Сайт о телевидении

Сайт о телевидении

» » Радиопередающие устройства на все волны одновременно. Факты о радио: история, теория, принцип работы. Простой детекторный приёмник

Радиопередающие устройства на все волны одновременно. Факты о радио: история, теория, принцип работы. Простой детекторный приёмник

Уверены, почти каждый из нас слышал слова «рация» и «радиостанция», и почти каждый сразу задавался вопросом: «Что такое рация?» «Чем рация отличается от радиостанции?»

Техническое устройство для проведения «сеанса» радиосвязи называют «Радиостанция» или простым языком «Рация». В данной статье речь пойдет именно об этом устройстве. Мы рассмотрим те или иные понятия, термины, которые используются в радиосвязи и без которых бывает трудно объяснить как работает рация.
Итак начнем.

У всех на слуху слово «радио». Многие знают, или по крайней мере имеют общее представление, как все происходит когда мы включаем радио и слышим приятные, или не приятные, нашему чуткому уху мелодии или новости.
Почему мы начали именно с этого? А потому, что именно радио, как мы привыкли его знать и пользоваться, и есть одна из составных частей рассматриваемой нами рации (радиостанции). Эту часть будем называть простым словом «ПРИЕМНИК».
Возникает вопрос: «Можем ли мы слушать наши любимые радиостанции (такие как «Маяк», «Шансон») на нашем устройстве под одноименным названием радиостанция? Несмотря на тавтологию со словом «радиостанция», вопрос вполне имеет место быть. Так вот ответ — можем, но не на всех рациях (радиостанциях). Дело в том, что рация (радиостанция), как и любое техническое оборудование, имеет свое вполне определенное предназначение и соответственно определенные разработчиком технические характеристики.

Одна из основных технических характеристик, присущих любой рации - это «ЧАСТОТА» (частота радиоволны). Из школьного курса физики известно, что радиоволна - есть электромагнитное колебание, а основным ее параметром как раз и является «Частота».
Пример:
У многих на слуху такие названия: СиБи радиостанция, LPD(эЛПиДи) радиостанция, PMR(ПиэМэР) радиостанция. Всё это рации, но они работают на разных частотах:
СиБи («Citizen Band”): 27 МГц
LPD: 433-434 МГц
PMR: 446 МГц

Есть еще понятие, которое напрямую связано с частотой - «ДЛИНА ВОЛНЫ».
Мы не сторонники утомлять вас высшей математикой, но, кому интересно, по ссылке немного теории. Побродив по просторам Википедии, вы узнаете кое-что, чего не знают многие из тех, кто годами пользуется радиостанцией. http://ru.wikipedia.org/wiki/Электромагнитное_излучение

Но пойдем дальше.
Кроме «ПРИЕМНИКа», в радиостанции есть и «ПЕРЕДАТЧИК». Понятно каждому, что передатчик передает. Одна из характеристик передатчика - это опять «частота».
Тут сразу скажем, что есть радиостанции, работающие так, что и приемник и передатчик работают на одной и той же частоте. Это, так называемый в узких кругах, «Симплекс». Вы, конечно, сразу спросите: «А как же так? Не мешают ли они друг другу?» Ответ лежит на поверхности: «Чтобы приемник и передатчик не мешали друг другу, надо чтобы они работали попеременно». Именно так и происходит во время общения по рации: мы говорим - нас слушают; нам говорят - мы слушаем. Такую связь еще называют связь для вежливых, т.к. иначе никто никого не услышит, в эфире просто будет каша.
Другой случай - приемник и передатчик работают на разных частотах. В узких кругах этот случай называют «Дуплекс» или «Полудуплекс». Вы спросите: «А в чем разница?» Разница в следующем: «Дуплекс» - это когда приемник и передатчик работают одновременно (на разных частотах), и мы говорим и слышим, как при обычном разговоре «в живую». Пример- любой сотовый телефон. А вот в «полудуплексе» приемник и передатчик работают поочередно также как и в Симплексе, но на разных частотах также как в Дуплексе.

Итак, любая радиостанция имеет приемник и передатчик. Но это не всё. Есть еще «БЛОК УПРАВЛЕНИЯ». Что он делает? Он «управляет», а точнее - следит, контролирует, вырабатывает, ограничивает, указывает, включает, выключает...
Для начала главное запомнить и понимать, что такой блок есть и что он также важен, как и приемник с передатчиком. Важный момент - этот блок не работает полностью в автоматическом режиме. Мы с вами (оператор, связист, просто пользователь) определяем когда и что ему делать. Когда мы нажимаем кнопку передачи РТТ («нажми и говори»), то мы указываем блоку управления, что сейчас мы будем говорить, и что нужно перевести радиостанцию в режим передачи. Когда же мы отпускаем кнопку РТТ, то радиостанция переходит в режим ожидания, впоследствии из этого режима мы можем перейти в режим приема (тут блок справится сам, при наличиии сигнала на нашей частоте) или, нажимая кнопку РТТ, опять в режим передачи, а можем и вовсе выключить рацию.

Еще один блок - «БЛОК ПИТАНИЯ».Поскольку больнинство радиостанций его не имеют в том полностью функциональном виде как принято понимать понятие «блок питания», то чаще оперируют понятием «НАПРЯЖЕНИЕ ПИТАНИЯ». Что надо знать касательно этого понятия? Нужно знать какое напряжение необходимо для работы радиостанции. Большинство автомобильных (стационарных) радиостанций требуют для работы 12-ти вольтовое питание. Это связано с тем, что большое количество пользователей хотят пользоваться радиостанцией в машине. А в машине, как мы знаем «бортовое» питание как раз 12 Вольт.
Продвинутые пользователи могут нам возразить, что питание в автомобиле 13,8 Вольт! И мы не будем спорить. Именно 13,8В нужно считать напряжением питания в автомобиле, но есть некоторые тонкости напряжения питания авто в различных режимах его работы, следовательно все не так однозначно. Поэтому у автомобилистов есть устоявшееся понятие «12 Вольт».
Есть еще более важный момент в вопросе напряжения - это, как говорят «где плюс?» а «где минус»??? Напомним всем, что плюс (как правило) красный провод, а «минус» (тоже как правило) - черный. Но никогда не будет лишним проверить и уточнить!
Если всё же радиостанция имеет полноценный блок питания, то для нас это, как правило, означает, что радиостанцию нужно подключить к обычной сети 220 Вольт. Все относительно питания радиостанции всегда пишется в ее описании либо инструкции по эксплуатации или паспорте.

Номинально мы описали из чего состоит радиостанция - приемник, передатчик, блок управления и блок питания, но, предвидя вопрос «А как же антенна?!» мы сейчас же перейдем к этому пункту.
Действительно, есть еще один блок, устройство, называть можно как угодно, без которого радиостанцию лучше и не включать - это её величество «АНТЕННА». Значение этого понятия трудно переоценить для радиосвязи. Для чего же нужна антенна? Можно сказать так - антенна нужна для приема и передачи радиоволн, несущих нашу с вами речь либо от нас к нашему собеседнику, либо обратно от него к нам. «А как же приемник и передатчик?»- спросите вы и будете правы. Строго говоря, антенна есть начало схемы приемника и продолжение схемы передатчика. Поэтому настоящие знатоки радиоствязи и уделяют ей (антенне) так много разговоров и споров. Но для дилетантов самое главное, что нужно знать об антенне - частота работы антенны. В паспорте любой антенны указывается рабочая частота (частоты). И еще один важный момент касательно антенны - практически любая антенна (имеем ввиду автомобильные и стационарные) имеет, даже скажем должна иметь, настройку (подстройку) по частоте.
Получается приемник, передатчик и антенна должны работать на одной и тойже частоте? Ответ - ДА, это главное условие успешной работы радиостанции. Поэтому первый и самый правильный вопрос, касательно любой радиостанции, это « На каких частотах работает эта радиостанция?»

Чтобы еще лучше понимать как работает радиостанция, уметь сравнить и выбрать нужную из того многообразия, которым пестрит сейчас рынок, нам бы хотелось тут упомянуть еще о нескольких важных характеристиках, присущих любой радиостанции. Итак перечень основных характеристик радиостанции:
частотный диапазон;
вид модуляции;
выходная мощность передатчика;
чувствительность приемника;
режим работы - Симплекс, дуплекс, полудуплекс;
напряжение питания;

Из этого списка мы уже знаем «частотный диапазон», что такое режим «симплекс/ дуплекс/ полудуплекс» и «напряжение питания». Остановимся на остальных.

Простым языком «ВИД МОДУЛЯЦИИ» - это способ того, как наша речь «перекладывается» на радиоволну.

Опять немного теории для тех кто жаждет знаний. http://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%B4%D1%83%D0%BB%D1%8F%D1%86%D0%B8%D1%8F;

Итак, для нас интересны «частотная» (ЧМ..англ FM) и «амплитудная» (АМ) модуляции. Но имейте в виду, что не все радиостанции могут работать в обоих видах модуляции, либо есть некоторые ограничения по использованию FM или AM модуляции в той или иной стране.

«ВЫХОДНАЯ МОЩНОСТЬ ПЕРЕДАТЧИКА».
Это мощностная характеристика передатчика - как лошадиные силы для двигателя автомобиля. Но тут эта мощность измеряется в Ваттах. Строго говоря, не всегда чем больше мощность тем лучше, т.к. не надо забывать про цену - она напрямую зависит от мощности, и про ограничения, которые накладывают соответствующие органы, разрешая ту или иную мощность для свободного использования.
И еще один момент: если для нормальной работы достаточно, например для СиБишной радиостанции, иметь 10 ватт, то для чего нужно передавать 100, а то и 200Ватт в эфир? А еще нужно помнить, что большая мощность влечет за собой большое потребление питающей энергии.
ИТОГ: Во всем нужна оправданная необходимость, не противоречящая закону!

«ЧУВСТВИТЕЛЬНОСТЬ ПРИЕМНИКА»
Характеристика, показывающая какой наименьший сигнал способна принять радиостанция. Относительно чувствительности можно сказать, что чем меньше ее значение, а значит выше чувствительность, тем лучше. Измеряют чувствительность либо в микровольтах (мкВ), либо в децибелах (dB).

Чувствительность современных радиостанций обычно колеблется в пределах 0,16 - 0,5мкВ или -123...-113dB соответственно. Хотя и тут нужно сказать, что иногда чувствительность специально «занижают» при приёме сигнала от мощной, либо близко расположенной радиостанции.

Тут хотелось бы уделить еще внимание очень важной части схемы любого приемника в любой радиостанции - это «ШУМОПОДАВИТЕЛЬ». Само название говорит, что устройство имеет дело с шумом. Что за шум имеется в виду?
Вы когда-нибудь обращали внимание на такой эффект - когда вечером, а особенно ночью (заядлые полуношники подтвердят), любителям просмотра ночных телепередач приходится уменьшать громкость своих ТВ не только потому, что вокруг все спят, а еще и потому, что вдруг становится лучше слышно? Это происходит потому, что вокруг все как бы «замирает», смолкают шумные соседи, транспорт, не говоря уже о заводах. Нечто похожее есть и в радиоэфире, где наличиствует некий уровень шума, от «деятельности» человека и природы. Самое интересное, что этот шум имеет непостоянный уровень, порой сильно разнящийся не только от места к месту, но и по времени. Поэтому если бы не было «шумоподавителя», то ваша радиостанция постоянно бы «шипела», находясь в режиме ожидания. Представляете что было бы с вашей головой??? Поэтому основная функция шумоподавителя - это установить такой порог срабатывания приемника, чтобы вы слышали сигналы немного превышающие уровень этого эфирного шума.

Мы рассмотрели основные термины и характеристики применительно к понятию «радиостанция». Надеемся, что наша «обзорная» беседа станет отправной точкой к пониманию того, что есть радиостанция.

73! (кодовое обозначение «наилучшие пожелания», используемое в радиоствязи)

Шесть часов утра по московскому времени. В пространство несутся мерные удары кремлевских курантов, и затем раздаются торжественные звуки гимна. Едва отзвучали его последние ноты, как раздается спокойный, четкий голос диктора: «Говорит Москва».

Так начинается день центрального радиовещания. Знаете ли Вы, как происходят эти передачи?

Каким образом каждый звук, возникший в радиостудии, на театральной сцене или в другом месте, откуда ведут радиопередачу, мгновенно доносится к вам за сотни и тысячи километров? Для того чтобы мы могли услышать радиопрограмму, нужно ее, во-первых, передать, а затем принять.

Рис. 1. Звуковые волны вокруг камертона.

Рис. 2. Работа микрофона. а—звука нет, в цепи микрофона течет.постоянный ток; б— под действием звука мембрана вогнута, сопротивление уменьшилось, ток возрос: в —под действием звука мембрана выгнута, сопротивлению увеличилось, ток уменьшился.

Задача передающей радиостанции состоит в том, чтобы превратить речь, пение музыку в электрический ток, а затем преобразовать последний в электромагнитные волны и излучать их в окружающее пространство.

Как же практически решается эта задача? Чтобы выяснить это, вспомним, что такое звук. Звук — это колебания какой-либо среды: воздуха, дерева, металла, воды и т. п. Звуковые колебания в неограниченном пространстве распространяются от источника звука по радиусам во всех направлениях. Средняя скорость распространения звука в воздухе 330 м/сек.

На рис. 1 условно показаны (на самом деле невидимые глазу) периодические «сгущения» и «разрежения» в звукопроводящей среде, которые и представляют собой звуковые колебания или звуковую волну.

Наше ухо способно воспринимать как звук только колебания определенных частот (от 16 до 20 000 колебаний в секунду). Кроме того, амплитуда этих колебаний должна быть достаточно большой, т. е. звук должен обладать определенной силой, иначе мы не сможем его услышать.

Микрофон

И электромагнитные волны и звук — это колебания, но разной природы. Нет ли способа превратить звуковые колебания в электромагнитные? Есть. Для этого сначала нужно звук превратить в колебания электрического.тока.

Прибор, преобразующий звуковые колебания в электрические, называется микрофоном. Опишем принцип действия простейшего микрофона.

На рис. 2 показана металлическая камера, в которую насыпан угольный порошок. С одной стороны эту камеру закрывает гибкая пластинка, укрепленная на изоляторах; со всех остальных сторон камера закрыта наглухо. Камера и пластинка присоединены к источнику постоянного напряжения, создающего в цепи постоянный ток. Но представьте себе, что мы начали говорить, приблизившись к пластинке. Если пластинка достаточно тонка, то под действием звуковых волн, т. е. сгущений и разрежений воздуха, она начинает колебаться. При колебаниях пластинки будет изменяться сила ее давления на угольный порошок, отчего будет меняться сопротивление, оказываемое этим порошком электрическому току. Величина тока начнет меняться. В результате в цепи будет течь пульсирующий ток. Применив довольно простые электротехнические устройства, легко разделить пульсирующий ток на переменный и постоянный.

Мы сумели превратить звуковые колебания в переменный электрический ток. Но дело в том, что электрические колебания, созданные микрофоном, очень слабы; их следует усилить с помощью радиоламп, применяемых в специальных аппаратах — усилителях низкой частоты, а после этого можно передать их по проводам на радиостанцию.

Чтобы понять, как работает радиостанция, придется вернуться к колебательному контуру.

Снова о колебательном контуре. Вспомним наши рассуждения. Излучая радиоволны, антенна непрерывно посылает в пространство электромагнитную энергию высокой частоты, порцию за порцией. Эту энергию антенна поручает из колебательного контура.

Откуда же беспрерывно черпает энергию сам колебательный контур? Очевидно, нужно осуществить устройство, передающее контуру все новые и новые количества энергии взамен тех, которые он с пользой передает антенне, и тех, которые бесполезно затрачивает в самом себе. Нельзя предполагать, что колебательный контур работает как какой-то «вечный» маятник.

Вот о работе устройств, обеспечивающих создание радиоволн, мы теперь и должны сказать.

Радиотехника знает много всяких способов «подбрасывания» энергии в колебательный контур. Все они, за исключением одного, были отвергнуты практикой. Дело в том, что подбрасывание новых порций электрической энергии в контур нужно производить в такт с колебаниями. Не вовремя подброшенная порция электрической энергии не только не поддержит колебания, но будет заглушать их.

Наиболее пригодный способ, посредством которого производится передача в контур новых и новых количеств электрической энергии, применяется уже около 40 лет. Мы имеем в виду использование электронной лампы, которая является душой современной радиотехники.

Для ознакомления с тем, как электронная лампа вместе с колебательным контуром создает токи высокой частоты, в качестве главного «действующего лица» мы возьмем трехэлектродную лампу. Для простоты объяснения принципа работы радиопередатчика мы воспользуемся этой старой заслуженной ветеранкой, а не современными более сложными генераторными лампами.

Поучительный эпизод. Известен интересный эпизод из истории развития паровой машины. Один мальчик был приставлен к примитивной старинной паровой машине. Обязанности мальчика были несложные, но весьма однообразные. В строго определенные моменты времени он должен был открывать и закрывать кран. Важно было не спутаться и н-е открыть кран раньше времени, чтобы не остановить машину. Мальчику; наделенному природной сообразительностью, надоело утомительное занятие. Желая выкроить хотя бы немного свободного времени для своих игр, он пустился на хитрость. Веревками соединил он кран с качающимся коромыслом машины, предоставив самой машине заботиться об открывании и закрывании крана в нужные моменты. Машина была переведена с ручного обслуживания на автоматическое. Краны открывались и закрывались без прикосновения рук.

Этот эпизод напоминает то, что двумя столетиями позже произошло с изобретением лампового генератора токов высокой частоты. В 1913 г. была разработана первая схема лампового генератора, положившая начало ряду других схем, обеспечивающих удобные способы получения токов высокой частоты.

В это время знали, что радиолампа может усиливать слабые переменные электрические токи практически любой частоты. Знали и то, что если усиления одной лампы недостаточно, можно последовательными ступенями включить несколько электронных ламп одну вслед за другой. Несомненно, и до этого времени считали возможным усиленные таким образом мощные колебания высокой частоты подать прямо в антенну. В дверь стучалась идея создания ламповой передающей радиостанции. Не хватало одного: умения решить задачу — откуда взять первоначальный переменный ток, который следует подвести к сетке первой усилительной лампы.

И ученым пришла идея, с внешней стороны имевшая много общего с детской хитростью мальчика, обслуживавшего паровую машину. Они решили перевести электронную лампу на самообслуживание. Пусть она не ждет, когда ей соберутся подать к сетке переменное напряжение, а сама заботится об этом.

Рис. 3. Схема генератора с трансформаторной связью.

Иными словами, лампу заставили заниматься не только усилением уже ранее где-то и чем-то созданных переменных токов, но и самой возбуждать, генерировать их..

Таким образом, был создан первый ламповый генератор незатухающих колебаний. Первый ламповый генератор. Схема этого генератора исключитель но проста (рис. 3). В анодной цепи электронной лампы (триода) Л включен колебательный контур LC, а в цепи сетки лампы — катушка L c , близко расположенная в контурной катушке L. Вот и весь генератор.

Чтобы понять, как работает ламповый генератор, сделаем небольшое допущение. Оно нужно только на короткое время, и мы от него вскоре откажемся. Представим дебе, что в колебательном контуре LC уже поддерживаются незатухающие колебания. Ток в катушке L непрерывно меняет свое направление, и с такой же частотой заряжается и разряжается конденсатор С. Следуя за изменениями тока в контуре, меняются величина и направление магнитного поля вокруг катушки L То возникая, то исчезая, оно воздействует на витки катушки L с (пересекает их) и,как это получается в любом трансформаторе, по индукции наводит в них напряжение.

Но к катушке L c присоединена сетка лампы; следовательно, с такой же частотой, с какой колеблется ток в контуре, будет меняться и напряжение на сетке. Сетка действует автоматически, она не ошибается: «плюс» на сетке увеличивает анодный ток, протекающий через лампу, а «минус»— уменьшает его.

Качели можно раскачивать, подталкивая их в такт. Эту обязанность в лампе с большим прилежанием выполняет сетка, получающая то положительные, то отрицательные заряды. Она не дает покоя анодному току, заставляя его совершать непрерывные колебания.

Так и, не удается анодному току течь спокойно. Все время, пока нить (катод) лампы накалена, а на аноде лампы имеется положи-, тельное напряжение, ламповый генератор создает незатухающие колебания. Лампа за счет энергии анодной батареи Б покрывает все потери в контуре. Получается своего рода «идеальный» колебательный контур. Решена задача, получения незатухающих колебаний.

Ламповый генератор может быть уподоблен заведенным пружинным часам или стенным часам с поднятыми гирями. Упругость пружины или вес гирь полностью компенсирует все тормозящие силы трения и заставляет часовой механизм работать безостановочно.

Теперь мы уже можем отбросить наше допущение. Пусть в анодном контуре нет затухающих колебаний: Но первый же толчок тока, вызванный включением генератора, импульсом создаст магнитное поле вокруг контурной катушки. Этот импульс будет передан сетке, и та незамедлительно сделает свое дело. Качели придут в движение. Раскачиваясь все более, они достигнут максимальных размахов, при которых раскачивающих усилий как раз хватит на преодоление всех сил, стремящихся остановить колебания.

Удалось точно построить генератор, который работает сам, без ручного или механического управления. Он сам себя принуждает к действию, самовозбуждается. Поэтому такой генератор называется самовозбуждающимся.

Обратная связь. Разнесите контурную и сеточную катушки на большое расстояние, чтобы магнитное поле контурной катушки не «зацепляло» за витки сеточной катушки, и все кончится. Колебания создаются только потоку что анодная цепь связана с сеточной и передает‘ей возбуждающие импульсы. Такая связь называется обратной связью: вместо того, чтобы колебания из анодной цепи поступали куда-либо дальше, «на выход», они (не полностью, а частично) передаются обратно, на сетку своей Же собственной лампы. Сеточная катушка, посредством которой сетка связывается с цепью анода, называется катушкой обратной связи. Чем больше витков в ней и чем ближе она расположена к контурной катушке, тем большее напряжение индуктируется в ней, тем сильнее связь.

Итак, не электронная лампа создает колебания — они создаются в колебательном контуре. Но никогда бы контур не создал незатухающих колебаний, если бы лампа не подбрасывала в контур все новые и новые количества электрической энергии для компенсации всех потерь — полезных и вредных. Но и лампа не могла бы ничего передать контуру, если бы не получала энергию от источников питания— батарей или электрогенераторов, подающих напряжение на анод.

Темп колебаний или, лучше сказать, частоту навязывает колебательный контур. Колебания медленные, и электронная лампа будет в таком же медленном темпе передавать контуру очередные порции электрической энергии. Но ей никакого труда не составит производить это со скоростью нескольких миллионов или десятков и сотен миллионов раз в секунду. Попробуйте-ка вручную управлять электрической энергией с такой скоростью!

Трехточка

Мы уже указывали, что сетке лампы совершенно безразлично, откуда ей подается «раскачка». В схеме на рис. 3 обратная связь анодного контура с сеткой — трансформаторная. Вскоре было доказано, что иметь отдельную катушку обратной связи совершенно не обязательно. Для этого применили схему, у которой сетка (рис. 4) непосредственно присоединена к контурной катушке L. На сетку лампы Л подается напряжение, возникающее на части А—Б витков контурной катушки. Чем больше витков между точками А и Б, тем большее напряжение подается на сетку, тем сильнее обратная связь. Наоборот, передвигая соединительный проводник сетки к точке Б, мы уменьшали бы обратную связь. Такая связь называется автотрансформаторной. В принципе она ничем не отличается от трансформаторной. Оба способа представляют разновидности индуктивной связи: напряжение на сетке создается благодаря электромагнитной индукции.

Непременным условием действия схемы является такое соединение трех проводников от лампы Л к контуру LC, при котором провод от катода (нити) присоединяется между проводами от анода и сетки. Только тогда сеточные и анодные импульсы будут действовать в такт. Если анодный ток, например, должен увеличиваться, то для этого должно возрастать положительное напряжение на сетке.

Подачу порций энергии от лампы в контур строго в такт радиоспециалисты называют подачей в фазе. Схема с трансформаторной связью может не возбудиться, если импульсы на сетке не в фазе с импульсами анодного тока. В этой схеме правильная фазировка достигается очень просто: если генератор не возбуждается, достаточно переключить концы сеточной катушки. В схеме с автотрансформаторной связью нужно расположить проводники только так, как показано на рис. 4.

Весьма простая по своему устройству, состоящая всего лишь из колебательного контура, в трех точках соединенного с лампой, эта схема пользовалась в свое время особым расположением радиолюбителей. Почти все радиопередатчики первых коротковолновиков имели генератор «трехточку».

Задающий генератор

Ламповому самовозбуждающемуся генератору не хватает еще антенны, чтобы стать радиопередатчиком. Различие между мощными и маломощными радиостанциями заключается главным образом в степени усиления первоначально полученных в ламповом генераторе высокочастотных колебаний.

Рис. 4. Схема генератора с автотрансформаторной связью.

Если требуется мощность больше той, которую в состоянии отдать непосредственно самовозбуждающийся генератор, то применяют ступенчатое усиление все более мощными лампами. Иногда в одном усилительном мощном каскаде для увеличения мощности одновременно включают «в общую упряжку» несколько ламп — две, три и больше. Нередко можно встретить передатчик с тремя-четырьмя и даже семью-восемью каскадами. В таких условиях самовозбуждающийся ламповый генератор, первоисточник электрических колебаний, получает название задающего генератора: он «задает тон» всем остальным — усилительным каскадам, «раскачивает» их.

Задающий генератор —«сердце» передатчика. Остановится «сердце»—и все остановится. Первый усилительный каскад ничего не получит на сетку лампы от задающего каскада и поэтому ничего не передаст второму каскаду, второму нечего будет передавать третьему и т. д. Тщетно антенна будет ожидать получения токов высокой частоты от мощного оконечного каскада.

И «сердце» передатчика тщательно оберегают. Ему вредна перегрузка. На него действуют тепло, выделяемое током в различных деталях установки. Всякое изменение температуры приводит к изменению размеров металлических конструкций, в частности к изменению размеров деталей конденсатора и катушки контура. Меняется индуктивность — меняется емкость, а от этого меняется генерируемая частота, «гуляет» волна радиостанции. В поисках сигналов станции приходится все время перестраивать приемник.

Чтобы избежать неприятностей, от задающего генератора не требуют большой мощности— лишь бы он генерировал колебания строго определенной частоты. Как нежное растение помещают в оранжерею, так и задающий генератор часто помещают в камеру со строго постоянной температурой. Чаще же применяют особые стабилизаторы частоты, которые не позволяют генерируемой частоте отклоняться от заранее установленного значения, от номинала частоты.

Связующим звеном между ламповым генратором и антенной является питающая линия (фидер). Она играет роль плюса в несложном арифметическом выражении:

радиопередатчик = ламповый генератор + антенна .

Питающая линия состоит из проводов или кабеля, соединяющих антенну с ламповым генератором. Таким образом, мы познакомились с общим принципом действия радиопередатчика.

Включаем радиопередатчик. Через радиопередатчики может быть осуществлен любой вид работы: передача радиограмм с помощью телеграфной азбуки (радиотелеграфная передача), передача речи и музыки (радиотелефонная передача), буквопечатание и передача изображений.

Самый простой вид работы — прерывание колебаний; так поступают радисты, выстукивая ключом знаки телеграфной азбуки: при нажатии -ключа замыкаются его контакты и серия высокочастотных колебаний поступает в антенну, при размыкании контактов подача колебаний в антенну прерывается. Короткое время включения соответствует точке, длинное— тире. Этот процесс называется манипуляцией (рис. 5).

Но таким способом можно передавать лишь условные знаки телеграфной азбуки. А если нужно передать речь или музыку, то прежде всего следует обратиться к помощи микрофона.

О первом этапе превращения звука в электрический ток мы уже знаем. Этот ток мы усилили и направили по проводам на радиостанцию. К передатчику, таким образом, звуки пришли в виде электрических колебаний низкой частоты. Что же теперь с ними делать?

Модуляция. Используемые для вещания на больших расстояниях радиоволны имеют длину от 15 до 2000 м, а это значит, что частота, с которой колеблется вызывающий их электрический ток, равна 20 000 000 (20 Мгц) — 150 000 (150 кгц) колебаний в секунду. Самая же высокая звуковая (низкая) частота, которую способно воспринимать наше ухо, имеет примерно 20 000 колебаний в секунду.

Таким образом, получается, что колебания, которые мы можем услышать, имеют весьма низкую частоту и поэтому неспособны излучаться в пространство.

Рис. 5, Ток высокой частоты в антенне передатчика при телеграфной работе.

Рис. 6. Графическое изображение результата модуляции.

Колебания же, излучающиеся на огромные расстояния в виде электромагнитных волн, имеют очень высокую частоту. Такие колебания мы не можем слышать.

Остается, видимо, как-то приспособить высокочастотные колебания для «транспортировки» колебаний, звуковой частоты. Такой способ был найден. Колебания звуковой частоты заставляют воздействовать на колебания высокой частоты. Процесс воздействия низкочастотных колебаний на высокочастотные называется модуляцией.

Электрические колебания звуковой частоты трудно передать далеко, а с помощью высокой частоты они свободно перебрасываются вокруг всего земного шара.

Термин «модуляция» издавна применяется в музыке для обозначения перехода из одной тональности в другую — смены ладов.

В электротехнике модуляция — это изменение какой-нибудь из характеристик электрического тока — его величины, частоты, фазы— в соответствии с колебаниями какого-либо другого тока.

Модуляция — это не просто смешение токов, а такое воздействие низкочастотного тока на высокочастотный, когда низкочастотный ток как бы отпечатывает свою форму на высокочастотном.

Ток высокой частоты, на который воздействует телефонный разговор, называется модулируемым током, модулируемым колебанием. Говорят также:гнесущее колебание. Это удачное название. Оно хорошо показывает сущность процесса. Высокочастотное колебание после модуляции несет на себе (или в себе) отпечаток тока низкой частоты.

Процесс модуляции осуществляется с помощью специального устройства, называемого модулятором. Модулятор осуществляет воздействие токов низких частот на высокочастотные колебания. Делается это в радиопередатчиках посредством специальных модуляторных ламп.

Высокочастотные колебания до модуляции ничем не отличаются одно от другого. Но вследствие действия электрических колебаний, поступающих с микрофона, амплитуда их меняется. Она становится то больше, то меньше. Эти изменения в точности соответствуют колебаниям микрофонного тока, а следовательно, и звуковым колебаниям. Так, на электрические колебания высокой частоты накладывается «отпечаток» (узор) передаваемых звуков, и в результате получаются модулированные колебания, которые излучаются радиостанцией (рис. 6).

Назначение радиопередающих станций очень разнообразно. Некоторые из них ведут передачи для всей страны и располагаются в больших помещениях. Любительская радиостанция часто свободно размещается на столе в квартире коротковолновика. Но как бы ни различались они по своему виду и размерам, принципиальной разницы в их работе нет. Радиотехнические процессы в них почти одинаковы и различаются они в основном только мощностью колебаний и длиной излучаемых радиоволн.

Каждая радиостанция — это фабрика радиоволн. Она потребляет электрическую энергию от батарей или от генератора, или от электрической сети и преобразует ее в высокочастотные электрические колебания, которые после усиления и модуляции попадают в передающую антенну. Отсюда они уже в виде радиоволн начинают свое путешествие к радиоприемникам.

Радио (в переводе с лат. «radio» означает «излучаю», «испускаю лучи») - это вид беспроводного соединения, который предназначен для передачи и приема информации. При этом сигнал свободно распределяется в пространстве с помощью электромагнитных волн, которые еще называют «радиоволнами».

Как работает радио?

Принцип работы состоит в следующем: для того, чтобы информация была передана, сторона-отправитель моделирует необходимый сигнал, который характеризуется определенной амплитудой и частотой. На следующем этапе, сигнал формирует несущее (высокочастотное) колебание. После чего происходит излучение преобразованного сигнала в пространство с помощью антенны. В то время как приёмная сторона производит обратные действия: антенна улавливает модулированный сигнал и преобразовывает его с помощью фильтра низких частот (ФНЧ). Данное действие производится для того, чтобы избавиться от несущей (высокочастотной составляющей). Таким образом, приемная сторона извлекает из полученного высокочастотного колебания полезный сигнал. Однако, в некоторых случаях, из-за помех и наводок может происходить искажение передачи, вследствие чего полученный сигнал будет отличаться от переданного.

Виды радиоволн и частотные диапазоны

Международным союзом связи была принята следующая классификация частотных диапазонов:
1. Мириаметровые волны (очень низкие частоты) - 3-30 кГц, длина волны - 10-100 км;
2. Километровые волны (низкие частоты) - 3-300 кГц; длина волны - 1-10 км;
3. Гектометровые волны (средние частоты) - 0,3-3 МГц, длина волны - 0,1-1 км;
4. Декаметровые волны (высокие частоты) - 3-30 МГц, длина волны - 10-100 м;
5. Метровые волны (очень высокие частоты) - 30-300 МГц, длина волны - 1-10 м;
6. Дециметровые волны (ультравысокие частоты) - 0,3-3 ГГц, длина волны - 10-100 см;
7. Сантиметровые волны (сверхвысокие частоты) - 3-30 ГГц, длина волны - 1-10 см;
8. Миллиметровые волны (крайне высокие частоты) - 30-300 ГГц, длина волны - 0,1-1 см.
В сфере радиовещания и используют только несколько типов радиоволн: сверхдлинные (мириаметровые), длинные (километровые), средние (гектометровые), короткие (декаметровые) и ультракороткие (высокочастотные).

Законы распространения радиоволн

В зависимости от излучаемых источником частот, каждый тип радиоволн имеет свои особенности и законы распределения в пространстве.

Для длинных волн характерна повышенная степень поглощения ионосферой. Особую роль играют приземные радиоволны, которые распространяются, «окутывая» землю. Если говорить о мощности сигнала, то при отдалении от источника передачи, он уменьшается стремительными темпами.

Средние волны наиболее уловимы для ионосферы днем, причем радиус действия в это время суток определяется приземной волной. Вечером ситуация кардинально меняется: средние радиоволны хорошо отражаются от ионосферы, а район распространения определяется отраженной волной.

Так как способ распространения коротких волн - это отражение ионосферой, то вокруг передатчика сигнала образуется зона радиомолчания (в ней прием сигнала практически невозможен). Причем, в дневное время лучше распространяются короткие волны, а в ночное - более длинные. При условии уменьшения мощности радиопередатчика, радиоволны этого типа могут распространяться на значительные расстояния.
Высокочастотные (ультракороткие) волны не отражаются ионосферой и распространяются, как правило, прямолинейно. Однако, в некоторых условиях, а именно из-за отличия плотностей в разных слоях атмосферы, радиоволны способны «огибать» земной шар. Для данного типа волн характерна высокая проникающая способность.

Особенностью высоких частот (ВЧ) является их распространение в рамках прямой видимости. Такие волны используются для беспроводной передачи данных (WiFi) и мобильной связи. Крайне высокие частоты (КВЧ), подобно высоким частотам, не огибают преград и используются в технологиях спутниковой связи. Гипервысокие частоты имеют свойство отражения (подобно световым лучам), радиус действия определяется пределами видимости. Использование подобных электромагнитных волн крайне ограничено.

Человечеству известны следующие условия распределения радиоволн. Сигнал может распространяться в атмосфере и пустоте, в то время как через воду и твердые предметы он проникнуть не может. Однако, вот что парадоксально. Благодаря таким явлениям как дифракция волн и преломление, связь между точками, находящимися вне прямой видимости, все-таки возможна.

Волна, исходящая от источника передачи, может следовать сразу несколькими путями. Такое явление называется многолучевостью. По причине изменения параметров среды происходит перемена уровня принимаемого сигнала относительно времени. Его замирание приводит к тому, что электромагнитное поле в точке приема представляет собой сумму всех смещенных во времени радиоволн.

Особые эффекты, возникающие при передаче радиоволн

1. принцип антиподов говорит о том, что радиоволна хорошо воспринимается в той точке земной поверхности, которая приблизительно противоположна точке передачи сигнала.
2. эффект фиксированной задержки - эхо от радиоволны, которая обошла Землю.
3. эффект эхо с большой задержкой (LDE).
4. принцип Доплера - зависимость длины радиоволны от скорости приближения и удаления от источника передачи (в случае приближения - частота увеличивается, удаления - уменьшается).
5. Люксембург-Горьковский эффект - изменение высокочастотных колебаний вследствие неленейных эффектов в результате распределения волн в ионосфере.

Условно, радиосвязь по длинам волн можно подразделить на два вида:
- связь без применения ретрансляторов (СДВ-связь, ДВ-связь, СВ-связь и т.д.)
- связь с применением ретрансляторов (спутниковая, радиорелейная, сотовая).
Ретранслятором называют специальное «посредническое» оборудование для связи, которое объединяет несколько радиопередатчиков, удаленных друг от друга на некоторое расстояние.

Частоты гражданской радиосвязи

По решению Российской Государственной комиссии по радиочастотам, для обеспечения гражданской связи физических и юридических лиц, было выделено три группы допустимых частот:
- «Citizen’s Band» - 27 МГц, с мощностью источника передачи до 10 Вт.
- «Low Power Device» - 433 МГц, с допустимой мощностью раций до 0,01 Вт.
- «Personal Mobile Radio» - 436 МГц, с выходной мощностью передачи до 0,5 Вт.

Что такое «радиолюбительская связь»?

Под понятием «радиолюбительская связь» подразумевается многостороннее техническое увлечение, которое выражается в проведении радиосвязи в допустимых диапазонах частот. Хобби радиолюбителя имеет несколько направлений:

  • конструирование аппаратуры по приему и передаче радиосигнала;
  • радиотехнический спорт (участие в соревнованиях среди радиолюбителей);
  • составление коллекции карточек-квитанций и свидетельств о проведенных радиосвязях;
  • проведение поисковой работы и организация связи с удаленными любительскими радиостанциями;
  • работа с различными видами излучений;
  • проведение связи на ультракоротких волнах, используя принцип отражения сигнала (от Луны, метеорных потоков и т.д.);
  • работа с источниками передачи небольшой мощности;
  • участие в различных радиоэкспедициях.

Изобретатели первых устройств для радиопередачи информации

Основателем первой действующей системы приема-передачи информации с помощью радиотелеграфии принято считать инженера из Гульельмо Маркони. В России же изобретателем радиопередачи считают А. С. Попова. Однако, как выяснилось позже, никто из этих не придумал устройство приема-передачи информации самостоятельно. Маркони соединил в одно устройство технологические разработки приёмника А. С. Попова и передатчика Генриха Герца.

Однако, после того как американский Никола Тесла запатентовал устройство радиосвязи, он отсудил право основателя разработки у Маркони. Такое решение было вызвано примитивизмом изобретения итальянского инженера в сравнении с достаточно совершенным устройством американца. Система Теслы позволяла преобразовывать акустический звук в сигнал, осуществлять его передачу на расстояние и модулировать радиоволну приемников обратно в акустический звук. Все современные радиоустройства имеют подобную конструкцию, к основе которой лежит технология колебательного контура.

Популярность запроса "радио" в поисковой системе

Самыми популярными в России являются следующие радиостанции:
- Радио Premium
-Love radio
- Радио «Кабриолет»
- Радио Автомат и гитара
- Радио ВАНЯ
- Ретро FM
- Радио ДАЧА
-
- Русское радио. Золотой граммофон.
- Авторадио
-
- Дорожное радио
- Натали
- Русское радио
- Радио Ди-ФМ
- Русский Хит
- Мега Радио
- Радио "Relax FM"
- Europa Flus
- Радио Русский шансон.

Как видим, запрос "радио" является достаточно популярным среди русскоговорящих пользователей, его вводили за месяц 8 915 477 раза.

В и информационных агентствах сети, данное слово "радио" упоминалось за месяц 1050 раз.

Кто-то мечтает о новом айфоне, кто-то о машине, а кто-то о наборе деталей и новом динамике для своего радио. не так давно были времена, когда пределом мечтаний золотой молодежи был обычный транзисторный радиоприемник.

Радио было верным спутником человека весь 20-й век. Знаменитые объявления от советского информбюро, первые музыкальные передачи, настоящий прорыв в передаче информации, революция в СМИ – все это радио.

All we hear is radio Ga-Ga. В сегодняшней статье разберемся с тем, что такое радио и как оно работает.

Знаменитое “радио Га-га” из песни группы Queen – не что иное, как детский лепет сына барабанщика группы. Роджер Тейлор услышал, как ребенок бормочет и коверкает слова, а потом решил, что из этого может получиться неплохой припев для песни.

Когда-то радио было круче, чем интернет – факт. Еще один факт – без радио не будет никакого интернета. Пусть приемники слушают не так часто, радио-технологии активно развиваются и используются в спутниковой связи, телевидении, мобильных телефонах, рациях, медицинских приборах… Короче, везде.

Суть радио в самом широком смысле:

Радио - способ беспроводной передачи данных, при котором в качестве носителя информации используется радиоволна.

Давайте же узнаем, как эта штука работает, и кто это придумал.

Попов, Маркони, Тесла?

Кем впервые была открыта радиосвязь? Говорить о конкретном изобретателе радио в принципе неправильно, так как слишком много людей в разное время сделали свой вклад в развитие этой технологии. Здесь и Томас Эдисон , и Никола Тесла , и Александр Попов , и , и многие другие.

Интересно, что во многих странах есть свой изобретатель радио. Споры о том, кто был первым, велись долго, и на то было много причин.

В России традиционно считалось, что радио изобрел Александр Попов . Да, Попов проводил успешные эксперименты в области передачи данных начиная с 1895 года, однако его изобретение было сильно усовершенствовано и доведено «до ума» иностранными коллегами. К тому же Попов не патентовал свою работу.

Безусловно, вклад Попова в развитие радио нельзя недооценивать. Однако считать его единственным изобретателем радио неверно. Мнение, что Александр Попов изобрел радио, во многом было навязано пропагандой СССР, когда все возможные и невозможные изобретения пытались приписать советскому союзу.

Также противостояние вели Тесла и Маркони. Никола Тесла утверждал, что провел эксперименты по беспроводной передаче сигнала раньше 1896 года, когда это сделал Маркони. Однако Маркони, обладавший коммерческой жилкой, успел запатентовать изобретение первым.

Заслуга этого человека в том, что именно он смог найти прежде лишь теоретическим идеям действительно широкое практическое применение.

Настоящей сенсацией в 1901 году стала передача радиосигнала на расстояние 3200 километров. Тогда многие ученые считали, что радиоволна не может распространиться на такую дальность из-за шарообразной формы Земли.

Что такое радиоволна

Волна – это колебание. Морская волна – это колебание поверхности воды.

А радиоволна – изменение электромагнитного поля, распространяющееся в пространстве.

Так же как и свет, радиоволны представляют собой электромагнитное излучение. Разница лишь в частоте и длине волны. Скорость распространения радиоволны в вакууме равна примерно 300000 километров в секунду.

Ниже приведем весь спектр электромагнитных колебаний и покажем место радиоволн в нем.

Радиоволна – это сигнал. То, что передает информацию. Радиоволны делятся на диапазоны: от субмиллиметровых до сверхдлинных. Для каждого диапазона волн характерны свои особенности распространения.

Например, чем больше длина волны и чем меньше частота, тем больше волна способна огибать преграды. Длинные волны огибают всю планету.

Все маяки и спасательные станции настроены на волну длиной 6 метров и частотой 500 кГц.

Средние волны подвержены поглощению и рассеиванию сильнее. Длина их распространения – около 1500 км. Короткие волны проходят небольшие расстояния, их энергия поглощается поверхностью планеты.

Как" работают" радиоволны. Принцип распространения радиоволн

Прежде чем разбираться с самим радио, нужно уточнить еще несколько моментов. Как именно передается информация.

Как передается информация. Модуляция

Возьмем электромагнитную волну. Она представляет собой синусоиду, колебания векторов напряженности магнитного и электрического полей. «Где же здесь информация?» спросите вы, и в этом вопросе есть резон.

Кстати! Для наших читателей сейчас действует скидка 10% на

Сама по себе синусоида не несет никакой информации. Для передачи данных используется модуляция сигнала. Есть разные виды модуляций:

  • амплитудная;
  • фазовая;
  • частотная;
  • амплитудно-частотная.

Например, аббревиатура FM означает frequency modulation – частотная модуляция.

Модуляция – это изменение одного из параметров сигнала.

Частотная модуляция – это изменение частоты. Амплитудная – соответственно, амплитуды. Конечно, изменение не простое, а несущее в себе информацию.

У нас есть несущий сигнал (несущее колебание) и информационный сигнал (речь, звук, музыка). Модуляция несущего сигнала позволяет зашифровать в нем информацию. Причем параметр этого сигнала изменяется в соответствии с информационным сигналом.

Далее будем рассматривать частотную модуляцию, так как FM-радиостанции – самые популярные, а говорить приятнее о том, что привычно. При частотной модуляции сигнал не изменяется по амплитуде. В соответствии с изменениями уровня информационного сигнала меняется частота несущего колебания.

Вот как это выглядит:

Как работает радио

Простейший радиоприемник содержит приемник и передатчик. Передатчик должен отправить сигнал, а приемник – принять его.

При этом приемник не просто передает, а кодирует сигнал, применяя модуляцию. Передатчик также должен произвести обратное действие, то есть раскодировать сингал. И вот тогда мы получим тот же сигнал, что нам передали.

Например, вы едете в маршрутке, где водитель слушает радио «Шансон». Лето, жара, дачники, ехать еще несколько часов… В общем, красота, да и только. Но не будем отвлекаться! По радио звучит очень душевная песня.

Когда говорят «95.2 FM», подразумевают ультракороткую радиоволну с несущей частотой 95.2 Мегагерца.

Спектр ее сигнала имеет примерно такой вид. Это – информационный сигнал.

Чтобы передать его на расстояние, эту информацию нужно зашифровать. Передатчик на радиостанции отправляет несущую синусоидальную волну в пространство, проводя частотную модуляцию.

Приемник в кабине у водителя, наоборот, выделяет из пришедшего сигнала полезную составляющую. Далее сигнал отправляется на усилитель, с усилителя - на динамик. Как следствие – все счастливо путешествуют под музыку!

Зная принцип действия радио, можно при желании самостоятельно собрать радиоприемник из простых компонентов. Как это сделать с помощью картошки – узнаете из видео. Сразу скажем, сами не проверяли, но если вы попробуете - расскажите нам, как получилось. А если перед вами задачка посложнее и нужна помощь в ее решении обращайтесь в студенческий сервис .

«Радиоволны» передают музыку, разговоры, фотографии и данные незримо через воздух, часто более чем миллионы миль - это происходит каждый день тысячами различных способов! Даже при том, что радиоволны невидимы и абсолютно необнаружимы людьми, они полностью изменили общество. Говорим ли мы о сотовом телефоне, радионяне, беспроводном телефоне или о ком-либо из тысяч других беспроводных технологий, все они используют радиоволны для осуществления коммуникации.
Вот всего несколько повседневных технологий, которые значительным образом зависят от радиоволн:

  • Радиопередачи AM и FM
  • Беспроводные телефоны
  • Беспроводные сети
  • Радиоуправляемые игрушки
  • Телевизионные передачи
  • Сотовые телефоны
  • GPS-приёмники
  • Любительские радио
  • Спутниковая связь
  • Полицейское радио
  • Беспроводные часы
Данный список можно продолжать и продолжать… Даже такие вещи, как радиолокационные и микроволновые печи зависят от радиоволн. Также такие вещи, как связь и навигационные спутники не функционировали бы без радиоволн, равно как и современная авиация - самолёт сегодня зависит от десятка различных систем радиосвязи. Нынешняя тенденция к беспроводному доступу в Интернет использует радио, и это означает, что в будущем нас ждёт намного больше удобства.

Шутка-минутка


Самое смешное, что, по своей сути, радио является невероятно простой технологией. С помощью всего лишь нескольких электронных компонентов, которые стоят не более одного или двух долларов, вы можете создавать простые радиопередатчики и приёмники. История того, как что-то настолько простое стало основной технологией современного мира является захватывающей. В сегодняшней статье мы рассмотрим технологию под названием «радио», так что вы сможете полностью понять, как невидимые радиоволны делают столько много вещей, и нашу жизнь проще.

Простейшее радио

Радио может быть невероятно простым, и на рубеже веков эта простота сделала раннее экспериментирование возможным для примерно любого человека. Как просто получить радио? Один из примеров описывается далее:

  • Возьмите свежую 9-вольтовую батарейку и монету
  • Найдите AM-радио и настройте его на область дисков, где будет слышна статика
  • Теперь держите батарейку вблизи антенны и быстро нажмите на два контакта аккумулятора монетой (так, чтобы вы соединили их вместе на мгновение)
  • Вы услышите потрескивание в радио, которое вызвано связью и разъединением монеты
Да, простая батарейка и не менее простая монета являются радиопередатчиком. Данная комбинация не передаёт ничего полезного (только статика), и передача не будет производиться на далёкие расстояния (всего несколько дюймов, потому что нет оптимизации для расстояния). Но если вы используете статику, чтобы вытряхнуть Азбуку Морзе, вы можете фактически сообщить о чём-то не более чем на расстояние нескольких дюймов с этим непродуманным устройством.

Более сложное радио

Если вы хотите получить немного более сложное радио, используйте металлический файл и два куска проволоки. Соедините ручку файла к одному контакту 9-вольтовой батарейки, затем соедините второй кусок проволоки ко второму контакту и запустите конструкцию проводя вверх и вниз по файлу. Если вы сделаете это в темноте, вы сможете увидеть, как очень маленькие 9-вольтовые искры бегут вдоль файла, поскольку наконечник проволоки производит соединение и разъединение. Держите файл около AM-радио и тогда услышите много статики.

В первые дни радиопередатчики были названы искровыми катушками, и, кроме того, они создавали непрерывный поток искр при гораздо более высоких напряжениях (например, 20000 вольт). Высокое напряжение, соответственно, поспособствовало созданию больших искр, таких, какие вы видите в свече зажигания, например. Сегодня такой передатчик, как этот, незаконен, потому что спамит весь спектр радиочастот, но в первые дни он работал отлично и был очень распространён потому, что было не много людей, использующих радиоволны.

Основы радио: части

Как вы могли заметить из предыдущего раздела, создавать статику невероятно легко. Однако все радиостанции сегодня используют непрерывные волны синуса для передачи информации (аудио, видео, различные данные). Причина, по которой мы используемые непрерывные волны синуса сегодня - потому что есть много различных людей и устройств, которые в то же время хотят использовать радиоволны. Если бы у вас был какой-либо способ видеть их, то вы нашли бы, что есть буквально тысячи различных радиоволн (в форме волн синуса) вокруг вас прямо сейчас - телепередачи, радиопередачи AM и FM, полицейские и пожарные радио, спутниковые телевизионные передачи, разговоры сотовых телефонов, GPS-сигналы и так далее. Также удивительно, как много применений существует для радиоволн сегодня. Каждый отличающийся радиосигнал использует различную частоту волны синуса, и именно так они все разделены.

У любой радио-установки есть две части: передатчик (трансмиттер) и приёмник (ресивер). Передатчик перехватывает своего рода сообщение (это может быть звук чьего-либо голоса, изображение экрана телевизора, данные для радиомодема или любое другое что-то), кодирует его на волну синуса и передаёт с радиоволнами. Приёмник же, понятное дело, принимает радиоволны и расшифровывает сообщение от волны синуса, которую оно получает. И трансмиттер и ресивер используют антенны, чтобы излучить и захватить радиосигнал.

Основы радио: реальные примеры

Радионяня примерно так же проста, как и получаемая технология радиосвязи. Существует передатчик, который «сидит» в комнате ребёнка и приёмник, что родители используют, чтобы слушать своё чадо. Вот некоторые из важных характеристик типичной радионяни:

  • Модуляция : Амплитудная Модуляция (Amplitude Modulation, AM)
  • Диапазон частот : 49 МГц
  • Количество частот : 1 или 2
  • : 0.25 Вт


Типичная радионяня с передатчиком слева и приёмником справа. Передатчик находится, непосредственно, в комнате ребёнка и служит некой мини-радиостанцией. Родители же берут с собой приёмник и с помощью него слушают деяния ребёнка. Дальность связи ограничивается до 200 футов (61 метр)


Не волнуйтесь, если такие термины, как «модуляция» и «частота» не имеют смысла для вас сейчас - мы доберёмся до них через некоторое время и я объясню, что они значат.


Мобильный телефон содержит в себе как приёмник, так и передатчик, и оба работают одновременно на разных частотах. Сотовый телефон взаимодействует с сотовой вышкой и способен передавать сигналы на расстояние 2 или 3 мили (3-5 километров)


Сотовый телефон также радио и является гораздо более сложным устройством. Сотовый телефон содержит как передатчик, так и приёмник, и вы можете использовать одновременно их оба - так вы будете использовать сотни различных частот и сможете автоматически переключаться между ними. Вот некоторые из важных характеристик типичного аналогового сотового телефона:
  • Модуляция : Частотная Модуляция (Frequency Modulation, FM)
  • Диапазон частот : 800 МГц
  • Количество частот : 1.664
  • Мощность передатчика (трансмиттера) : 3 Вт

Простые передатчики (трансмиттеры)

Вы можете получить представление о том, как работает радиопередатчик, начиная с батарейки и куска проволоки. Как известно, батарея посылает электричество (поток электронов) через провод при подключении его между двумя контактами. Движущиеся электроны создают магнитное поле, окружающее провод, и поле достаточно сильное, чтобы повлиять на компас.

Давайте предположим, что вы берёте ещё один провод и помещаете его параллельно провода аккумулятора на несколько дюймов (5 сантиметров). При подключении очень чувствительного вольтметра к проводу произойдёт следующее: каждый раз, когда вы подключаете или отключаете первый провод от батареи, вы ощутите очень маленькое напряжение и ток во втором проводе; любое изменение магнитного поля может вызвать электрическое поле в проводнике - это основной принцип, лежащий в любом электрическом генераторе. Итак:

  • Батарея создаёт поток электронов в первом проводе
  • Подвижные электроны создают магнитное поле вокруг провода
  • Магнитное поле простирается до второго провода
  • Электроны начинают течь во втором проводе каждый раз, когда магнитное поле в первом проводе изменяется

Одна важная вещь, заметьте, состоит в том, что поток электронов во втором проводе только тогда, когда вы соединяете или разъединяете батарею. Магнитное поле не вызывает электроны течь в проводе, если магнитное поле не меняется. Подключение и отключение батарейки меняет магнитное поле (подключение аккумулятора к проводу создаёт магнитное поле, в то время как отключение разрушает его). Таким образом протекает поток электронов во втором проводе в те два момента.

Передача информации

Если у вас есть волна синуса и передатчик, который передаёт волну синуса в космос с антенной, у вас есть радиостанция. Единственная проблема заключается в том, что волна синуса не содержит никакой информации. Вы должны смодулировать волну в некотором роде, чтобы закодировать информацию на ней. Есть три распространённых способа смодулировать волну синуса:

Импульсная Модуляция - в PM вы просто включаете волну синуса и отключаете. Это простой способ отправить код Азбуки Морзе. PM не настолько распространана, но один хороший пример её - система радиосвязи, которая посылает сигналы в радиоуправляемые часы в Соединённых Штатах Америки. Один передатчик PM в состоянии покрыть все Соединённые Штаты Америки!

Амплитудная Модуляция - обе радиостанции AM и часть телевизионного сигнала сигнализируют амплитудную модуляцию для кодирования информации. В амплитудной модуляции амплитуда волны синуса (её напряжение от пика к пику) изменяется. Так, например, волна синуса, произведённая голосом человека, накладывается на волну синуса передатчика, чтобы изменить её амплитуду.

Частотная Модуляция - радионстанции FM и сотни других беспроводных технологий (включая звуковую часть телевизионного сигнала, беспроводные телефоны, сотовые телефоны и так далее) используют частотную модуляцию. Преимущество FM заключается в том, что она в значительной степени невосприимчива к статике. В FM изменение частоты волны синуса передатчика очень слабо основывается на информационном сигнале. После того, как вы смодулировали волну синуса с информацией, вы можете передать её!

Частота
Одна особенность волны синуса - своя частота. Частота волны синуса - количество раз, сколько колеблется она вверх и вниз в секунду. Когда вы слушаете радиопередачу AM, ваше радио настраивается на волну синуса с частотой приблизительно 1000000 циклов в секунду (циклы в секунду известны также как герцы). Например, 680 на дайле AM - это 680000 циклов в секунду. Радиосигналы FM работают в диапазоне 100000000 герц. Таким образом, 101.5 в дайле FM будет значится как 101500000 циклов в секунду.

Приём сигнала AM

Вот пример реального мира. При настройке вашего автомобильного AM-радио на станции, например, 680 на циферблате AM - значит, что волна синуса передатчика передаёт 680000 герц (волна синуса повторяет 680000 раз в секунду). Голос диджеев модулируется на этой несущей волне путём изменения амплитуды волны синуса передатчика. Усилитель усиливает сигнал на что-то вроде 50000 Вт для большой AM-станции. Тогда антенна передаёт радиоволны в космос.

Так как же AM-радио вашего автомобиля - приёмник - получает 680000-герцевый сигнал, который послан передатчиком и извлекает информацию (голос диджея) из него? Далее я перечислю вам шаги данного процесса:

  • Если вы не сидите прямо рядом с передатчиком, ваш радиоприёмник нуждается в антенне, чтобы помочь подобрать радиоволны передатчика из воздуха. AM-антенна представляет собой просто провод или металлическую палку, которая увеличивает количество металла, с которым могут взаимодействовать волны передатчика.
  • Также ваш радиоприёмник нуждается в тюнере. Антенна будет получать тысячи волн синуса. Работа тюнера заключается в отделении одной волны синуса от тысяч различных радиосигналов, которые получает антенна. В этом случае приёмник настроен на получение сигнала 680000 герц. Тюнеры работают используя принцип, называющийся резонанс, то есть тюнеры резонируют и усиливают одну особую частоту, в то время как все другие частоты игнорируются в воздухе. Резонатор, к слову, легко создать с помощью конденсатора и катушки индуктивности.
  • Тюнер заставляет радио получать всего одну частоту волны синуса (в нашем случае 680000 герц). Теперь радио должно извлечь голос диджея из этой волны синуса - это делается посредством одной из частей радио под названием детектор или демодулятор. В случае с AM-радио, детектор выполнен так, что имеет электронные компоненты, называемые диодами. Диод позволяет току течь в одном направлении и только через него.
  • Радио затем усиливает обрезанный сигнал и посылает его спикерам (или наушникам). Усилитель выполнен из одного или нескольких транзисторов (чем больше транзисторов, тем больше усиление и поэтому большая мощность приходится на динамики).
То, что вы слышите исходящее из динамиков - голос диджеев (привет, кэп). В FM-радио детектор отличается, но всё остальное то же самое. В FM-радио детектор изменяет частоту в звуке, но антенна, тюнер и усилитель - в основном то же самое.

Основы антенны

Вы, наверное, заметили, что почти каждое радио, будь то мобильный телефон, радио в автомобиле и многое другое, имеет антенну. Антенны бывают всех форм и размеров, в зависимости от частоты, которую антенна пытается получать. Радиопередатчики также используют чрезвычайно высокие башни-антенны для передачи их сигналов.

Идея антенны в радиопередатчике подразумевает под собой запуск радиоволны в космос. В приёмнике идея состоит в том, чтобы взять как можно больше данных передатчика и поставлять её тюнеру. Для спутников, которые находятся от нас в миллионах миль, NASA использует огромные спутниковые антенны до 200 футов (60 метров) в диаметре - только представьте себе подобную картинку маслом.

Размер оптимальной радиоантенны связан с частотой сигнала, который антенна пытается передавать или принимать. Причина этой взаимосвязи имеет отношение к скорости света, в результате чего на далёкие расстояния могут отправляться электроны. Скорость света составляет 186000 миль в секунду (300000 километров в секунду).

Антенны: реальные примеры

Давайте предположим, что вы пытаетесь построить радиовышку для радиостанции 680 AM. Она передаёт волну синуса с частотой 680000 герц. В одном цикле волны синуса передатчик будет перемещать электроны в антенну в одном направлении, переключиться и задержит их, снова переключиться и выставит их, а потом переключиться ещё раз и вернёт их обратно. Другими словами, электроны будут изменять направление четыре раза в течение одного цикла волны синуса. Если передатчик работает на 680000 герц, это означает, что каждый цикл завершается в (1/680000) 0.00000147 секунды. Одна четверть этого составляет 0.0000003675 секунды. Со скоростью света электроны могут пролететь 0.0684 мили (0.11 километра) через 0.0000003675 секунды. Это значит, что оптимальный размер антенны для передатчика на 680000 герц равен 361 футу (110 метрам). Таким образом, радиостанции AM нуждаются в очень высоких башнях. Для мобильного телефона, работающего на частоте 900000000 (900 МГц), с другой стороны, оптимальный размер антенны составляет около 8.3 сантиметра или 3 дюймов - именно поэтому мобильные телефоны могут иметь такие короткие антенны.

Вы могли бы задаться вопросом, почему когда радиопередатчик передаёт что-то, радиоволны хотят размножиться через пространство далеко от антенны со скоростью света. Почему радиоволны могут преодолевать миллионы миль? Оказывается, что в пространстве магнитное поле, создаваемое антенной, индуцирует электрическое поле в пространстве. Это электрическое поле, в свою очередь, вызывает ещё магнитное поле в пространстве, которое индуцирует другое магнитное поле, которое индуцирует другое магнитное поле, и так далее. Эти электрические и магнитные поля (электромагнитные поля) вызывают друг друга в пространстве со скоростью света, путешествуя таким образом далеко от антенны. Вот и всё на сегодня. Надеюсь, что статья была очень интересной, познавательной, полезной и вы узнали много нового о повседневной технологии.