Сайт о телевидении

Сайт о телевидении

» » Протоколы и стеки протоколов. Регистрация протокола более высокого уровня

Протоколы и стеки протоколов. Регистрация протокола более высокого уровня

От сокетов до драйверов устройств

Введение в протоколы

В то время как формальное введение в работу в сети отсылает нас к модели взаимодействия открытых систем (OSI — Open Systems Interconnection), это введение в основной сетевой стек в Linux использует четырехуровневую модель, известную как модель Интернет (Internet model) (смотрите рисунок 1).

Рисунок 1. Интернет-модель сетевого стека

Внизу стека располагается канальный уровень. Канальный уровень относится к драйверам устройств, обеспечивающим доступ к физическому уровню, который может состоять из многочисленных сред, таких как последовательные каналы или устройства Ethernet. Над канальным находится сетевой уровень , который отвечает за направление пакетов по назначению. Следующий уровень под названием транспортный отвечает за одноранговые (peer-to-peer) коммуникации (например, в пределах хоста). Сетевой уровень управляет связью между хостами, а транспортный — взаимодействием между конечными точками внутри этих хостов. Наконец, существует прикладной уровень , который обычно является семантическим и понимает перемещенные данные. К примеру, протокол передачи гипертекста (HTTP — Hypertext Transfer Protocol) перемещает запросы и ответы для содержимого Web между сервером и клиентом.

В сущности, уровни сетевого стека проходят под более узнаваемыми названиями. На канальном уровне вы найдете Ethernet, наиболее распространенную высокоскоростную среду. К более старым протоколам канального уровня относятся такие последовательные протоколы, как Internet-протокол для последовательной линии (SLIP — Serial Line Internet Protocol), Compressed SLIP (CSLIP) и Point-to-Point Protocol (PPP). Наиболее распространенным протоколом сетевого уровня является Internet Protocol (IP), но существуют и другие, которые удовлетворяют другим нуждам, такие как Протокол управляющих сообщений Internet (ICMP — Internet Control Message Protocol) и Протокол разрешения адресов (ARP — Address Resolution Protocol). На транспортном уровне это Протокол управления передачей (TCP — Transmission Control Protocol) и Протокол пользовательских датаграмм (UDP — User Datagram Protocol). Наконец, прикладной уровень включает в себя множество привычных нам протоколов, в том числе HTTP, стандартный Web-протокол, и SMTP (Simple Mail Transfer Protocol), протокол передачи электронной почты.

Архитектура базовой сети

Теперь перейдем к архитектуре сетевого стека Linux и посмотрим, как он реализует модель Internet. На рисунке 2 представлен высокоуровневый вид сетевого стека Linux. Наверху располагается уровень пользовательского пространства или прикладной уровень , который определяет пользователей сетевого стека. Внизу находятся физические устройства , которые обеспечивают возможность соединения с сетями (последовательные или высокоскоростные сети, как Ethernet). В центре, или в пространстве ядра , — сетевая подсистема, которая находится в центре внимания данной статьи. Через внутреннюю часть сетевого стека проходят буферы сокетов (sk_buffs), которые перемещают данные пакета между источниками и получателями. Кратко будет показана структура sk_buff .

Рисунок 2. Высокоуровневая архитектура сетевого стека Linux

Во-первых, вам предлагается краткий обзор основных элементов сетевой подсистемы Linux с подробностями в следующих разделах. Наверху (смотрите рисунок 2) находится система под названием интерфейс системного вызова. Она просто дает способ приложениям из пользовательского пространства получать доступ к сетевой подсистеме ядра. Следующим идет протоколо-независимый (protocol agnostic) уровень, который предоставляет общий способ работы с нижестоящими протоколами транспортного уровня. Дальше следуют фактические протоколы, к которым в системе Linux относятся встроенные протоколы TCP, UDP и, конечно же, IP. Следующий — еще один независимый уровень, который обеспечивает общий интерфейс к отдельным доступным драйверам устройств и от них, сопровождаемый в конце самими этими драйверами.

Интерфейс системного вызова

Интерфейс системного вызова может быть описан в двух ракурсах. Когда сетевой вызов производится пользователем, он мультиплексируется через системный вызов в ядро. Это заканчивается как вызов sys_socketcall в./net/socket.c, который потом демультиплексирует вызов намеченной цели. Другой ракурс интерфейса системного вызова — использование нормальных файловых операций для сетевого ввода/вывода (I/O). Например, обычные операции чтения и записи могут быть выполнены на сетевом сокете (который представляется файловым дескриптором как нормальный файл). Поэтому пока существуют операции, специфичные для работы в сети (создание сокета вызовом socket , связывание его с дескриптором вызовом connect и так далее), есть также и некоторое количество стандартных файловых операций, которые применяются к сетевым объектам, как к обычным файлам. Наконец, интерфейс системного вызова предоставляет средства для передачи управления между приложением в пользовательском пространстве и ядром.

Протоколо-независимый интерфейс (Protocol agnostic interface)

Уровень сокетов является протоколо-независимым (protocol agnostic) интерфейсом, который предоставляет набор стандартных функций для поддержки ряда различных протоколов. Этот уровень не только поддерживает обычные TCP- и UDP-протоколы, но также и IP, raw Ethernet и другие транспортные протоколы, такие как Протокол управления передачей потоков данных (SCTP — Stream Control Transmission Protocol).

Взаимодействие через сетевой стек происходит посредством сокета. Структура сокета в Linux — struct sock , определенная в linux/include/net/sock.h. Эта большая структура содержит все необходимые состояния отдельного сокета, включая определенный протокол, используемый сокетом, и операции, которые можно над ним совершать.

Сетевая подсистема знает о доступных протоколах из специальной структуры, которая определяет ее возможности. Каждый протокол содержит структуру под названием proto (она находится в linux/include/net/sock.h). Эта структура определяет отдельные операции сокета, которые могут выполняться из уровня сокетов на транспортный уровень (например, как создать сокет, как установить соединение с сокетом, как закрыть сокет и т.д.).

Сетевые протоколы

Раздел сетевых протоколов определяет отдельные доступные сетевые протоколы (такие как TCP, UDP и так далее). Они инициализируются в начале дня в функции inet_init в linux/net/ipv4/af_inet.c (так как TCP и UDP относятся к семейству протоколов inet). Функция inet_init регистрирует каждый из встроенных протоколов, использующих функцию proto_register . Эта функция определена в linux/net/core/sock.c, и кроме добавления протокола в список действующих, если требуется, может выделять один или более slab-кэшей.

Можно увидеть, как отдельные протоколы идентифицируют сами себя посредством структуры proto в файлах tcp_ipv4.c, udp.c и raw.c, в linux/net/ipv4/. Каждая из этих структур протоколов отображается в виде типа и протокола в inetsw_array , который приписывает встроенные протоколы их операциям. Структура inetsw_array и его связи показаны на рисунке 3. Каждый из протоколов в этом массиве инициализируется в начале дня в inetsw вызовом inet_register_protosw из inet_init . Функция inet_init также инициализирует различные модули inet , такие как ARP, ICMP, IP-модули и TCP и UDP-модули.

Рисунок 3. Структура массива Internet-протокола

Корреляция сокета и протокола

Вспомните, что когда сокет создается, он определяет тип и протокол, например, my_sock = socket(AF_INET, SOCK_STREAM, 0) . AF_INET указывает семейство Internet-адресов с потоковым сокетом, определенным как SOCK_STREAM (как показано здесь, в inetsw_array).

Перемещение данных для сокетов происходит при помощи основной структуры под названием буфер сокета (sk_buff). В sk_buff содержатся данные пакета и данные о состоянии, которые охватывают несколько уровней стека протокола. Каждый отправленный или полученный пакет представлен в sk_buff . Структура sk_buff определяется в linux/include/linux/skbuff.h и показана на рисунке 4.

Рисунок 4. Буфер сокета и его связи с другими структурами

Как можно заметить, несколько структур sk_buff для данного соединения могут быть связаны вместе. Каждая из них идентифицирует структуру устройства (net_device), которому пакет посылается или от которого получен. Так как каждый пакет представлен в sk_buff , заголовки пакетов удобно определены набором указателей (th , iph и mac для Управления доступом к среде (заголовок Media Access Control или MAC). Поскольку структуры sk_buff являются центральными в организации данных сокета, для управления ими был создан ряд функций поддержки. Существуют функции для создания, разрушения, клонирования и управления очередностью sk_buff .

Буферы сокетов разработаны таким образом, чтобы связываться друг с другом для данного сокета и включать большой объем информации, в том числе ссылки на заголовки протоколов, временные метки (когда пакет был отправлен или получен) и соответствующее устройство.

Устройство-независимый интерфейс (Device agnostic interface)

Под уровнем протоколов располагается другой независимый уровень интерфейса, который связывает протоколы с различными драйверами физических устройств с разными возможностями. Этот уровень предоставляет стандартный набор функций, которые используются низко-уровневыми сетевыми устройствами, чтобы иметь возможность взаимодействовать с высоко-уровневым стеком протокола.

Прежде всего, драйверы устройств могут регистрировать и разрегистрировать себя в ядре вызовом register_netdevice или unregister_netdevice . Вызывающая команда сначала заполняет структуру net_device , а затем передает ее для регистрации. Ядро вызывает свою функцию init (если она определена), выполняет несколько проверок исправности, создает запись sysfs и потом добавляет новое устройство в список устройств (связанный список устройств, активных в ядре). Структуру net_device можно найти в linux/include/linux/netdevice.h. Некоторые функции находятся в linux/net/core/dev.c.

Для отправления sk_buff из уровня протокола устройству используется функция dev_queue_xmit . Она ставит в очередь sk_buff для возможной пересылки соответствующим драйвером устройства (устройством, определенным при помощи net_device или указателя sk_buff->dev в sk_buff). Структура dev содержит метод под названием hard_start_xmit , который хранит функцию драйвера для инициализации передачи sk_buff .

Получение пакета выполняется традиционно при помощи netif_rx . Когда драйвер устройства более низкого уровня получает пакет (содержащийся внутри выделенного sk_buff), sk_buff идет выше, на сетевой уровень, с помощью вызова netif_rx . Эта функция затем ставит sk_buff в очередь на более высокий уровень протоколов для дальнейшей обработки при помощи netif_rx_schedule . Функции dev_queue_xmit и netif_rx находятся в linux/net/core/dev.c.

Наконец, для взаимодействия с устройство-независимым уровнем (dev) в ядро был введен новый интерфейс прикладных программ (NAPI). Его используют некоторые драйверы, но подавляющее большинство все еще пользуется более старым интерфейсом получения кадров (по грубой оценке шесть из семи). NAPI может давать лучшую производительность при больших нагрузках, избегая при этом прерываний при каждом входящем кадре.

Драйверы устройств

Внизу сетевого стека находятся драйверы устройств, которые управляют физическими сетевыми устройствами. Примерами устройств этого уровня могут служить драйвер SLIP над последовательным интерфейсом или драйвер Ethernet над устройством Ethernet.

Во время инициализации драйвер устройства выделяет место для структуры net_device , а затем инициализирует ее необходимыми подпрограммами. Одна из них, с названием dev->hard_start_xmit , определяет, как верхний уровень должен поставить в очередь sk_buff для передачи. Ей передается sk_buff . Работа этой функции зависит от оборудования, но обычно пакет, описываемый в sk_buff , перемещается в так называемое "аппаратное кольцо" (hardware ring) или "очередь" (queue). Поступление кадра, как описано на устройство-независимом уровне, использует интерфейс netif_rx или netif_receive_skb для NAPI-совместимого сетевого драйвера. Драйвер NAPI накладывает ограничения на возможности базового оборудования. Подробности смотрите в разделе .

После того как драйвер устройства настроил свои интерфейсы в структуре dev , вызов register_netdevice делает ее доступной для использования. В linux/drivers/net можно найти драйверы, характерные для сетевых устройств.

Идем дальше

Исходный код Linux — прекрасный способ узнать о конструкции драйверов для множества типов устройств, включая драйверы сетевых устройств. Вы обнаружите различия в конструкции и использовании доступных API ядра, но каждый будет полезен либо инструкциями, либо как отправная точка для нового драйвера. Остальной код в сетевом стеке стандартен и используется, пока не потребуется новый протокол. Но даже тогда реализации TCP (для потокового протокола) или UDP (для протокола на основе передачи сообщений) служат полезными моделями для начала новой разработки.

В этой статье будут рассказаны основы модели TCP/IP. Для лучшего понимания описаны основные протоколы и службы. Главное - не торопиться и стараться понимать каждую вещь поэтапно. Все они взаимосвязаны и без понимания одной, трудно будет понять другую. Здесь скомпонована весьма поверхностная информация, так что эту статью смело можно назвать «стеком протоколов TCP/IP для чайников». Однако, многие вещи здесь не так трудны для понимания, как может показаться на первый взгляд.

TCP/IP

Стек TCP/IP - сетевая модель передачи данных в сети, она определяет порядок взаимодействия устройств. Данные поступают на канальный уровень и обрабатываются поочередно каждым уровнем выше. Стек представлен в виде абстракции, которая объясняет принципы обработки и приема данных.

Стек протоколов сети TCP/IP имеет 4 уровня:

  1. Канальный (Link).
  2. Сетевой (Internet).
  3. Транспортный (Transport).
  4. Прикладной (Application).

Прикладной уровень

Прикладной уровень обеспечивает возможность взаимодействия между приложением и другими уровнями стека протоколов, анализирует и преобразовывает поступающую информацию в формат, подходящий для программного обеспечения. Является ближайшим к пользователю и взаимодействует с ним напрямую.

  • HTTP;
  • SMTP;

Каждый протокол определяет собственный порядок и принципы работы с данными.

HTTP (HyperText Transfer Protocol) предназначен для передачи данных. По нему отправляются, например, документы в формате HTML, которые служат основой веб-страницы. Упрощенно схема работы представляется как «клиент - сервер». Клиент отправляет запрос, сервер его принимает, должным образом обрабатывает и возвращает конечный результат.

Служит стандартом передачи файлов в сети. Клиент посылает запрос на некий файл, сервер ищет этот файл в своей базе и при успешном обнаружении отправляет его как ответ.

Используется для передачи электронной почты. SMTP-операция включает в себя три последовательных шага:

  1. Определение адреса отправителя. Это необходимо для возвращения писем.
  2. Определение получателя. Этот шаг может повторяться некоторое количество раз при указании нескольких адресатов.
  3. Определение содержимого сообщения и отправка. В качестве служебной информации передаются данные о типе сообщения. Если сервер подтверждает готовность принять пакет, то совершается сама транзакция.

Заголовок (Header)

В заголовке содержатся служебные данные. Важно понимать, что они предназначаются только для конкретного уровня. Это значит, что как только пакет отправится к получателю, то будет обработан там по такой же модели, но в обратном порядке. Вложенный заголовок будет нести специальную информацию, которая может быть обработана только определенным образом.

Например, заголовок, вложенный на транспортном уровне, на другой стороне может быть обработан только транспортным уровнем. Другие просто его проигнорируют.

Транспортный уровень

На транспортном уровне полученная информация обрабатывается как единый блок, вне зависимости от содержимого. Полученные сообщения делятся на сегменты, к ним добавляется заголовок, и все это отправляется ниже.

Протоколы передачи данных:

Самый распространенный протокол. Он отвечает за гарантированную передачу данных. При отправке пакетов контролируется их контрольная сумма, процесс транзакции. Это значит, что информация дойдет «в целости и сохранности» независимо от условий.

UDP (User Datagram Protocol) - второй по популярности протокол. Он также отвечает за передачу данных. Отличительное свойство кроется в его простоте. Пакеты просто отправляются, не создавая особенной связи.

TCP или UDP?

У каждого из этих протоколов есть своя область применения. Она логически обусловлена особенностями работы.

Основное преимущество UDP заключается в скорости передачи. TCP является сложным протоколом с множеством проверок, в то время как UDP представляется более упрощенным, а значит, и более быстрым.

Недостаток кроется в простоте. Ввиду отсутствия проверок не гарантируется целостность данных. Таким образом, информация просто отправляется, а все проверки и подобные манипуляции остаются за приложением.

UDP используется, например, для просмотра видео. Для видеофайла не критична потеря небольшого количества сегментов, в то время как скорость загрузки - важнейший фактор.

Однако если необходимо отправить пароли или реквизиты банковской карты, то необходимость использования TCP очевидна. Потеря даже самой мизерной части данных может повлечь за собой катастрофические последствия. Скорость в этом случае не так важна, как безопасность.

Сетевой уровень

Сетевой уровень из полученной информации образует пакеты и добавляет заголовок. Наиболее важной частью данных являются IP и MAC-адреса отправителей и получателей.

IP-адрес (Internet Protocol address) - логический адрес устройства. Содержит информацию о местоположении устройства в сети. Пример записи: .

MAC-адрес (Media Access Control address) - физический адрес устройства. Используется для идентификации. Присваивается сетевому оборудованию на этапе изготовления. Представлен как шестибайтный номер. Например: .

Сетевой уровень отвечает за:

  • Определение маршрутов доставки.
  • Передачу пакетов между сетями.
  • Присвоение уникальных адресов.

Маршрутизаторы - устройства сетевого уровня. Они прокладывают путь между компьютером и сервером на основе полученных данных.

Самый популярный протокол этого уровня - IP.

IP (Internet Protocol) - интернет-протокол, предназначенный для адресации в сети. Используется для построения маршрутов, по которым происходит обмен пакетами. Не обладает никакими средствами проверки и подтверждения целостности. Для обеспечения гарантий доставки используется TCP, который использует IP в качестве транспортного протокола. Понимание принципов этой транзакции во многом объясняет основу того, как работает стек протоколов TCP/IP.

Виды IP-адресов

В сетях используются два вида IP-адресов:

  1. Публичные.
  2. Приватные.

Публичные (Public) используются в Интернете. Главное правило - абсолютная уникальность. Пример их использования - маршрутизаторы, каждый из которых имеет свой IP-адрес для взаимодействия с сетью Интернет. Такой адрес называется публичным.

Приватные (Private) не используются в Интернете. В глобальной сети такие адреса не являются уникальными. Пример - локальная сеть. Каждому устройству присваивается уникальный в пределах данной сети IP-адрес.

Взаимодействие с сетью Интернет ведется через маршрутизатор, который, как уже было сказано выше, имеет свой публичный IP-адрес. Таким образом, все компьютеры, подключенные к маршрутизатору, представляются в сети Интернет от имени одного публичного IP-адреса.

IPv4

Самая распространенная версия интернет-протокола. Предшествует IPv6. Формат записи - четыре восьмибитных числа, разделенные точками. Через знак дроби указывается маска подсети. Длина адреса - 32 бита. В подавляющем большинстве случаев, когда речь идет об IP-адресе, имеется в виду именно IPv4.

Формат записи: .

IPv6

Эта версия предназначается для решения проблем предыдущей версией. Длина адреса - 128 бит.

Основная проблема, которую решает IPv6 - это исчерпание адресов IPv4. Предпосылки начали проявляться уже в начале 80-х годов. Несмотря на то, что эта проблема вступила в острую стадию уже в 2007-2009 годах, внедрение IPv6 очень медленно «набирает обороты».

Главное преимущество IPv6 - более быстрое интернет-соединение. Это происходит из-за того, что для этой версии протокола не требуется трансляции адресов. Выполняется простая маршрутизация. Это является менее затратным и, следовательно, доступ к интернет-ресурсам предоставляется быстрее, чем в IPv4.

Пример записи: .

Существует три типа IPv6-адресов:

  1. Unicast.
  2. Anycast.
  3. Multicast.

Unicast - тип одноадресных IPv6. При отправке пакет достигает только интерфейса, расположенного на соответствующем адресе.

Anycast относится к групповым IPv6-адресам. Отправленный пакет попадет в ближайший сетевой интерфейс. Используется только маршрутизаторами.

Multicast являются многоадресными. Это значит, что отправленный пакет достигнет всех интерфейсов, находящихся группе мультивещания. В отличие от broadcast, который является «вещанием для всех», multicast вещает лишь определенной группе.

Маска подсети

Маска подсети выявляет из IP-адреса подсеть и номер хоста.

Например, IP-адрес имеет маску . В таком случае формат записи будет выглядеть так . Число «24» - это количество бит в маске. Восемь бит равняется одному октету, который также может называться байтом.

Если подробнее, то маску подсети можно представить в двоичной системе счисления таким образом: . В ней имеется четыре октета, и запись состоит из «1» и «0». Если сложить количество единиц, то получим в сумме «24». К счастью, считать по единице не обязательно, ведь в одном октете - 8 значений. Видим, что три из них заполнены единицами, складываем и получаем «24».

Если говорить именно о маске подсети, то в двоичном представлении она имеет в одном октете либо единицы, либо нули. При этом последовательность такова, что сначала идут байты с единицами, а только потом с нулями.

Рассмотрим небольшой пример. Есть IP-адрес и маска подсети . Считаем и записываем: . Теперь сопоставляем маску с IP-адресом. Те октеты маски, в которых все значения равны единице (255) оставляют соответствующие им октеты в IP-адресе без изменения. Если же в значении нули (0), то октеты в IP-адресе также становятся нулями. Таким образом, в значении адреса подсети получаем .

Подсеть и хост

Подсеть отвечает за логическое разделение. По сути, это устройства, использующие одну локальную сеть. Определяется диапазоном IP-адресов.

Хост - это адрес сетевого интерфейса (сетевой карты). Определяется из IP-адреса с помощью маски. Например: . Так как первые три октета - подсеть, то остается . Это и есть номер хоста.

Диапазон адресов хоста - от 0 до 255. Хост под номером «0» является, собственно, адресом самой подсети. А хост под номером «255» является широковещательным.

Адресация

Для адресации в стеке протоколов TCP/IP используются три типа адресов:

  1. Локальные.
  2. Сетевые.
  3. Доменные имена.

Локальными называются MAC-адреса. Они используются для адресации в таких технологиях локальной сети как, например, Ethernet. В контексте TCP/IP слово «локальные» означает, что они действуют лишь в пределах подсети.

Сетевым адресом в стеке протоколов TCP/IP является IP-адрес. При отправке файла из его заголовка считывается адрес получателя. С его помощью маршрутизатор узнает номер хоста и подсеть и, основываясь на этой информации, прокладывает маршрут к конечному узлу.

Доменные имена - это удобочитаемые адреса веб-сайтов в Интернете. Веб-сервера в сети Интернет доступны по публичному IP-адресу. Он успешно обрабатывается компьютерами, однако для людей представляется слишком неудобным. Для того чтобы избежать подобных сложностей, используются доменные имена, которые состоят из областей, называемых «доменами». Они располагаются в порядке строгой иерархии, от верхнего уровня к нижнему.

Домен первого уровня представляет конкретную информацию. Общие (.org, .net) не ограничены какими-либо строгими границами. Обратная ситуация - с локальными (.us, .ru). Они, как правило, привязаны территориально.

Домены низших уровней - это все остальное. Он может быть любого размера и содержать любое количество значений.

Например, "www.test.quiz.sg" - корректное доменное имя, где «sg» - локальный домен первого (верхнего) уровня, «quiz.sg» - домен второго уровня, «test.quiz.sg» - домен третьего уровня. Доменные имена также могут называться DNS-именами.

DNS (Domain Name System) устанавливает соответствие между доменными именами и публичным IP-адресом. При наборе доменного имени в строке браузера DNS обнаружит соответствующий IP-адрес и сообщит устройству. Устройство обработает этот и вернет его в виде веб-страницы.

Канальный уровень

На канальном уровне определяется взаимосвязь между устройством и физической средой передачи, добавляется заголовок. Отвечает за кодировку данных и подготовку фреймов для передачи по физической среде. На этом уровне работают сетевые коммутаторы.

Самые распространенные протоколы:

  1. Ethernet.
  2. WLAN.

Ethernet - наиболее распространенная технология проводных локальных сетей.

WLAN - локальная сеть на основе беспроводных технологий. Взаимодействие устройств происходит без физических кабельных соединений. Пример самого распространенного метода - Wi-Fi.

Настройка TCP/IP для использования статического IPv4-адреса

Статический IPv4-адрес назначается напрямую в настройках устройства или автоматически при подключении к сети и является постоянным.

Для настройки стека протоколов TCP/IP на использование постоянного IPv4-адреса необходимо ввести в консоль команду ipconfig/all и найти следующие данные.

Настройка TCP/IP для использования динамического IPv4-адреса

Динамический IPv4-адрес используется какое-то время, сдается в аренду, после чего меняется. Присваивается устройству автоматически при подключении к сети.

Чтобы настроить стек протоколов TCP/IP на использование непостоянного IP-адреса необходимо зайти в свойства нужного соединения, открыть свойства IPv4 и поставить отметки так, как указано.

Способы передачи данных

Данные передаются через физическую среду тремя способами:

  • Simplex.
  • Half-duplex.
  • Full Duplex.

Simplex - это односторонняя связь. Передача ведется только одним устройством, в то время как другое только принимает сигнал. Можно сказать, что информация транслируется только в одном направлении.

Примеры симплексной связи:

  • Телевещание.
  • Сигнал от спутников GPS.

Half-duplex - это двусторонняя связь. Однако только один узел может передавать сигнал в определенный момент времени. При такой связи два устройства не могут одновременно использовать один канал. Полноценная двусторонняя связь может быть невозможна физически или приводить к коллизиям. Говорится, что они конфликтуют за среду передачи. Этот режим применяется при использовании коаксиального кабеля.

Пример полудуплексной связи - общение по рации на одной частоте.

Full Duplex - полноценная двусторонняя связь. Устройства могут одновременно транслировать сигнал и производить прием. Они не конфликтуют за среду передачи. Этот режим применяется при использовании технологии Fast Ethernet и соединении с помощью витой пары.

Пример - общение по телефону через мобильную сеть.

TCP/IP vs OSI

Модель OSI определяет принципы передачи данных. Уровни стека протоколов TCP/IP прямо соответствуют этой модели. В отличие от четырехуровневого TCP/IP имеет 7 уровней:

  1. Физический (Physical).
  2. Канальный (Data Link).
  3. Сетевой (Network).
  4. Транспортный (Transport).
  5. Сеансовый (Session).
  6. Представительский (Presentation).
  7. Прикладной (Application).

В данный момент не стоит сильно углубляться в эту модель, но необходимо хотя бы поверхностное понимание.

Прикладной уровень в модели TCP/IP соответствует трем верхним уровням OSI. Все они работают с приложениями, поэтому можно отчетливо проследить логику такого объединения. Такая обобщенная структура стека протоколов TCP/IP способствует облегченному пониманию абстракции.

Транспортный уровень остается без изменений. Выполняет одинаковые функции.

Сетевой уровень также не изменен. Выполняет ровно те же задачи.

Канальный уровень в TCP/IP соответствует двум последним уровням OSI. Канальный уровень устанавливает протоколы передачи данных через физическую среду.

Физический представляет собой собственно физическую связь - электрические сигналы, коннекторы и т.п. В стеке протоколов TCP/IP было решено объединить эти два уровня в один, так как они оба работают с физической средой.

Уровень межсетевого взаимодействия.

Реализует концепцию передачи пакетов в режиме без установления соединений, то есть дейтаграммным способом. Именно этот уровень обеспечивает возможность перемещения пакетов по сети, используя тот маршрут, который в данный момент является наиболее рациональным. Основная его функция - передача данных через составную сеть.

Основным протоколом сетевого уровня (в терминах модели OSI) в стеке является протокол IP. Этот протокол изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Так как протокол IP является дейтаграммным протоколом, он не гарантирует доставку пакетов до узла назначения, но старается это сделать.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP и OSPF , протокол межсетевых управляющих сообщений ICMP. Последний протокол предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом-источником пакета. С помощью специальных пакетов ICMP сообщает о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т. п.

Основной уровень.

Поскольку на сетевом уровне не устанавливаются соединения, то нет никаких гарантий, что все пакеты будут доставлены в место назначения целыми и невредимыми или придут в том же порядке, в котором они были отправлены. Эту задачу -обеспечение надежной информационной связи между двумя конечными узлами -решает основной уровень стека TCP/IP, называемый также транспортным .

На этом уровне функционируют протокол управления передачей TCP и протокол дейтаграмм пользователя UDP. Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования логических соединений. Этот протокол позволяет равноранговым объектам на компьютере-отправителе и компьютере-получателе поддерживать обмен данными в дуплексном режиме. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт в любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части - сегменты, и передает их ниже лежащему уровню межсетевого взаимодействия. После того как эти сегменты будут доставлены средствами уровня межсетевого взаимодействия в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.


Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и главный протокол уровня межсетевого взаимодействия IP, и выполняет только функции связующего звена (мультиплексора) между сетевым протоколом и многочисленными службами прикладного уровня или пользовательскими процессами.

Прикладной уровень.

Объединяет все службы, предоставляемые системой пользовательским приложениям. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и служб прикладного уровня. Прикладной уровень реализуется программными системами, построенными в архитектуре клиент-сервер, базирующимися на протоколах нижних уровней. В отличие от протоколов остальных трех уровней, протоколы прикладного уровня занимаются деталями конкретного приложения и «не интересуются» способами передачи данных по сети. Этот уровень постоянно расширяется за счет присоединения к старым, прошедшим многолетнюю эксплуатацию сетевым службам типа Telnet, FTP, TFTP, DNS, SNMP сравнительно новых служб таких, например, как протокол передачи гипертекстовой информации HTTP.

Лекция 6

С 1990 г. в качестве доминирующего набора протоколов, на основе которого развивалось большинство новых протоколов, утвердилась архитектура связи, отраженная в стеке протоколов TCP/IP. Transmission Control Protocol/Internet Protocol (TCP/IP) – это промышленный стандарт стека протоколов, разработанный для глобальных сетей. Стандарты TCP/IP опубликованы в серии документов, названных Request for Comment (RFC). Документы RFC описывают внутреннюю работу Интернет. Некоторые RFC описывают сетевые сервисы или протоколы и их реализацию, в то время как другие обобщают условия применения. Следует отметить, стандарты TCP/IP всегда публикуются в виде документов RFC, но не все RFC можно считать стандартами. Лидирующая роль стека TCP/IP объясняется следующими его свойствами:

· Это наиболее апробированный и в то же время популярный стек протоколов, ставший стандартом де-факто.

· Почти все существующие крупномасштабные сети функционируют на основе стека TCP/IP.

· Это основной способ получения доступа в Интернет.

· Все современные операционные системы поддерживают стек TCP/IP.

· Стек TCP/IP нашел широкое применение для создания корпоративных сетей, использующих транспортные услуги Интернет и гипертекстовую технологию WWW.

· Стек TCP/IP является основой гибкой технологии для соединения разнородных систем и сетей как на уровне реализации транспортной функции, так и на уровне взаимодействия прикладных процессов.

· Стек TCP/IP обеспечивает масштабируемую среду для приложений клиент-сервер.

Рисунок 1. Сравнение архитектур связи TCP/IP и OSI

Так как стек TCP/IP был разработан до появления модели ISO/OSI, то несмотря на то, что он имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно. На рисунке 1 приведена структура стека TCP/IP в

соотношении с уровнями модели OSI. Справа на рисунке указаны средства реализации различных уровней.


Протоколы стека TCP/IP делятся на пять уровней. Самый нижний – физический уровень соответствует физическому уровню модели OSI. Этот уровень в

стеке TCP/IP специально не стандартизирован и поэтому допускает использование всех основных стандартов физического уровня, определяющих характеристики передающей среды, скорости передачи сигналов и схемы кодирования сигналов.

Уровень доступа к сети занимается логическим интерфейсом между оконечной системой и сетью. Уровень также не регламентирован. Например, для соединения компьютера с сетью может использоваться любой стандарт канального уровня: PPP, Ethernet, АТМ и т.д.

Межсетевой уровень обеспечивает функцию маршрутизации при передаче данных от одного хоста к другому через узлы одной или нескольких логических сетей. Основной протокол этого уровня – это протокол IP (Internet Protocol) . Он должен поддерживаться во всех оконечных системах (хостах) и сетевых коммуникационных устройствах, выполняющих функцию маршрутизации. К вспомогательным протоколам этого уровня относятся:



· ICMP (Internet Control Message Protocol) – протокол управления сообщениями Интернет. Обеспечивает возможность шлюзам и маршрутизаторам обмениваться служебными сообщениями с хостом-отправителем в случае возникновения проблемной ситуации при передаче в сети;

· IGMP (Internet Group Management Protocol) – протокол управления группами. Предоставляет множеству хостов и маршрутизаторов возможность обмениваться сообщениями с групповыми адресами в широковещательном режиме;

· OSPF (Open Shortest Path First) – протокол определения первого кратчайшего маршрута при установлении виртуального (логического) соединения в интерсети;

· BGP (Border Gateway Protocol) – протокол регламентирующий процедуру маршрутизации между граничными шлюзами в Интернет;

· RSVP (ReSerVation Protocol) – протокол резервирования коммуникационных ресурсов (полосы пропускания линий связи) с целью предоставления требуемого качества обслуживания. Поддерживается хостами и сетевыми коммуникационными устройствами;

· RIP (Routing Internet Protocol) – протокол сбора маршрутной информации при топологических изменениях в интерсети;

· ARP (Address Resolution Protocol) – протокол анализа адресной части заголовка блока данных.

Транспортный уровень отвечает за выполнение функции сквозной передачи данных и поэтому реализуется лишь в конечных системах. Протоколы этого уровня скрывают от уровня приложений подробности о сети или сетях, через которые транспортируются данные. На этом уровне выполняются два основных протокола:

· ТСР (Transmission Control Protocol) – протокол управления передачей, ориентированный на логическое соединение и последовательную передачу блоков данных. Он содержит механизмы обеспечения надежности, позволяющие отслеживать блоки данных и тем самым гарантировать их корректную доставку адресуемому приложению;

· UDP (User Datagram Protocol) – протокол датаграмм пользователей, обеспечивающий быструю, но ненадежную передачу блоков данных самостоятельно перемещающихся по сети без установления логического соединения.

Уровень приложений обеспечивает связь между прикладными процессами и приложениями взаимодействующих хостов. Основные протоколы этого уровня:

· FTP (File Transfer Protocol) – протокол передачи файлов;

· HTTP (Hyper Text Transfer Protocol) – протокол передачи гипертекстовых файлов;

· SMTP (Simple Mail Transfer Protocol) – простой протокол передачи почты;

· TELNET – протокол удаленного входа в систему;

· SNMP (Simple Network Management Protocol) – простой протокол сетевого управления;

· DNS (Domain Name System) – служба имен доменов или прикладной сервис в сети Интерне, который позволяет хостам преобразовывать интернет-имена в IP-адреса;

· MIME (Multipurpose Internet Mail Extensions) – многоцелевые расширения почты Интернет. Стандарт поддерживает обмен мультимедийными сообщениями в сети Интернет, определяя процедуры, позволяющие пользователю присоединять к сообщению электронной почты файлы разных форматов (тексты, изображения, аудио, видео и целые приложения).

На уровне приложений работает также много навигационных программ (Gopher, Wais, WWW), обеспечивающих поиск нужной информации в сети. Протоколы прикладного уровня стека TCP/IP подробнее рассматриваются в модулях 3 и 4.

Лекция 3. Стек TCP/IP. Базовые протоколы TCP/IP

Протокол TCP/IP является базовым транспортным сетевым прото- колом. Термин "TCP/IP" обычно обозначает все, что связано с протоколами TCP и IP. Он охватывает целое семейство протоколов, прикладные программы и даже саму сеть. В состав семейства входят протоколы UDP, ARP, ICMP, TELNET, FTP и многие другие.

Архитектура протоколов TCP/IP предназначена для объединенной сети, состоящей из соединенных друг с другом шлюзами отдельных разнородных пакетных подсетей, к которым подключаются разнородные машины. Каждая из подсетей работает в соответствии со своими специфическими требованиями и имеет свою природу средств связи. Однако предполагается, что каждая подсеть может принять пакет информации (данные с соответствующим сетевым заголовком) и доставить его по указанному адресу в этой конкретной подсети. Не требуется, чтобы подсеть гарантировала обязательную доставку пакетов и имела надежный сквозной протокол. Таким образом, две машины, подключенные к одной подсети, могут обмениваться пакетами.

Стек протоколов TCP/IP имеет четыре уровня (рисунок 3.1).

Рисунок 3.1 – Стек TCP/IP

Уровень IV соответствует уровню доступа к сети, который работает на основе стандартных протоколах физического и канального уровня, таких, как Ethernet, Token Ring, SLIP, PPP и других. Протоколы этого уровня отвечают за пакетную передачу данных в сети на уровне аппаратных средств.

Уровень III обеспечивает межсетевое взаимодействие при передаче пакетов данных из одной подсети в другую. При этом работает протокол IP.

Уровень II является основным и работает на базе протокола управления передачей TCP. Этот протокол необходим для надежной передачи сообщений между размещенными на разных машинах прикладными программами за счет образования виртуальных соединений между ними.

Уровень I – прикладной. Стек TCP/IP существует давно и он включает в себя большое количество протоколов и сервисов прикладного уровня (протокол передачи файлов FTP, протокол Telnet, протокол Gopher для доступа к ресурсам всемирного пространства GopherSpace, самый известный протокол HTTP для доступа к удаленным гипертекстовым базам данных во всемирный паутине и др.).

Все протоколы стека можно разделить на две группы: протоколы передачи данных, передающие полезные данные между двумя сторонами; служебные протоколы, необходимые для корректной работы сети.

Служебные протоколы обязательно используют какой-либо протокол передачи данных. Например, служебный протокол ICMP использует протокол IP. Интернет – совокупность всех связных компьютерных сетей, использующих протоколы стека TCP/IP.

Функции транспортного уровня. Протоколы TCP, UDP.

Четвертый уровень модели, предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. При этом неважно, какие данные передаются, откуда и куда, то есть он предоставляет сам механизм передачи. Транспортным уровнем предоставляются следующие виды услуг:

– установление транспортного соединения;

– передача данных;

– разрыв транспортного соединения.

Функции, выполняемые транспортным уровнем:

– преобразование транспортного адреса в сетевой;

– мультиплексирование транспортных соединений в сетевые;

– установление и разрыв транспортных соединений;

– упорядочивание блоков данных по отдельным соединениям;

– обнаружение ошибок и необходимый контроль за качеством услуг;

– восстановление после ошибок;

– сегментирование, объединение и сцепление;

– управление потоком данных по отдельным соединениям;

– супервизорные функции;

– передача срочных транспортных блоков данных.

Протокол управления передачей TCP предоставляет надежную службу доставки пакетов, ориентированную на установление соединения.

Протокол TCP:

– гарантирует доставку IP-датаграмм;

– выполняет разбиение на сегменты и сборку больших блоков данных, отправляемых программами;

– обеспечивает доставку сегментов данных в нужном порядке;

– выполняет проверку целостности переданных данных с помощью контрольной суммы;

– посылает положительные подтверждения, если данные получены успешно. Используя избирательные подтверждения, можно также посылать отрицательные подтверждения для данных, которые не были получены;

– предлагает предпочтительный транспорт для программ, которым требуется надежная передача данных с установлением сеанса связи, например для баз данных «клиент-сервер» и программ электронной почты.

TCP основан на связи «точка – точка» между двумя узлами сети. TCP получает данные от программ и обрабатывает их как поток байтов. Байты группируются в сегменты, которым TCP присваивает последовательные номера, необходимые для правильной сборки сегментов на узле-приемнике.

Чтобы два узла TCP могли обмениваться данными, им нужно сначала установить сеанс связи друг с другом. Сеанс TCP инициализируется с помощью процесса, называемого трехэтапным установлением связи, котором синхронизируются номера последовательности и передается управляющая информация, необходимая для установления виртуального соединения между узлами. По завершении этого процесса установления связи начинается пересылка и подтверждение пакетов в последовательном порядке между этими узлами. Аналогичный процесс используется TCP перед прекращением соединения для того, чтобы убедиться, что оба узла закончили передачу и прием данных (рисунок 3.2).


Рисунок 3.2 – Формат заголовка сегмента TCP

Поля порт источника и порт получателя занимают по 2 байта и идентифицируют процесс-отправитель процесс-получатель. Поля порядковый номер и номер подтверждения (длины по 4 байта) нумеруют каждый отправленный или полученный байт данных. Реализуются как целые числа без знака, которые сбрасываются, когда достигают максимального значения. Каждая сторона ведет собственную порядковую нумерацию. Поле длина заголовка занимает 4 бита и представляет собой длину заголовка TCP-сегмента, измеренную в 32-битовых словах. Длина заголовка не фиксирована и может изменяться в зависимости от значений, устанавливаемых в поле параметры. Поле резерв занимает 6 бит. Поле флаги занимает 6 бит и содержит шесть 1-битовых флагов:

– флаг URG (Urgent Pointer – указатель точности) устанавливается в 1 в случае использования поля указатель на срочные данные;

– флаг ACK (Acknowledgment – подтверждение) устанавливается в 1 в случае, если поле номер подтверждения содержит данные. В противном случае это поле игнорируется;



– флаг PSH (Push – выталкивание) означает, что принимающий стек TCP должен немедленно информировать приложение о поступивших данных, а не ждать пока буфер заполнится;

– флаг RST (Reset – сброс) используется для отмены соединения: из-за ошибки приложения, отказа от неверного сегмента, попытки создать соединение при отсутствии затребованного сервиса;

– флаг SYN (Synchronize – синхронизация) устанавливается при инициировании соединения и синхронизации порядкового номера;

– флаг FIN (Finished – завершение) используется для разрыва соединения. Он указывает, что отправитель закончил передачу данных.

Поле размер окна (длина 2 байта) содержит количество байт, которое может быть послано после байта, получение которого уже подтверждено. Поле контрольная сумма (длина 2 байта) служит для повышения надежности. Оно содержит контрольную сумму заголовка, данных и псевдозаголовка. При выполнении вычислений поле контрольная сумма устанавливается равным нулю, а поле данных дополняется нулевым байтом, если его длина представляет собой нечетное число. Алгоритм вычисления контрольной суммы просто складывает все 16-разрядные слова в дополнительном коде, а затем вычисляет дополнение для всей суммы.

Протокол UDP, являясь дейтаграммным протоколом, реализует сервис по возможности, то есть не гарантирует доставку своих сообщений, а, следовательно, никоим образом не компенсирует ненадежность дейтаграммного протокола IP. Единица данных протокола UDP называется UDP-пакетом или пользовательской дейтаграммой. Каждая дейтаграмма переносит отдельное пользовательское сообщение. Это приводит к ограничению: длина дейтаграммы UDP не может превышать длины поля данных протокола IP, которое, в свою очередь, ограничено размером кадра технологии нижнего уровня. Поэтому если UDP-буфер переполняется, то данные приложения отбрасываются. Заголовок UDP-пакета, состоящий из четырех 2-байтовых полей, содержит поля порт источника, порт получателя, длина UDP и контрольная сумма (рисунок 3.3).

Поля порт источника и порт получателя идентифицируют передающий и получающий процессы. Поле длина UDP содержит длину пакета UDP в байтах. Поле контрольная сумма содержит контрольную сумму пакета UDP, вычисляемую по всему пакету UDP с добавленным псевдозаголовком.

Рисунок 3.3 – Формат заголовка пакета UDP

Основная литература: 2

Дополнительная литература: 7

Контрольные вопросы:

1. Каким протоколом в OSI является TCP/IP?

2. Для чего предназначена архитектура протоколов TCP/IP?

3. Какие уровни имеет стек TCP/IP?

4. Какие функции выполняет протокол управления передачей TCP?

5. Какие отличия существуют между протоколами TCP и UDP?