекурсия в веб-программировании применяется довольно таки часто, а все потому, что рекурсия – это единственный вариант обхода любой стандартной структуры, когда точно не знают о ее реальных размерах и глубине вложения. Без нее также не обходится и построение графов. Это классический вариант.

Чтобы убедиться в необходимости этого процесса, стоит попробовать построить карту сайта с разделами по иерархической структуре вложенных списков. Это будет нереально, если вы не ограничитесь заранее ее размерами и глубиной вложения. Но если, все-таки вы соорудите нечто подобное, то поймете, что в какой-то момент вся ваша конструкция зависнет и перестанет работать.

Рекурсия в поисковых системах

Поисковые системы также зависят от рекурсии. Именно с того момента, когда был введен критерий авторитетности сайтов измерять количеством ссылок, поисковые системы также попались в эти сети. Ссылочная «масса» сайта складывается из мелких кусочков «масс» всех тех ресурсов, которые на него ссылаются. Чтобы высчитать этот показатель для одного сайта, необходимо просчитать «массу» всех ссылочных вариантов, которые в свою очередь состоят из других таких же компонентов, и так далее, по всей глубине поисковой сети. Вот вам и рекурсия на практике.

Рекурсивный PageRank oт Google

Такое имя носит алгоритм расчета, созданный и опубликованный Google. Этот алгоритм известен уже давно, но сколько бы раз он не преобразовывался и не дополнялся всевозможными усовершенствованиями, в основе лежит все тот же рекурсивный метод. Суть всегда остается одна и та же: расчеты, перерасчеты и еще раз перерасчеты. В результате получается опять та же функция.

Рекурсивный тИЦ от Яндекса

ТИЦ, созданный Яндексом, имеет точно такое же устройство, как и предыдущий алгоритм. Отличие заключается лишь в том, что он считается для всего сайта в целом, а не для каждой отдельной страницы. Именно поэтому поисковой системе Яндекс живется гораздо вольготнее, чем остальным, так как самих сайтов в разы меньше, чем страниц и пересчитать их намного легче.

Однако этот показатель на выдачу в Яндексе не влияет. Для этих целей у него есть глубоко спрятанный ВИЦ, который является аналогом PageRank. Так что объем подсчетов у Яндекс также немалый.

Рекурсивный алгоритм расчета, основанный на ссылочном весе, показал, что два сайта, имеющие ссылки друг на друга обладают нереально высоким весом. Поэтому сразу же, после публикации алгоритма PageRank, оптимизаторы приступили к раскручиванию рекурсивной линковки. Проведенные эксперименты подтвердили, что применяемый метод имеет эффективный результат.



Прокомментировать эту статью:

Пожалуйста, зарегистрируйтесь для комментирования.

Здравствуй Хабрахабр!

В этой статье речь пойдет о задачах на рекурсию и о том как их решать.

Кратко о рекурсии

Рекурсия достаточно распространённое явление, которое встречается не только в областях науки, но и в повседневной жизни. Например, эффект Дросте, треугольник Серпинского и т. д. Один из вариантов увидеть рекурсию – это навести Web-камеру на экран монитора компьютера, естественно, предварительно её включив. Таким образом, камера будет записывать изображение экрана компьютера, и выводить его же на этот экран, получится что-то вроде замкнутого цикла. В итоге мы будем наблюдать нечто похожее на тоннель.

В программировании рекурсия тесно связана с функциями, точнее именно благодаря функциям в программировании существует такое понятие как рекурсия или рекурсивная функция. Простыми словами, рекурсия – определение части функции (метода) через саму себя, то есть это функция, которая вызывает саму себя, непосредственно (в своём теле) или косвенно (через другую функцию).

О рекурсии сказано много. Вот несколько хороших ресурсов:

  • Рекурсия и рекурсивные задачи. Области применение рекурсии
Предполагается что читатель теоритически знаком с рекурсией и знает что это такое. В данной статье мы бóльшее вниманиее уделим задачам на рекурсию.

Задачи

При изучении рекурсии наиболее эффективным для понимания рекурсии является решение задач.
Как же решать задачи на рекурсию?
В первую очередь надо понимать что рекурсия это своего рода перебор. Вообще говоря, всё то, что решается итеративно можно решить рекурсивно, то есть с использованием рекурсивной функции.

из сети

Любой алгоритм, реализованный в рекурсивной форме, может быть переписан в итерационном виде и наоборот. Останется вопрос, надо ли это, и насколько это будет это эффективно.

Для обоснования можно привести такие доводы.

Для начала можно вспомнить определение рекурсии и итерации. Рекурсия - это такой способ организации обработки данных, при котором программа вызывает сама себя непосредственно, либо с помощью других программ. Итерация - это способ организации обработки данных, при котором определенные действия повторяются многократно, не приводя при этом к рекурсивным вызовам программ.

После чего можно сделать вывод, что они взаимно заменимы, но не всегда с одинаковыми затратами по ресурсам и скорости. Для обоснования можно привести такой пример: имеется функция, в которой для организации некого алгоритма имеется цикл, выполняющий последовательность действий в зависимости от текущего значения счетчика (может от него и не зависеть). Раз имеется цикл, значит, в теле повторяется последовательность действий - итерации цикла. Можно вынести операции в отдельную подпрограмму и передавать ей значение счетчика, если таковое есть. По завершению выполнения подпрограммы мы проверяем условия выполнения цикла, и если оно верно, переходим к новому вызову подпрограммы, если ложно - завершаем выполнение. Т.к. все содержание цикла мы поместили в подпрограмму, значит, условие на выполнение цикла помещено также в подпрограмму, и получить его можно через возвращающее значение функции, параметры передающееся по ссылке или указателю в подпрограмму, а также глобальные переменные. Далее легко показать, что вызов данной подпрограммы из цикла легко переделать на вызов, или не вызов (возврата значения или просто завершения работы) подпрограммы из нее самой, руководствуясь какими-либо условиями (теми, что раньше были в условии цикла). Теперь, если посмотреть на нашу абстрактную программу, она примерно выглядит как передача значений подпрограмме и их использование, которые изменит подпрограмма по завершению, т.е. мы заменили итеративный цикл на рекурсивный вызов подпрограммы для решения данного алгоритма.

Задача по приведению рекурсии к итеративному подходу симметрична.

Подводя итог, можно выразить такие мысли: для каждого подхода существует свой класс задач, который определяется по конкретным требованиям к конкретной задаче.

Более подробно с этим можно познакомиться


Так же как и у перебора (цикла) у рекурсии должно быть условие остановки - Базовый случай (иначе также как и цикл рекурсия будет работать вечно - infinite). Это условие и является тем случаем к которому рекурсия идет (шаг рекурсии). При каждом шаге вызывается рекурсивная функция до тех пор пока при следующем вызове не сработает базовое условие и произойдет остановка рекурсии(а точнее возврат к последнему вызову функции). Всё решение сводится к решению базового случая. В случае, когда рекурсивная функция вызывается для решения сложной задачи (не базового случая) выполняется некоторое количество рекурсивных вызовов или шагов, с целью сведения задачи к более простой. И так до тех пор пока не получим базовое решение.

Итак рекурсивная функция состоит из

  • Условие остановки или же Базовый случай
  • Условие продолжения или Шаг рекурсии - способ сведения задачи к более простым.
Рассмотрим это на примере нахождения факториала :

Public class Solution { public static int recursion(int n) { // условие выхода // Базовый случай // когда остановиться повторять рекурсию? if (n == 1) { return 1; } // Шаг рекурсии / рекурсивное условие return recursion(n - 1) * n; } public static void main(String args) { System.out.println(recursion(5)); // вызов рекурсивной функции } }

Тут Базовым условием является условие когда n=1. Так как мы знаем что 1!=1 и для вычисления 1! нам ни чего не нужно. Чтобы вычислить 2! мы можем использовать 1!, т.е. 2!=1!*2. Чтобы вычислить 3! нам нужно 2!*3… Чтобы вычислить n! нам нужно (n-1)!*n. Это и является шагом рекурсии. Иными словами, чтобы получить значение факториала от числа n, достаточно умножить на n значение факториала от предыдущего числа.

Теги:

  • рекурсия
  • задачи
  • java
Добавить метки

От лат recursio (возвращение). В общем случае так называется процесс повторения элементов «самоподобным образом».

Яркий пример рекурсии - матрёшки. Рекурсивное определение: «матрёшка - это разъемная пустотелая деревянная кукла, содержащая внутри матрёшку меньшего размера». Вот такая рекурсия по-русски. И если бы не предел возможностей мастеров, идеальная матрёшка уходила бы в глубь себя до атомарного уровня. А то и глубже. Просто у Левши не нашлось мелкоскопа достаточной силы. Верхний предел теоретически тоже не ограничен, но баобабы подходящего размера на нашей планете не растут. В общем, по техническим причинам рекурсия должна быть конечной.

В программировании (как и в математике) рекурсия - процесс вызова функцией самой себя (прямая рекурсия), либо вызов изнутри функции A функции B, которая в свою очередь содержит вызов функции A (косвенная или взаимная рекурсия). Разумеется, рекурсивные вызовы должны иметь выполнимое условие завершения, иначе такая программа «зависнет», как в бесконечном цикле - но, в отличие от бесконечного цикла, при бесконечной рекурсии она аварийно завершится переполнением стека.

Пример рекурсии

Самый надоевший пример рекурсии в математическом программировании - вычисление факториала. Не будем изменять славным традициям. Для тех, кто еще не проходил: N! (факториал N) - это произведение всех натуральных чисел от единицы до N (факториал нуля равен 1).
Можно тупо перемножать числа от 1 до N в цикле. А можно соорудить функцию factorial(n), которая будет содержать условие и вызов самой себя. Если n равно единице, то функция возвращает значение 1, иначе возвращает значение n, умноженное на factorial(n-1).
Зарисовка на PHP

Function factorial($n) { if ($n == 1) { return 1; } else { return intval($n * factorial($n - 1)); } }

Практические применения рекурсии

«Ну, и зачем это здесь нужно?» - спросит нас нетерпеливый юный читатель - «Чушь научная, занудство, факториалы всякие… А практически к чему эту рекурсию приложить?»
«К подбитому глазу веб-программированию» - без колебаний ответим мы. И тут же это обоснуем.

На самом деле применений рекурсии в веб-программировании гораздо больше, чем кажется. Потому что рекурсия - это, пожалуй, единственный способ обхода любой древовидной структуры, когда заранее неизвестны ни ее размеры, ни глубина вложенности. Кстати, построение и обход графов тоже без нее не обойдется. Это классика, господа - попробуйте каким-нибудь другим способом искать нужные файлы в юниксовом дереве директорий, и вам сразу станет понятно, что без рекурсии - никуда.

Попробуйте обойтись без нее, строя карту сайта с иерархической структурой разделов в виде вложенных списков. Вы скорее повеситесь, чем ее построите, если заранее не знаете точно, сколькими уровнями ограничена глубина вложения. И даже если знаете, но попытаетесь обойтись без рекурсии, то вместо простой, прозрачной и безотказной функции соорудите громоздкую программную «этажерку на костылях». А когда закончите и вытрете вспотевший лоб, до вас дойдет мрачная правда жизни: при изменении глубины вложенности ваша развесистая конструкция моментально прекратит корректно работать. Поэтому применить ее где-то еще вам вряд ли удастся.

Рекурсия в поисковых системах

Да, именно так. Поисковым системам от рекурсии тоже некуда деваться. С тех пор, как был заведен обычай мерить авторитетность сайта (документа) количеством ссылок, поисковики попались в рекурсивную ловушку, и пусть они блуждают в ней вечно (это искреннее доброе пожелание автора). Ссылочный «вес» сайта складывается из маленьких кусочков «веса» от всех тех, которые на него ссылаются. Чтобы вычислить этот вес для A, на которого ссылаются B, C и D, надо обсчитать их вес, который в свою очередь передается всякими другими, вес которых тоже нужно обсчитывать… и так по всей учтенной в поисковике Сети. Совершенно рекурсивная задачка. А вы говорите - сплошная теория. Самая что ни на есть реальная практика.

Рекурсивный PageRank от Google

Свой базовый алгоритм расчета PageRank создатели Google опубликовали давно. И как бы он с тех пор ни менялся, сколько бы его ни дополняли усовершенствованиями, основа остается прежней. Нельзя узнать, какую величину PageRank страница B передает по ссылке странице A, пока мы не сосчитали, какой PageRank получила страница B от всех прочих страниц, которые на нее сослались, а этого нельзя узнать, пока мы не посчитаем PageRank этих страниц… продолжать? Наверное, уже не надо. Это опять Она - Её Величество Рекурсия .

Рекурсия — это свойство объекта подражать самому себе. Объект является рекурсивным если его части выглядят также как весь объект. Рекурсия очень широко применяется в математике и программировании:

  • структуры данных:
    • граф (в частности деревья и списки) можно рассматривать как совокупность отдельного узла и подграфа (меньшего графа);
    • строка состоит из первого символа и подстроки (меньшей строки);
  • шаблоны проектирования, например . Объект декоратора может включать в себя другие объекты, также являющиеся декораторами. Детально рекурсивные шаблоны изучил Мак-Колм Смит, выделив в своей книге общий шаблон проектирования — Recursion ;
  • рекурсивные функции (алгоритмы) выполняют вызов самих себя.

Статья посвящена анализу трудоемкости рекурсивных алгоритмов, приведены необходимые математические сведения, рассмотрены примеры. Кроме того, описана возможность замены рекурсии циклом, хвостовая рекурсия.

Примеры рекурсивных алгоритмов

Рекурсивный алгоритм всегда разбивает задачу на части, которые по своей структуре являются такими же как исходная задача, но более простыми. Для решения подзадач функция вызывается рекурсивно, а их результаты каким-либо образом объединяются. Разделение задачи происходит лишь тогда, когда ее не удается решить сразу (она является слишком сложной).

Например, задачу обработки массива нередко можно свести к обработке его частей. Деление на части выполняется до тех пор, пока они не станут элементарными, т.е. достаточно простыми чтобы получить результат без дальнейшего упрощения.

Поиск элемента массива

начало; search(array, begin, end, element) ; выполняет поиск элемента со значением element в массиве array между индексами begin и end если begin > end результат:= false; элемент не найден иначе если array = element результат:= true; элемент найден иначе результат:= search(array, begin+1, end, element) конец; вернуть результат

Алгоритм делит исходный массив на две части — первый элемент и массив из остальных элементов. Выделяется два простых случая, когда разделение не требуется — обработаны все элементы или первый элемент является искомым.

В алгоритме поиска разделять массив можно было бы и иначе (например пополам), но это не сказалось бы на эффективности. Если массив отсортирован — то его деление пополам целесообразно, т.к. на каждом шаге количество обрабатываемых данных можно сократить на половину.

Двоичный поиск в массиве

Двоичный поиск выполняется над отсортированным массивом. На каждом шаге искомый элемент сравнивается со значением, находящимся посередине массива. В зависимости от результатов сравнения либо левая, либо правая части могут быть «отброшены».

Начало; binary_search(array, begin, end, element) ; выполняет поиск элемента со значением element ; в массиве упорядоченном по возрастанию массиве array ; между индексами begin и end если begin > end конец; вернуть false - элемент не найден mid:= (end + begin) div 2; вычисление индекса элемента посередине рассматриваемой части массива если array = element конец; вернуть true (элемент найден) если array < element результат:= binary_search(array, mid+1, end, element) иначе результат:= binary_search(array, begin, mid, element) конец; вернуть результат

Вычисление чисел Фибоначчи

Числа Фибоначчи определяются рекуррентным выражением, т.е. таким, что вычисление элемента которого выражается из предыдущих элементов: \(F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}, n > 2\).

Начало; fibonacci(number) если number = 0 конец; вернуть 0 если number = 1 конец; вернуть 1 fib_1:= fibonacci(number-1) fib_2:= fibonacci(number-2) результат:= fib_1 + fib_2 конец; вернуть результат

Быстрая сортировка (quick sort)

Алгоритм быстрой сортировки на каждом шаге выбирает один из элементов (опорный) и относительно него разделяет массив на две части, которые обрабатываются рекурсивно. В одну часть помещаются элементы меньше опорного, а в другую — остальные.

Блок-схема алгоритма быстрой сортировки

Сортировка слиянием (merge sort)

В основе алгоритма сортировки слиянием лежит возможность быстрого объединения упорядоченных массивов (или списков) так, чтобы результат оказался упорядоченным. Алгоритм разделяет исходный массив на две части произвольным образом (обычно пополам), рекурсивно сортирует их и объединяет результат. Разделение происходит до тех пор, пока размер массива больше единицы, т.к. пустой массив и массив из одного элемента всегда отсортированы.

Блок схема сортировки слиянием

На каждом шаге слияния из обоих списков выбирается первый необработанный элемент. Элементы сравниваются, наименьший из них добавляется к результату и помечается как обработанный. Слияние происходит до тех пор, пока один из списков не окажется пуст.

Начало; merge(Array1, Size1, Array2, Size2) ; исходные массивы упорядочены; в результат формируется упорядоченный массив длины Size1+Size2 i:= 0, j:= 0 вечный_цикл если i >= Size1 дописать элементы от j до Size2 массива Array2 в конец результата выход из цикла если j >= Size2 дописать элементы от i до Size1 массива Array1 в конец результата выход из цикла если Array1[i] < Array2[j] результат := Array1[i] i:= i + 1 иначе (если Array1[i] >= Array2[j]) результат := Array2[j] j:= j + 1 конец; вернуть результат

Анализ рекурсивных алгоритмов

При рассчитывается трудоемкость итераций и их количество в наихудшем, наилучшем и среднем случаях . Однако не получится применить такой подход к рекурсивной функции, т.к. в результате будет получено рекуррентное соотношение. Например, для функции поиска элемента в массиве:

\(
\begin{equation*}
T^{search}_n = \begin{cases}
\mathcal{O}(1) \quad &\text{$n = 0$} \\
\mathcal{O}(1) + \mathcal{O}(T^{search}_{n-1}) \quad &\text{$n > 0$}
\end{cases}
\end{equation*}
\)

Рекуррентные отношения не позволяют нам оценить сложность — мы не можем их просто так сравнивать, а значит, и сравнивать эффективность соответствующих алгоритмов. Необходимо получить формулу, которая опишет рекуррентное отношение — универсальным способом сделать это является подбор формулы при помощи метода подстановки, а затем доказательство соответствия формулы отношению методом математической индукции.

Метод подстановки (итераций)

Заключается в последовательной замене рекуррентной части в выражении для получения новых выражений. Замена производится до тех пор, пока не получится уловить общий принцип и выразить его в виде нерекуррентной формулы. Например для поиска элемента в массиве:

\(
T^{search}_n = \mathcal{O}(1) + \mathcal{O}(T^{search}_{n-1}) =
2\times\mathcal{O}(1) + \mathcal{O}(T^{search}_{n-2}) =
3\times\mathcal{O}(1) + \mathcal{O}(T^{search}_{n-3})
\)

Можно предположить, что \(T^{search}_n = T^{search}_{n-k} + k\times\mathcal{O}(1)\), но тогда \(T^{search}_n = T^{search}_{0} + n\times\mathcal{O}(1) = \mathcal{O}(n)\).

Мы вывели формулу, однако первый шаг содержит предположение, т.е. не имеется доказательства соответствия формулы рекуррентному выражению — получить доказательство позволяет метод математической индукции.

Метод математической индукции

Позволяет доказать истинность некоторого утверждения (\(P_n\)), состоит из двух шагов:

  1. доказательство утверждения для одного или нескольких частных случаев \(P_0, P_1, …\);
  2. из истинности \(P_n\) (индуктивная гипотеза) и частных случаев выводится доказательство \(P_{n+1}\).

Докажем корректность предположения, сделанного при оценки трудоемкости функции поиска (\(T^{search}_n = (n+1)\times\mathcal{O}(1)\)):

  1. \(T^{search}_{1} = 2\times\mathcal{O}(1)\) верно из условия (можно подставить в исходную рекуррентную формулу);
  2. допустим истинность \(T^{search}_n = (n+1)\times\mathcal{O}(1)\);
  3. требуется доказать, что \(T^{search}_{n+1} = ((n+1)+1)\times\mathcal{O}(1) = (n+2)\times\mathcal{O}(1)\);
    1. подставим \(n+1\) в рекуррентное соотношение: \(T^{search}_{n+1} = \mathcal{O}(1) + T^{search}_n\);
    2. в правой части выражения возможно произвести замену на основании индуктивной гипотезы: \(T^{search}_{n+1} = \mathcal{O}(1) + (n+1)\times\mathcal{O}(1) = (n+2)\times\mathcal{O}(1)\);
    3. утверждение доказано.

Часто, такое доказательство — достаточно трудоемкий процесс, но еще сложнее выявить закономерность используя метод подстановки. В связи с этим применяется, так называемый, общий метод .

Общий (основной) метод решения рекуррентных соотношений

Общий метод не является универсальным, например с его помощью невозможно провести оценку сложности приведенного выше алгоритма вычисления чисел Фибоначчи. Однако, он применим для всех случаев использования подхода «разделяй и властвуй» :

\(T_n = a\cdot T(\frac{n}{b})+f_n; a, b = const, a \geq 1, b > 1, f_n > 0, \forall n\).

Уравнения такого вида получаются если исходная задача разделяется на a подзадач, каждая из которых обрабатывает \(\frac{n}{b}\) элементов. \(f_n\) — трудоемкость операций разбиения задачи на части и комбинирование решений. Помимо вида соотношения, общий метод накладывает ограничения на функцию \(f_n\), выделяя три случая:

  1. \(\exists \varepsilon > 0: f_n = \mathcal{O}(n^{\log_b a — \varepsilon}) \Rightarrow T_n = \Theta(n^{\log_b a})\);
  2. \(f_n = \Theta(n^{\log_b a}) \Rightarrow T_n = \Theta(n^{\log_b a} \cdot \log n)\);
  3. \(\exists \varepsilon > 0, c < 1: f_n = \Omega(n^{\log_b a + \varepsilon}), f_{\frac{n}{b}} \leq c \cdot f_n \Rightarrow T_n = \Theta(f_n)\).

Правильность утверждений для каждого случая доказана формально . Задача анализа рекурсивного алгоритма теперь сводится к определению случая основной теоремы, которому соответствует рекуррентное соотношение.

Анализ алгоритма бинарного поиска

Алгоритм разбивает исходные данные на 2 части (b = 2), но обрабатывает лишь одну из них (a = 1), \(f_n = 1\). \(n^{\log_b a} = n^{\log_2 1} = n^0 = 1\). Функция разделения задачи и компоновки результата растет с той же скоростью, что и \(n^{\log_b a}\), значит необходимо использовать второй случай теоремы:

\(T^{binarySearch}_n = \Theta(n^{\log_b a} \cdot \log n) = \Theta(1 \cdot \log n) = \Theta(\log n)\).

Анализ алгоритма поиска

Рекурсивная функция разбивает исходную задачу на одну подзадачу (a = 1), данные делятся на одну часть (b = 1). Мы не можем использовать основную теорему для анализа этого алгоритма, т.к. не выполняется условие \(b > 1\).

Для проведения анализа может использоваться метод подстановки или следующие рассуждения: каждый рекурсивный вызов уменьшает размерность входных данных на единицу, значит всего их будет n штук, каждый из которых имеет сложность \(\mathcal{O}(1)\). Тогда \(T^{search}_n = n \cdot \mathcal{O}(1) = \mathcal{O}(n)\).

Анализ алгоритма сортировки слиянием

Исходные данные разделяются на две части, обе из которых обрабатываются: \(a = 2, b = 2, n^{\log_b a} = n\).

При обработке списка, разделение может потребовать выполнения \(\Theta(n)\) операций, а для массива — выполняется за постоянное время (\(\Theta(1)\)). Однако, на соединение результатов в любом случае будет затрачено \(\Theta(n)\), поэтому \(f_n = n\).

Используется второй случай теоремы: \(T^{mergeSort}_n = \Theta(n^{\log_b a} \cdot \log n) = \Theta(n \cdot \log n)\).

Анализ трудоемкости быстрой сортировки

В лучшем случае исходный массив разделяется на две части, каждая из которых содержит половину исходных данных. Разделение потребует выполнения n операций. Трудоемкость компоновки результата зависит от используемых структур данных — для массива \(\mathcal{O}(n)\), для связного списка \(\mathcal{O}(1)\). \(a = 2, b = 2, f_n = b\), значит сложность алгоритма будет такой же как у сортировки слиянием: \(T^{quickSort}_n = \mathcal{O}(n \cdot \log n)\).

Однако, в худшем случае в качестве опорного будет постоянно выбираться минимальный или максимальный элемент массива. Тогда \(b = 1\), а значит, мы опять не можем использовать основную теорему. Однако, мы знаем, что в этом случае будет выполнено n рекурсивных вызовов, каждый из которых выполняет разделение массива на части (\(\mathcal{O}(n)\)) — значит сложность алгоритма \(T^{quickSort}_n = \mathcal{O}(n^2)\).

При анализе быстрой сортировки методом подстановки, пришлось бы также рассматривать отдельно наилучший и наихудший случаи.

Хвостовая рекурсия и цикл

Анализ трудоемкости рекурсивных функций значительно сложнее аналогичной оценки циклов, но основной причиной, по которой циклы предпочтительнее являются высокие затраты на вызов функции.

После вызова управление передается другой функции. Для передачи управления достаточно изменить значение регистра программного счетчика, в котором процессор хранит номер текущей выполняемой команды — аналогичным образом передается управление ветвям алгоритма, например, при использовании условного оператора. Однако, вызов — это не только передача управления, ведь после того, как вызванная функция завершит вычисления, она должна вернуть управление в точку, и которой осуществлялся вызов, а также восстановить значения локальных переменных, которые существовали там до вызова.

Для реализации такого поведения используется стек (стек вызовов, call stack) — в него помещаются номер команды для возврата и информация о локальных переменных. Стек не является бесконечным, поэтому рекурсивные алгоритмы могут приводить к его переполнению, в любом случае на работу с ним может уходить значительная часть времени.

В ряде случаев рекурсивную функцию достаточно легко заменить циклом, например, рассмотренные выше . В некоторых случаях требуется более творческий подход, но чаще всего такая замена оказывается возможной. Кроме того, существует особый вид рекурсии, когда рекурсивный вызов является последней операцией, выполняемой функцией. Очевидно, что в таком случае вызывающая функция не будет каким-либо образом изменять результат, а значит ей нет смысла возвращать управление. Такая рекурсия называется хвостовой — компиляторы автоматически заменяют ее циклом.

Зачастую сделать рекурсию хвостовой помогает метод накапливающего параметра , который заключается в добавлении функции дополнительного аргумента-аккумулятора, в котором накапливается результат. Функция выполняет вычисления с аккумулятором до рекурсивного вызова. Хорошим примером использования такой техники служит функция вычисления факториала:
\(fact_n = n \cdot fact(n-1) \\
fact_3 = 3 \cdot fact_2 = 3 \cdot (2 \cdot fact_1) = 3\cdot (2 \cdot (1 \cdot fact_0)) = 6 \\
fact_n = factTail_{n, 1} \\
\\
factTail_{n, accumulator} = factTail(n-1, accumulator \cdot n)\\
factTail_{3, 1} = factTail_{2, 3} = factTail_{1, 6} = factTail_{0, 6} = 6
\)

В качестве более сложного примера рассмотрим функцию вычисления чисел Фибоначчи. Основная функция вызывает вспомогательную,использующую метод накапливающего параметра, при этом передает в качестве аргументов начальное значение итератора и два аккумулятора (два предыдущих числа Фибоначчи).

Начало; fibonacci(number) вернуть fibonacci(number, 1, 1, 0) конец начало; fibonacci(number, iterator, fib1, fib2) если iterator == number вернуть fib1 вернуть fibonacci(number, iterator + 1, fib1 + fib2, fib1) конец

Функция с накапливающим параметром возвращает накопленный результат, если рассчитано заданное количество чисел, в противном случае — увеличивает счетчик, рассчитывает новое число Фибоначчи и производит рекурсивный вызов. Оптимизирующие компиляторы могут обнаружить, что результат вызова функции без изменений передается на выход функции и заменить его циклом. Такой прием особенно актуален в функциональных и логических языках программирования, т.к. в них программист не может явно использовать циклические конструкции.

Литература

  1. Многопоточный сервер Qt. Пул потоков. Паттерн Decorator[Электронный ресурс] – режим доступа : https://сайт/archives/1390. Дата обращения: 21.02.2015.
  2. Джейсон Мак-Колм Смит : Пер. с англ. - М. : ООО “И.Д. Вильямс”, 2013. - 304 с.
  3. Скиена С. Алгоритмы. Руководство по разработке.-2-е изд.: пер. с англ.-СПб.:БХВ-Петербург, 2011.-720с.: ил.
  4. Васильев В. С. Анализ сложности алгоритмов. Примеры [Электронный ресурс] – режим доступа: https://сайт/archives/1660. Дата обращения: 21.02.2015.
  5. А.Ахо, Дж.Хопкрофт, Дж.Ульман, Структуры данных и алгоритмы, М., Вильямс, 2007.
  6. Миллер, Р. Последовательные и параллельные алгоритмы: Общий подход / Р. Миллер, Л. Боксер; пер. с англ. - М. : БИНОМ. Лаборатория знаний, 2006. - 406 с.
  7. Сергиевский Г.М. Функциональное и логическое программирование: учеб. пособие для студентов высш. учеб. заведений / Г.М. Сергиевский, Н.Г. Волченков. - М.: Издательский центр «Академия», 2010.- 320с.