Сайт о телевидении

Сайт о телевидении

» » Принципы передачи сигналов электросвязи. Виды и принципы действия электросвязи. Мультимедийные технологии

Принципы передачи сигналов электросвязи. Виды и принципы действия электросвязи. Мультимедийные технологии

«Цепи и сигналы электросвязи» – базовый курс в системе подготовки современного инженера в области электрорадиотехники и радиоэлектроники. Его целью является изучение фундаментальных закономерностей, связанных с получением сигналов, их передачей по каналам связи, обработкой и преобразованием в радиотехнических цепях.

Круг вопросов, которые охватывает данный курс, весьма обширен. В него входят, во-первых, вопросы теории сигналов:

· спектральный и корреляционный анализ информационных и управляющих сигналов;

· особенности спектрального и корреляционного анализа узкополосных радиосигналов, введение понятий комплексного и аналитического сигналов;

· основы теории дискретных и цифровых сигналов;

· статистический анализ случайных сигналов и помех, изучаемый в едином комплексе с детерминированными сигналами.

Во-вторых, в курс «Цепи и сигналы электросвязи» входит теория преобразования перечисленных выше сигналов в линейных цепях – апериодических и частотно-избирательных.

В-третьих, в него входят основные положения теории нелинейных и параметрических устройств и преобразования в них сигналов.

Большое значение приобрели вопросы теории цифровой обработки сигналов, оптимальной обработки сигналов на фоне помех и основные положения теории синтеза радиотехнических цепей – аналоговых и цифровых.

Таким образом, в результате изучения дисциплины студент должен знать:

· основные понятия: информация, сообщение, сигнал,

· структуру построения системы электросвязи,

· виды электросвязи,

· назначение и структуру канала связи,

· сущность основных физических процессов при передаче информации с помощью электрических сигналов,

· виды сигналов, их параметры,

· физические характеристики сигналов,

· математические модели, отображающие периодические сигналы,

· спектры периодических сигналов,

· спектры непериодических сигналов;

а также уметь:

· пояснить структуру одноканальной системы связи,

· пояснить принцип действия основных видов преобразователей сообщения в сигнал и сигнала в сообщение,

· исследовать спектральный состав сигналов,

· математически и графически представить различные виды сигналов,

· построить временные и спектральные диаграммы по параметрам сигналов,

· провести лабораторные исследования спектров периодических и непериодических сигналов.

Изучение курса необходимо начать с основных понятий электросвязи – информации, сообщения и сигнала.

Понятия информации и сообщения употребляются довольно часто. Эти близкие по смыслу значения сложны и дать их точное определение нелегко. Слово «информация» происходит от латинского «informatio» – разъяснение, ознакомление, осведомленность. Обычно под информацией понимают совокупность сведений, данных о каких-либо событиях, явлениях или предметах. Мы живем в информационном мире. Все, что мы видим, слышим, помним, знаем, переживаем, – все это различные формы информации. Совокупность сведений, данных становится знанием лишь после их интерпретации с учетом ценности и содержания этих сведений. Следовательно, информацию в широком смысле можно определить как совокупность знаний об окружающем нас мире. В таком понимании информация является важнейшим ресурсом научно-технического и социально-экономического развития общества. В отличие от материального и энергетического ресурсов, информационный ресурс не уменьшается при потреблении, накапливается со временем, сравнительно легко и просто с помощью технических средств обрабатывается, хранится и передается на значительные расстояния.



Таким образом, под информацией понимается вся совокупность сведений о событиях, процессах и фактах, имеющих место в живой и неживой природе и предназначенных для обработки, хранения и передачи.

Для передачи или хранения информации используют различные знаки (символы), позволяющие выразить (представить) ее в некоторой форме. Этими знаками могут быть слова и фразы в человеческой речи, жесты и рисунки, формы колебаний, математические знаки и т.п. Так, при телеграфной передаче сообщением является текст телеграммы, представляющий собой последовательность отдельных знаков – букв и цифр. При разговоре по телефону сообщением является непрерывное изменение во времени звукового давления, отображающее не только содержание, но и интонацию, тембр, ритм и иные свойства речи. При передаче движущихся изображений в телевизионных системах сообщение представляет собой изменение во времени яркости элементов изображения. Поэтому форма, в которой человек получает информацию, может быть разной.

Сообщение – это форма представления информации.

Передача сообщений на расстояние осуществляется с помощью какого-либо материального носителя (бумаги, магнитной ленты и т.д.) или физического процесса (звуковых или электромагнитных волн, тока и т.д.).

Физический процесс, отображающий передаваемое сообщение и распространяющийся в определенном направлении называется сигналом .

В качестве сигнала можно использовать любой физический процесс, изменяющийся в соответствии с передаваемым сообщением. В современных системах связи чаще всего используют электрические сигналы. Физической величиной, определяющей такой сигнал, является ток или напряжение.

Электрическое колебание, содержащее сообщение называется электрическим сигналом .

Сигналы формируются путем изменения тех или иных параметров физического носителя в соответствии с передаваемым сообщением. Этот процесс (изменения параметров носителя) принято называть модуляцией. Все преобразования сигналов будут рассмотрены в следующих разделах курса.

Совокупность технических средств, для передачи сообщений от источника к потребителю называется системой связи .

Рассмотрим принцип построения простейшей одноканальной системы связи, приведенной на рисунке 1. Разберем назначение отдельных элементов схемы, представленной на этом рисунке.

Источником сообщений и получателем в одних системах связи может быть человек, в других – различного рода устройства.

Преобразователь сообщения в сигнал – преобразует звуковой сигнал или сигнал изображения в электрический сигнал.

В передатчике первичный сигнал (обычно низкочастотный) превращается во вторичный (высокочастотный) сигнал , пригодный для передачи по используемому каналу. Это преобразование осуществляется посредством модуляции.

Линией связи называется физическая среда и совокупность аппаратных средств, используемых для передачи сигналов от передатчика к приемнику. В системах электрической связи – это, прежде всего, кабель или волновод, в системах радиосвязи – область пространства, в которой распространяются электромагнитные волны от передатчика к приемнику. При передаче канальный сигнал может искажаться, так как на него могут накладываться помехи .

Приемник обрабатывает принятое колебание , представляющее собой сумму пришедшего искаженного сигнала и помехи , и восстанавливает по нему переданный сигнал (он также будет несколько искаженным).

Преобразователь сигнала в сообщения преобразует сигнал в сообщение , которое с некоторой погрешностью отображает переданное сообщение a . Другими словами, приемник должен на основе анализа колебания определить, какое из возможных сообщений передавалось. Поэтому приемное устройство является одним из наиболее ответственных и сложных элементов системы связи.

По виду передаваемых сообщений различают следующие системы связи:

· передача речи (телефония);

· передача текста (телеграфия);

· передача неподвижных изображений (факсимильная связь);

· передача подвижных изображений (телевидение), телеизмерение, телеуправление;

· передача данных.

По назначению телефонные и телевизионные системы делятся на:

· вещательные, отличающиеся высокой степенью художественности воспроизведения сообщений;

· профессиональные, имеющие специальное применение (служебная связь, промышленное телевидение и т.п.).

В системе телеизмерения физическая величина, подлежащая измерению (температура, давление, скорость и т.п.), с помощью датчиков преобразуется в первичный электрический сигнал, поступающий в передатчик. На приемном конце переданную физическую величину или ее изменения выделяют из сигнала и наблюдают или регистрируют с помощью записывающих приборов. В системе телеуправления осуществляется передача команд для автоматического выполнения определенных действий. Нередко эти команды формируются автоматически на основании результатов измерения, переданных телеметрической системой.

Внедрение высокоэффективных ЭВМ привело к необходимости быстрого развития систем передачи данных, обеспечивающих обмен информацией между вычислительными средствами и объектами автоматизированных систем управления. Этот вид электросвязи по сравнению с телеграфной отличается более высокими требованиями к скорости и верности передачи информации.

Теперь разберем понятие канала связи. Каналом связи называется совокупность средств, обеспечивающих передачу сигнала от некоторой точки A системы до точки B (рисунок 2). Точки A и B могут быть выбраны произвольно, главное, чтобы между ними проходил сигнал. Часть системы связи, расположенная до точки A, является источником сигнала для этого канала. Если сигналы, поступающие на вход канала и снимаемые с его выхода, являются дискретными (по уровням), то канал называется дискретным .

Если входные и выходные сигналы канала являются непрерывными (по уровню), то и канал называется непрерывным . Встречаются также дискретно-непрерывные и непрерывно-дискретные каналы, на вход которых поступают дискретные сигналы, а с выхода снимаются непрерывные, или наоборот.

Следует отметить, что некоторые блоки на схеме рисунка 2 не обозначены, так как их структура зависит от вида системы связи и типа канала.

Типы каналов, по которым передаются сигналы, многочисленны и разнообразны. Различают каналы проводной связи (воздушные, кабельные, оптические и др.) и каналы радиосвязи .

Кабельные линии связи являются основой магистральных сетей дальней связи, по ним осуществляется передача сигналов в диапазоне частот от десятков кГц до сотен МГц. Весьма перспективными являются волоконно-оптические линии связи. Они позволяют в диапазоне 600 – 900 ТГц обеспечить очень высокую пропускную способность (сотни телевизионных каналов или сотни тысяч телефонных каналов).

Наряду с проводными линиями связи широко используются радиолинии различных диапазонов (от сотен кГц до десятков ГГц). Эти линии более экономичны и незаменимы для связи с подвижными объектами. Широкое распространение для многоканальной радиосвязи получили радиорелейные линии (РРЛ) метрового, дециметрового и сантиметрового диапазонов на частотах от 60 МГц до 15 ГГц. Все большее применение находят спутниковые линии связи – РРЛ с ретранслятором на искусственном спутнике Земли (ИСЗ). Для этих линий (систем) связи отведены диапазоны частот 4 – 6 и 11 – 275 ГГц. Большая дальность при одном ретрансляторе на спутнике, гибкость и возможность организации глобальной связи – важные преимущества спутниковых систем.

Электросвязь I Электросвя́зь

Для установления Э. между отправителем (источником сообщений) и получателем (приёмником сообщений) служат: оконечные аппараты - передающий и приёмный; Канал связи , образуемый с помощью одной или нескольких включенных последовательно систем передачи; кроме того, вследствие наличия большого количества оконечных передающих и приёмных аппаратов и необходимости их всевозможных попарных соединений для организации непрерывного (сквозного) канала между ними, используется система коммутационных устройств, состоящая из одной или нескольких коммутационных станций и узлов.

Оконечные аппараты. Оконечный передающий аппарат служит для преобразования сигнала исходной формы (звуков речи; знаков текста телеграмм; знаков, записанных в закодированном виде на перфоленте или каком-либо другом носителе информации (См. Носитель информации); изображений объектов и т. д.) в электрический сигнал. В телефонной связи и радиовещании для электроакустических преобразований применяют Микрофон . В телеграфной связи кодовые комбинации знаков текста телеграмм преобразуют в серии электрических импульсов; такое преобразование осуществляется либо непосредственно (при использовании стартстопного телеграфного аппарата (См. Телеграфный аппарат)), либо с предварительной записью знаков на перфоленту (при использовании Трансмиттер а). В факсимильной связи преобразование светового потока переменной яркости, отражённого от оригинала, в электрические импульсы производится факсимильным аппаратом (См. Факсимильный аппарат). Информацию о распределении светотеней какого-либо объекта телевизионной передачи преобразуют в Видеосигнал при помощи телевизионной передающей камеры (См. Телевизионная передающая камера) (телекамеры).

Оконечный приёмный аппарат служит для приведения принимаемых электрических сигналов к форме, удобной для их восприятия приёмником сообщений. При Э. многих видов оконечные аппараты содержат как передающие, так и приёмные устройства. В первую очередь это относится к такой Э., которая обеспечивает двухсторонний (обычно дуплексный; см. Дуплексная связь) обмен сообщениями. Так, Телефонный аппарат , как правило, содержит микрофон и Телефон , объединённые в одном конструктивном узле - микротелефонной трубке. В радиовещании и телевизионном вещании передающие и приёмные оконечные аппараты разделены, причём сигналы от одного передающего устройства принимаются сразу многими оконечными аппаратами - Радиоприёмник ами и Телевизор ами.

Используемые в Э. каналы связи подразделяются на аналоговые и дискретные. Аналоговые каналы служат для передачи непрерывных электрических сигналов (примеры таких сигналов: напряжения и токи, получающиеся при электроакустических преобразованиях звуков речи, музыки, при развёртке (См. Развёртка оптическая) изображений). Возможность передачи через данный канал связи непрерывных сигналов от того или иного источника обусловлена прежде всего такими характеристиками канала, как Полоса пропускания частот и допустимая максимальная мощность передаваемых сигналов. Кроме того, поскольку любой канал подвержен различного рода помехам (см. Помехи в проводной связи, Помехи радиоприёму , Помехоустойчивость), то он характеризуется также минимальной мощностью электрического сигнала, которая должна в заданное число раз превышать мощность помех. Отношение максимальной мощности сигналов, пропускаемых каналом, к минимальной называется динамическим диапазоном канала связи.

Дискретные каналы служат для передачи импульсных сигналов. Такие каналы обычно характеризуются скоростью передачи информации (измеряемой в бит/сек ) и верностью передачи. Дискретные каналы могут быть также использованы для передачи аналоговых сигналов и, наоборот, аналоговые каналы - для передачи импульсных сигналов. Для этого сигналы преобразуются; аналоговые в импульсные с помощью аналого-дискретных (цифровых) преобразователей, а импульсные в аналоговые с помощью дискретно (цифро)-аналоговых преобразователей. На рис. 1 показаны возможные способы сочетания источников аналоговых и дискретных сигналов с аналоговыми и дискретными каналами связи.

Используемые в Э. системы передачи обычно обеспечивают одновременную и независимую передачу сообщений от многих источников к такому же числу приёмников. В таких системах многоканальной связи (См. Многоканальная связь) общая линия связи уплотняется несколькими десятками - несколькими тысячами индивидуальных каналов. Наибольшее распространение (1978) получили многоканальные системы с частотным разделением аналоговых каналов. При построении таких систем передачи каждому каналу связи отводится определённый участок области частот в полосе пропускания линейного тракта передачи, общего для всех передаваемых сообщений. Для переноса Спектр а сигнала в участок, отведённый ему в полосе частот группового тракта (частотного преобразования сигнала), используют амплитудную или частотную модуляцию (См. Модуляция) (см. также Модуляция колебаний) групп «несущих» синусоидальных токов. При амплитудной модуляции (АМ) в соответствии с передаваемым сообщением изменяется амплитуда гармонических колебаний тока несущей частоты (См. Несущая частота). В результате на выходе модулирующего устройства (модулятора) создаются колебания, в спектре которых кроме составляющей несущей частоты (несущей) имеются две боковые полосы. Поскольку каждая из боковых полос содержит полную информацию об исходном (модулирующем) сигнале, то в линию связи пропускают только одну из них, а другую и несущую подавляют с помощью полосно-пропускающих электрических фильтров (См. Электрический фильтр) или иных устройств (см. Однополосная модуляция , Однополосная связь). При частотной модуляции (ЧМ) в соответствии с передаваемым сообщением изменяется несущая частота. Системы с ЧМ обладают большей по сравнению с системами с АМ помехоустойчивостью, однако это преимущество реализуется лишь при достаточно большой девиации частоты (См. Девиация частоты), для чего необходима широкая полоса частот. Поэтому, например, в радиосистемах ЧМ применяют главным образом в диапазоне метровых (и более коротких) волн, где на каждый индивидуальный канал приходится полоса частот, в 10-15 раз большая, чем в системах с АМ, работающих на более длинных волнах. В радиорелейных линиях нередко используют сочетание АМ с ЧМ; с помощью АМ создаётся некоторый промежуточный спектр, который затем переводится в линейный диапазон частот с помощью ЧМ.

Для передачи сообщений различного вида требуются каналы с определённой шириной полосы пропускания. Характерная особенность современной системы передачи - возможность организации в одной и той же системе каналов, применяемых для различных видов Э. При этом в качестве стандартного канала используется телефонный канал, называемый каналом тональной частоты (ТЧ). Он занимает полосу частот 300-3400 гц. Для упрощения фильтрующих устройств, разделяющих соседние каналы, каналы ТЧ отделяются друг от друга защитными частотными интервалами и занимают (с учётом этих интервалов) полосу 4 кгц. Кроме передачи сигналов речи, каналы ТЧ используются также в факсимильной связи, низкоскоростной передаче данных (от 600 до 9600 бит/сек ) и некоторых других видах Э. Учитывая большой удельный вес каналов ТЧ в сетях Э., их принимают за основу при создании как широкополосных (> 4 кгц ), так и узкополосных (кгц) каналов. Например, в радиовещании применяется канал с полосой, втрое (иногда вчетверо) превышающей полосу канала ТЧ; для высокоскоростной передачи данных между ЭВМ, передачи изображений газетных полос и др. употребляются каналы, в 12, 60 и даже 300 раз более широкие; сигналы программ телевизионного вещания передаются через каналы с полосой, в 1600 раз превышающей полосу канала ТЧ (что составляет примерно 6 Мгц ). На базе канала ТЧ (посредством его т. н. вторичного уплотнения) создаются каналы для телеграфирования с полосами пропускания 80, 160 или 320 гц, со скоростями передачи (соответственно) 50, 100 или 200 бит/сек . Линии радиорелейной связи позволяют создать 300, 720, 1920 каналов ТЧ (в каждой паре высокочастотных стволов); линии связи через ИСЗ - от 400 до 1000 и более (в каждой паре стволов). Проводные линии связи, используемые в системах передачи с частотным разделением каналов, характеризуются следующим числом каналов ТЧ: симметричные кабели 60 (в расчёте на две пары проводов); коаксиальные кабели - 1920, 3600 или 10 800 (на каждую пару коаксиальных трубок). Возможно создание систем с ещё большим числом каналов.

С целью увеличения дальности связи посредством уменьшения влияния шумов (накапливаемых по мере прохождения сигнала в линии) в проводных системах передачи с частотным разделением каналов используют усилители, общие для всех сигналов, передаваемых в каждом линейном тракте, и включаемые на определённом расстоянии друг от друга. Расстояние между усилителями зависит от числа каналов: для мощных проводных систем (10 800 каналов) оно составляет 1,5 км, для маломощных (60 каналов) - 18 км. В системах радиорелейной связи сооружают ретрансляционные станции в среднем на расстоянии 50 км одна от другой.

Наряду с системами передачи с частотным разделением каналов с 70-х гг. 20 в. началось внедрение систем, в которых каналы разделяются во времени на основе методов импульсно-кодовой модуляции (ИКМ), дельта-модуляции и др. При ИКМ каждый из передаваемых аналоговых сигналов преобразуется в последовательность импульсов, образующих определённые кодовые группы (см. Код , Кодирование). Для этого в сигнале через заданные промежутки времени (равные половине периода, соответствующего максимальной частоте изменения сигнала) вырезаются узкие импульсы (рис. 2 , а). Число, характеризующее высоту каждого вырезанного импульса, передаётся 8-значным кодом за время, не превышающее протяжённость (ширину) импульса (рис. 2 , б). В промежутках времени между передачей кодовых групп данного сообщения линия свободна и может быть использована для передачи кодовых групп других сообщений. На приёмном конце линии производится обратное преобразование кодовых комбинаций в последовательность импульсов различной высоты (рис. 2 , в), из которых с определённой степенью точности может быть восстановлен исходный аналоговый сигнал (рис. 2 , г). При дельта-модуляции аналоговый сигнал сначала преобразуется в ступенчатую функцию (рис. 3 , а), причём кол-во ступенек на период, соответствующий максимальной частоте изменения сигнала, в различных системах составляет 8-16. Передаваемая в линию последовательность импульсов отображает ход ступенчатой функции в изменении знака производной сигнала: возрастающие участки аналоговой функции (характеризующиеся положительной производной) отображаются положительными импульсами, спадающие участки (с отрицательной производной) - отрицательными (рис. 3 , б). В промежутках между этими импульсами располагаются импульсы, образованные от других сигналов. При приёме импульсы каждого сигнала выделяются и интегрируются, в результате с заданной степенью точности восстанавливается исходный аналоговый сигнал (рис. 3 , в).

Каналы ИКМ и дельта-модуляции (без оконечных аналого-цифровых преобразующих устройств) - дискретные и часто используются непосредственно для передачи дискретных сигналов. Основным достоинством систем с временным разделением каналов является отсутствие накопления шумов в линии; искажение формы сигналов при их прохождении устраняется с помощью регенераторов, устанавливаемых на определённом расстоянии друг от друга (аналогично усилителям в системах с частотным разделением). Однако в системах с временным разделением существует шум «квантования», возникающий при преобразовании аналогового сигнала в последовательность кодовых чисел, характеризующих этот сигнал лишь с точностью до единицы. Шум «квантования», в отличие от обычного шума, не накапливается по мере прохождения сигнала в линии.

К сер. 70-х гг. разработаны системы с ИКМ на 30, 120 и 480 каналов; находятся в стадии разработки системы на несколько тыс. каналов. Развитие систем передачи с разделением каналов во времени стимулируется тем, что в них широко используют элементы и узлы ЭВМ, и это в конечном счёте приводит к удешевлению таких систем как в проводной связи, так и радиосвязи. Весьма перспективны импульсные системы передачи на основе находящихся в стадии разработки волноводных и световодных линий связи (число каналов ТЧ может достигать 10 5 в волноводной трубе диаметром примерно 60 мм или в паре стеклянных световодных нитей диаметром 30-70 мкм ).

Системы коммутационных устройств. Применяемые в Э. системы коммутационных устройств бывают двух типов: узлы и станции коммутации каналов (КК), позволяющие при конечном числе каналов создавать временное прямое соединение через канал связи любого источника с любым приёмником (после окончания переговоров соединение разрывается, а освободившийся канал используется для организации другого соединения); узлы и станции коммутации сообщений (КС), используемые в Э. тех видов, в которых допустима задержка (накопление) передаваемых сообщений во времени. Задержка бывает необходима при невозможности их немедленной передачи вызываемому абоненту из-за отсутствия в данный момент свободного канала либо занятости вызываемой абонентской установки. Узлы и станции КК, применяемые в Э. наиболее массовых видов - телефонной и телеграфной, - представляют собой телефонные станции (См. Телефонная станция) или телеграфные станции (См. Телеграфная станция), а также телефонные или телеграфные узлы связи (См. Связь), размещаемые в определённых пунктах телефонной сети (См. Телефонная сеть) или телеграфной сети (См. Телеграфная сеть). Станции и узлы КК различаются в зависимости от выполняемых ими функций и их расположения в сети. Например, в телефонной сети существуют такие автоматические телефонные станции (АТС), как сельские, городские, междугородные, а также различные коммутационные узлы: узлы автоматической коммутации, узлы входящих и исходящих сообщений и другие. Характерной особенностью узлов является то, что они связывают между собой различные АТС. Любая современная станция или узел КК содержит комплекс управляющих устройств, построенных на базе электромеханических или электронных приборов, и коммутационных устройств, которые под воздействием сигналов управления осуществляют соединение или разъединение соответствующих каналов (рис. 4 ). В наиболее распространённых (1978) системах КК устройства управления строятся на основе электромеханического Реле , а коммутационные устройства - на основе многократных координатных соединителей (См. Многократный координатный соединитель). Такие станции и узлы называются координатными.

Системы КС используются преимущественно в телеграфной связи и при передаче данных. Дополнительно к управляющим и коммутирующим устройствам в системах КС имеются устройства для накопления передаваемых сигналов. В процессе прохождения сигналов от передатчика к приемнику в системах КС осуществляются такие технологические операции с накапливаемыми сообщениями, как изменение порядка их следования к абонентам (с учётом возможных приоритетов, т. е. преимущественного права на передачу), приём сообщений по каналу одного типа (характеризующемуся одной скоростью передачи), а передача - по каналу другого типа (с др. скоростью) и ряд дополнительных операций в соответствии с заданным алгоритмом работы. В некоторых случаях могут создаваться комбинированные узлы КС и КК, позволяющие обеспечить наиболее благоприятные режимы передачи сообщений и использования сетей Э.

Для развития современных коммутационных станций и узлов характерны тенденции использования в коммутационных устройствах быстродействующих миниатюрных герметизированных контактов (например, Геркон ов) для реализации соединений, а для управления процессами соединений - специализированных ЭВМ. Коммутационные станции и узлы такого типа получили название квазиэлектронных. Введение ЭВМ позволяет предоставлять абонентам дополнительные услуги: возможность применения сокращённого (с меньшим кол-вом знаков) набора номеров наиболее часто вызываемых абонентов; установку аппаратов на «ожидание», если номер вызываемого абонента занят; переключение соединения с одного аппарата на другой и т. д. С внедрением систем передачи с временным разделением каналов намечается возможность перехода к чисто электронным (без механических контактов) станциям и узлам коммутации. В таких системах коммутируются непосредственно дискретные каналы (без преобразования дискретных сигналов в аналоговые). В результате происходит объединение (интеграция) процессов передачи и коммутации, что служит предпосылкой к созиданию интегральной сети связи, в которой сообщения всех видов передаются и коммутируются едиными методами. В СССР Э. развивается в рамках разработанной и планомерно внедряемой Единой автоматизированной сети связи (ЕЛСС). ЕАСС представляет собой комплекс технических средств связи, взаимодействующих посредством использования общей - «первичной» - сети каналов, на основе которой с помощью коммутационных станций и узлов и оконечных аппаратов создаются различные «вторичные» сети, обеспечивающие организацию Э. всех видов.

Лит.: Чистяков Н. И., Хлытчиев С. М., Малочинский О. М., Радиосвязь и вещание, 2 изд., М., 1968; Многоканальная связь, под ред. И. А. Аболица, М., 1971; Автоматическая коммутация и телефония, под ред. Г. Б. Метельского, ч. 1-2, М., 1968-69; Емельянов Г. А., Шварцман В. О., Передача дискретной информации и основы телеграфии, М., 1973; Румпф К. Г., Барабаны, телефон, транзисторы, пер. с нем., М., 1974; Лившиц Б. С., Мамонтова Н. П., Развитие систем автоматической коммутации каналов, М., 1976: Давыдов Г. Б., Рогинекий В. Н., Толчан А. Я., Сети электросвязи, М., 1977; Давыдов Г. Б., Электросвязь и научно-технический прогресс, М., 1978.

Г. Б. Давыдов.

II Электросвя́зь («Электросвя́зь»,)

ежемесячный научно-технический журнал, орган министерства связи СССР и научно-технического общества радиотехники, электроники и связи им. А. С. Попова. Издаётся в Москве с 1933 (до 1938 выходил под названием «Научно-технический сборник по электросвязи»). Основные вопросы, освещаемые в журнале: радиосвязь, телефония, телеграфия и фототелеграфия, передача данных, телевидение, радиовещание, проводное вещание; многоканальная связь; автоматическая коммутация; аппаратура и оборудование систем связи; вопросы теории распространения электромагнитных колебаний, теории электрических цепей, теории информации и др. Тираж (1978) около 10 тыс. экз.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

ПРАВИТЕЛЬСТВО МОСКВЫ

Комитет города Москвы по ценовой политике в строительстве

и государственной экспертизе проектов

ДОПОЛНИТЕЛЬНЫЕ ИНЖЕНЕРНЫЕ СИСТЕМЫ

Сборник 5.2

СИСТЕМЫ ЭЛЕКТРОСВЯЗИ

МРР-5.2-16

Сборник 5.2 «Системы электросвязи. МРР-5.2-16» (далее - Сборник) разработан специалистами ГАУ «НИАЦ» (С.В. Лахаев, Е.А. Игошин, А.М. Вайнерман) при участии специалистов ОАО «Моспроект».

Сборник утвержден и введен в действие с 9 января 2017 г. приказом Комитета города Москвы по ценовой политике в строительстве и государственной экспертизе проектов от 29 декабря 2016 г. № МКЭ-ОД/16-75.

Сборник является составной частью Единой нормативной базы МРР.

Сборник разработан взамен МРР-3.2.75-13.

Введение

1. Общие положения

2. Методика определения стоимости проектных работ

3. Базовые цены

3.1. Мультисервисные сети, сети передачи данных и телефонии, системы кабельного телевидения (СКТВ)

3.2. Телефонный и радио ввод

3.3. Автоматизированные системы управления и диспетчеризации (АСУД)

3.4. Системы охраны входов (домофон) и квартир

3.5. Локальные компьютерные сети и структурированные кабельные системы

3.6. Учрежденческая автоматическая телефонная станция (УАТС)

3.7. Системы местной телефонной связи на базе мини-АТС, оперативно-диспетчерской, селекторной, громкоговорящей связи

3.8. Система электрочасофикации

3.9. Кабельпроводы и закладные устройства для сетей систем электросвязи

3.10. Системы звукоусиления, видеопроекции, отображения информации, лингафонные системы, мини аудио-видео студии и комплекс систем электросвязи в залах многоцелевого назначения

3.11. Электроснабжение систем электросвязи, предусмотренных настоящим сборником

Приложения

Приложение 1. Условные обозначения

Приложение 2. Примеры расчета стоимости работ

ВВЕДЕНИЕ

Настоящий Сборник 5.2 «Системы электросвязи. МРР-5.2-16» (далее - Сборник) разработан в соответствии с государственным заданием.

Настоящий Сборник предназначен для применения государственными заказчиками, проектными и другими заинтересованными организациями при расчете начальных (максимальных) цен контрактов и определении стоимости проектных работ, осуществляемых с привлечением средств бюджета города Москвы.

При разработке Сборника были использованы следующие нормативно-методические и другие источники:

Градостроительный кодекс Российской Федерации;

Постановление Правительства Российской Федерации от 16 февраля 2008 г. №87 «О составе разделов проектной документации и требованиях к их содержанию»;

СП 54.13330.2011 Здания жилые многоквартирные. Актуализированная редакция СНиП 31-01 -2003;

СП 42.13330.2011 Градостроительство. Планировка и застройка городских и сельских поселений. Актуализированная редакция СНиП 2.07.01-89*;

СП 134.13330.2012 Системы электросвязи зданий и сооружений. Основные положения проектирования;

МГСН 3.01-01 «Жилые здания»;

МГСН 1.01-99 «Нормы и правила проектирования планировки и застройки города Москвы»;

Сборник 9.1 «Методика расчета стоимости научных, нормативно-методических, проектных и других видов работ (услуг) на основании нормируемых трудозатрат. МРР-9.1-16»;

Сборник 1.1 «Общие указания по применению Московских региональных рекомендаций. МРР-1.1-16»;

Сборник 5.5 «Автоматизированные системы учета энергопотребления (АСУЭ) в жилищно-гражданском строительстве. МРР-5.5-16».

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Сборник является методической основой для определения стоимости проектирования систем электросвязи для жилых домов, общественных и административных зданий и других объектов, проектируемых на территории города Москвы.

1.2. При определении стоимости работ на основании настоящего Сборника также следует руководствоваться положениями сборника 1. 1 «Общие указания по применению Московских региональных рекомендаций. МРР-1.1-16».

1.3. Приведение базовой стоимости работ, определенной в соответствии с настоящим Сборником, к текущему уровню цен осуществляется путем применения коэффициента пересчета (инфляционного изменения), утверждаемого в установленном порядке.

1.4. Настоящий Сборник включает в себя базовые цены на проектирование следующих слаботочных сетей, систем и устройств:

Мультисервисные волоконно-оптические линии связи (ВОЛС) систем кабельного телевидения (СКТВ), телефонии и передачи данных;

Коаксиальные магистральные сети систем кабельного телевидения (СКТВ);

Головные станции (ГС) систем кабельного телевидения (СКТВ);

Домовая распределительная сеть (ДРС) без абонентской разводки;

Абонентская телевизионная разводка;

Телефонный и радиоввод;

Магистральные сети автоматизированной системы диспетчерского контроля и управления (АСУД);

Диспетчерские АСУД;

Переподключение существующих домов к диспетчерской АСУД;

Элементы (домовая сеть) АСУД;

Система охраны входов (домофон);

Единая система охраны входов и квартир;

Локальные компьютерные сети и структурированные кабельные системы;

Учрежденческая автоматическая телефонная станция (УАТС);

Системы местной телефонной связи на базе мини-АТС, оперативно - диспетчерской, селекторной, громкоговорящей связи;

Система электрочасофикации;

Кабельпроводы и закладные устройства для сетей систем электросвязи;

Системы звукоусиления, видеопроекции, отображения информации, лингафонные системы, мини аудио-видео студии и комплекс систем электросвязи в залах многоцелевого назначения.

Также Сборник включает в себя базовые цены на проектирование электроснабжения разрабатываемых систем электросвязи.

Стоимость проектирования наружной прокладки канализации для кабелей связи и радио определяется на основании таблицы 3.8 «Сети связи и радио» Сборника 4.2 «Инженерные сети и сооружения. МРР-4.2-16».

Стоимость проектирования внутренних сетей телефонизации и радиофикации для жилых, общественных и административных зданий входит в стоимость основных проектных работ по зданиям, определяемую на основании Сборника 4.1 «Объекты капитального строительства. МРР-4.1-16». Доли стоимости подраздела «Сети связи» в стоимости основных проектных работ по зданиям приведены в соответствующих таблицах приложения 1 к МРР-4.1-16.

1.5. Распределение стоимости основных проектных работ, определенной на основании настоящего Сборника, представлено в таблице 1.1.

Таблица 1.1

Виды документации

Доля стоимости основных проектных работ (%)

Проектная документация (П)

Рабочая документация (Р)

Проектная и рабочая документация (П+Р)*

* Данная строка включена справочно для определения общей стоимости разработки проектной и рабочей документации (при необходимости).

1.6. В базовых ценах Сборника учтены и не требуют дополнительной оплаты затраты на выполнение работ, перечисленных в пунктах 3.3-3.5 МРР-1.1-16, а также:

Участие в составлении заданий на проектирование (исключая технологическое задание);

Участие совместно с заказчиком в проведении обязательных согласований проектной документации.

1.7. Базовыми ценами настоящего Сборника не учтена разработка проектных решений в нескольких вариантах в соответствии с заданием на проектирование.

1.8. В базовых ценах Сборника не учтены и требуют дополнительной оплаты работы и услуги, выполняемые по отдельным договорам с заказчиком в соответствии с таблицей 5.2 МРР-1.1-16, а также сопутствующие расходы, приведенные в пункте 3.6 МРР-1.1-16.

2. МЕТОДИКА ОПРЕДЕЛЕНИЯ СТОИМОСТИ ПРОЕКТНЫХ РАБОТ

2.1. Базовая цена на проектные работы зависит от натуральных показателей и определяется по формуле:

Ц (б) - базовая цена проектных работ, осуществляемых с привлечением средств бюджета города Москвы (тыс. руб);

а - постоянная величина, выраженная в тыс. руб.;

в - постоянная величина, имеющая размерность тыс. руб. на единицу натурального показателя;

Х - натуральный показатель.

Параметры «а» и «в» являются постоянными для определенного интервала изменения натурального показателя.

Значения параметров «а», «в» и натурального показателя «Х» представлены в соответствующих таблицах раздела 3.

2.2. Стоимость проектных работ определяется по следующей формуле:

С (б) - базовая стоимость проектных работ;

Ц (б) - базовая цена проектных работ;

Произведение корректирующих коэффициентов, учитывающих усложняющие (упрощающие) факторы и условия проектирования;

К в - коэффициент, учитывающий вид разрабатываемой документации (определяется по таблице 1.1).

2.3. Стоимость проектирования внутренних и наружных слаботочных сетей, систем и устройств на объекте, подлежащих реконструкции или техническому перевооружению, определяется с применением повышающего коэффициента 1,25.

2.4. Стоимость основных проектных работ по комплексам, состоящим из нескольких зданий, сооружений, коммуникаций определяется по натуральным показателям отдельно по каждому зданию, сооружению, образующему комплекс, а затем суммируется.

2.5. При разработке проектной документации на этапы строительства (пусковые, градостроительные комплексы), предусмотренные заданием на проектирование, стоимость проектирования определяется отдельно для каждого этапа строительства (пускового комплекса) с увеличением на 5% от стоимости проектных работ данного этапа.

3. БАЗОВЫЕ ЦЕНЫ

3.1. Мультисервисные сети, сети передачи данных и телефонии, системы кабельного телевидения (СКТВ)

1. Базовые цены подраздела 3.1 учитывают комплекс работ по проектированию систем, состоящих из оборудования и линий связи, включающий проектирование прокладок линий связи, подбор и размещение оконечного оборудования, а так же расчет систем.

Таблица 3.1.1

Мультисервисные волоконно-оптические линии связи (ВОЛС) систем кабельного телевидения (СКТВ), телефонии и передачи данных

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

ВОЛС длиной до 1000 м и количеством домов с волоконно-оптическими узами (ВОУ):

ВОЛС длиной до 2000 м и количеством домов с ВОУ:

ВОЛС длиной до 3000 м и количеством домов с ВОУ:

ВОЛС длиной свыше 3000 м и количеством домов с ВОУ:

Примечания:

2. В базовых ценах учтена прокладка волоконно-оптических сетей СКТВ в проектируемой кабельной канализации и по воздушно-кабельным переходам. При проектировании прокладки волоконно-оптических сетей в канализации без использования воздушно-кабельных переходов к базовой цене применяется коэффициент К=0,85. При проектировании прокладки волоконно-оптических сетей по существующим коллектору или канализации к базовой цене применяется коэффициент К=1,2.

3. Стоимость проектирования оптической головной станции определяется по пункту 1 таблицы 3.1.3 настоящего Сборника

4. При раздельном проектировании в составе мультисервисной сети отдельных сетей (например, передачи данных, телефонии и пр., передающих информацию по различным волокнам ВОК) к базовым ценам для каждой последующей сети применяется коэффициент К=0,6.

Таблица 3.1.2

Коаксиальные магистральные сети систем кабельного телевидения (СКТВ) на 50 каналов

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

Коаксиальные магистральные сети на 1 дом, протяженностью, п.м:

от 100 до 200

от 200 до 300

от 300 до 500

Магистральные сети с числом домов до 5, протяженностью, п.м:

от 300 до 500

от 500 до 1000

от 1000 до 2000

Магистральные сети с числом домов до 10, протяженностью, п.м:

от 500 до 1000

от 1000 до 2000

от 2000 до 5000

Примечания:

1. В базовых ценах не учтено проектирование прокладки телефонной канализации, стоимость которого рассчитывается на основании таблицы 3.8 МРР-4.2-16, а также проектирование головных станций, стоимость которого рассчитывается на основании таблицы 3.1.3 настоящего Сборника.

2. В базовых ценах учтена прокладка коаксиальных магистральных сетей СКТВ в проектируемой кабельной канализации.

3. При проектировании прокладки коаксиальных магистральных сетей СКТВ воздушно-кабельными переходами и по существующим коллектору или канализации к базовой цене применяется коэффициент К=1,2.

Таблица 3.1.3

Головные станции (ГС) систем кабельного телевидения (СКТВ)

Примечания:

1. Базовыми ценами учтены проектные работы по подбору, установке, размещению и подключению оборудования головных станций и антенных сооружений в соответствии с ТУ и частотным планом сети.

Таблица 3.1.4

Домовая распределительная сеть (ДРС) системы кабельного телевидения (СКТВ) на 50 каналов без абонентской разводки

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

В домах до 17 этажей с количеством абонентов до 4 на этаже в секции, при общем количестве абонентов:

от 50 до 100

от 100 до 200

от 200 до 300

от 300 до 400

от 400 до 500

от 500 до 600

В домах до 17 этажей с количеством абонентов свыше 4 на этаже в секции, при общем количестве абонентов:

от 50 до 100

от 100 до 200

от 200 до 300

от 300 до 400

от 400 до 500

от 500 до 600

В домах до 25 этажей с количеством абонентов до 4 на этаже в секции, при общем количестве абонентов:

от 50 до 100

от 100 до 200

от 200 до 300

от 300 до 400

от 400 до 500

от 500 до 600

от 600 до 1000

В домах до 25 этажей с количеством абонентов свыше 4 на этаже в секции, при общем количестве абонентов:

от 100 до 200

от 200 до 300

от 300 до 400

от 400 до 500

от 500 до 600

от 600 до 1000

Примечания:

1. При проектировании ДРС в зданиях высотой более 75 м к базовой цене применяется коэффициент К=1,2.

2. При проектировании элементов магистральной сети СКТВ (внутри здания) к базовой цене применяется коэффициент К=0,4.

3. Базовые цены для ДРС разработаны для их проектирования в индивидуальных домах.

4. При проектировании ДРС в домах типовых серий к базовой цене применяется коэффициент 0,7.

5. Стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

Таблица 3.1.5

Абонентская разводка в домовой распределительной сети (ДРС) системы кабельного телевидения (СКТВ)

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

Абонентская разводка в одном здании с количеством оконечных розеток:

от 50 до 100

от 100 до 200

от 200 до 400

от 400 до 600

от 600 до 1000

Примечание: абонентская телевизионная разводка проектируется по заданию заказчика в индивидуальных жилых домах, в общественных и административных зданиях. Абонентской разводкой считается разводка от абонентского отвода распределительного устройства, установленного в этажном шкафу слаботочного стояка, до телевизионных розеток.

Таблица 3.1.6

Домовая сеть телефонизации здания по технологии PON

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

В домах при общем количестве абонентов:

от 50 до 100

от 100 до 200

от 200 до 300

от 300 до 400

от 400 до 500

от 500 до 600

от 600 до 800

от 800 до 1000

Примечания:

1. Базовые цены учитывают затраты на проектирование сети телефонизации по технологии PON в существующих домах.

2. Базовыми ценами учтено проектирование прокладки оптических кабелей от домового оптического распределительного шкафа до коробок в этажном шкафу с дооборудованием домового шкафа, установкой этажных распределительных коробок, организацией новых слаботочных стояков для прокладки межэтажных кабелей, а также проведение необходимых обследований и согласований.

3. При разработке сети в проектируемых домах типовых серий, для которых разработаны типовые проекты телефонизации на медных кабелях, данная расценка применяется с коэффициентом 0,7 дополнительно к стоимости привязки раздела «Сети связи» (СС) по МРР-4.1-16, в котором в том числе при привязке осуществляется изъятие проектных решений по телефонизации на медных кабелях.

4. При разработке сети в проектируемых индивидуальных секционных жилых зданиях данная расценка применяется с коэффициентом 0,4 дополнительно к стоимости раздела «Сети связи» (СС) по МРР-4.1-16 (в котором не учтена специфика проектирования сетей на волоконно-оптических кабелях).

5. При разработке сети в проектируемых нежилых зданиях и проектируемых нежилых помещениях с конкретной технологией в жилых зданиях данная расценка применяется с коэффициентом 0,4 дополнительно к стоимости раздела «Сети связи» (СС) по МРР-4.1-16.

3.2. Телефонный и радио ввод

Таблица 3.2.1

Примечания:

1. Базовыми ценами учтены работы по организации ввода кабелей в отдельно стоящее здание, выбору места установки распределительного шкафа и других работ по увязке внутренних и наружных сетей. Настоящая расценка применяется при «привязке» типовых проектов зданий.

2. При определении стоимости проектирования телефонного ввода к базовой цене применяются корректирующие коэффициенты в зависимости от количества пар:

До 300 пар или 6 оптических волокон - коэффициент 1,0;

Свыше 300 пар или свыше 8 оптических волокон - коэффициент 1,1.

3.3. Автоматизированные системы управления и диспетчеризации (АСУД)

Таблица 3.3.1

Магистральные сети АСУД

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

Магистральные распределительные сети (ДЭЗ-диспетчерская-дом) на один АРМ в диспетчерской с количеством домов:

Примечания:

1. В базовых ценах не учтено проектирование прокладки телефонной канализации, стоимость которого рассчитывается на основании таблицы 3.8 МРР-4.2-16.

2. Стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

Таблица 3.3.2

Диспетчерские АСУД

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

Диспетчерская АСУД в проектируемом здании

Диспетчерская АСУД в существующем здании

Временная диспетчерская (пультовая) АСУД в здании

Примечания:

1. При переносе существующей диспетчерской из одного здания в другое (проектируемое или существующее) к базовой цене соответственно пунктов 1, 2 таблицы 3.3.2 применяется коэффициент 1,15.

2. При подключении существующих домов от нескольких диспетчерских на одну (проектируемую или существующую) к базовой цене соответственно пунктов 1, 2 таблицы 3.3.2 применяется коэффициент 1,2.

3. Стоимость проектирования электроснабжения оборудования в проектируемом здании определяется по пункту 3.11.

Таблица 3.3.3

Переподключение существующих домов к диспетчерским АСУД

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

Переподключение существующего дома к новому АРМу АСУД, при количестве модулей обработки информации (концентратор, терминал):

Таблица 3.3.4

Элементы (домовая сеть) АСУД

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

Элементы (домовая сеть) АСУД, громкоговорящая связь на базе АСУД при количестве модулей обработки информации (концентратор, терминал):

Примечания:

1. При определении стоимости проектирования элементов АСУД в жилых домах с первыми нежилыми этажами применяются следующие корректирующие коэффициенты (в соответствии с МРР-5.5-16):

С одним нежилым этажом К= 1,1;

С двумя нежилыми этажами К= 1,2;

С тремя и более нежилыми этажами К=1,25.

2. Базовые цены разработаны для проектирования в индивидуальных домах. При проектировании элементов АСУД в домах типовых серий к базовой цене применяется коэффициент 0,7.

3. При проектировании элементов АСУД на внедряемом вновь оборудовании, с использованием новых технических средств, а также технических средств, находящихся в стадии серийного освоения к базовой цене применяется коэффициент 1,2. Под указанным оборудованием понимается оборудование (в т.ч. того же производителя), имеющее структуру, существенно отличающуюся от структуры ранее используемого оборудования за счет существенного изменения элементов системы и (или) связей между ними (например, использование радиоканала вместо проводных каналов связи). Коэффициент применяется при первом использовании разработчиком АСУД с документальным подтверждением.

4. Стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

3.4. Системы охраны входов (домофон) и квартир

Таблица 3.4.1

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

Системы охраны входов (аудиодомофон) в одной секции для абонентов в количестве:

от 88 до 144

от 144 до 204

от 204 до 264

от 264 до 300

Единая система охраны входов и квартир, видеодомофон в одной секции для абонентов в количестве:

от 88 до 144

от 144 до 204

от 204 до 264

от 264 до 300

Примечания:

1. Базовые цены для систем охраны входов и охраны квартир разработаны для их проектирования в индивидуальных домах.

2. При проектировании системы в домах типовых серий к базовой цене применяется коэффициент 0,7.

3. При проектировании жилых домов из нескольких секций или дополнительных входов в нежилых зданиях к базовой цене применяются следующие понижающие коэффициенты:

От 2 до 4 секций (входов) К=0,85;

От 5 до 8 секций (входов) К=0,65;

От 8 до 10 секций (входов) К=0,55;

Свыше 10 секций (входов) К=0,5.

4. При проектировании системы на внедряемом вновь оборудовании, с использованием новых технических средств, а также технических средств, находящихся в стадии серийного освоения к базовой цене применяется коэффициент 1,2. Под указанным оборудованием понимается оборудование (в т.ч. того же производителя), имеющее структуру, существенно отличающуюся от структуры ранее используемого оборудования за счет существенного изменения элементов системы и (или) связей между ними (например, использование радиоканала вместо проводных каналов связи). Коэффициент применяется при первом использовании разработчиком системы с документальным подтверждением.

5. При проектировании системы охраны входов без разводки по квартирам к базовой цене применяется коэффициент 0,7.

6. Стоимость проектирования электроснабжения оборудования, в том числе устанавливаемого в квартирах, определяется по пункту 3.11.

3.5. Локальные компьютерные сети и структурированные кабельные системы

Таблица 3.5.1

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

Структурированные кабельные системы (СКС) в одном здании с количеством портов:

от 50 до 100

от 100 до 300

от 300 до 500

от 500 до 1000

от 1000 до 2000

от 2000 до 4000

Активная часть компьютерной сети в одном здании с количеством портов:

от 50 до 100

от 100 до 300

от 300 до 500

от 500 до 1000

от 1000 до 2000

от 2000 до 4000

Примечания:

1. При отсутствии данных о количестве компьютерных рабочих мест и абонентских розеток местной телефонной связи количество портов определяется в зависимости от общей площади офисной части здания из расчета 10 кв.м на 2 порта и 15 - 20 кв.м на один телефон.

2. При проектировании структурированных кабельных систем (СКС) без горизонтальной (или вертикальной) подсистемы к базовой цене применяется коэффициент 0,5.

3. Базовыми ценами данной таблицы учтено проектирование прокладки закладных устройств только для компьютерной и местной телефонной сетей, при этом расценки пункта 3.9 не применяются.

4. При проектировании общих закладных устройств для всего комплекса систем электросвязи применяется расценка по пункту 3.9. При этом к базовой цене таблицы 3.5.1 применяется коэффициент 0,8.

5. Стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

3.6. Учрежденческая автоматическая телефонная станция (УАТС)

Таблица 3.6.1

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

УАТС в одном здании, с количеством номеров:

от 100 до 300

от 300 до 500

от 500 до 800

от 800 до 1000

Примечания:

1. Базовыми ценами настоящей таблицы учтено проектирование только станционной части. При проектировании местной телефонной связи на базе УАТС стоимость проектирования линейной части определяется по таблице 3.5.1.

2. Стоимость проектирования электроснабжения УАТС определяется по пункту 3.11.

3.7. Системы местной телефонной связи на базе мини-АТС, оперативно-диспетчерской, селекторной, громкоговорящей связи

Таблица 3.7.1

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

Системы местной телефонной связи на базе мини-АТС, оперативно-диспетчерской, селекторной, громкоговорящей связи, при количестве абонентов:

Примечания:

1. Базовыми ценами настоящей таблицы учтено проектирование станционной и линейной части, а так же закладных устройств (кабель-проводов) в местах размещения абонентских устройств.

2. Стоимость проектирования электроснабжения оборудования систем местной телефонной связи на базе мини-АТС, оперативно-диспетчерской, селекторной, громкоговорящей связи определяется по пункту 3.11.

3.8. Система электрочасофикации

Таблица 3.8.1

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

Станция электрических часов с количеством вторичных часов:

от 50 до 100

Примечания:

1. Базовыми ценами настоящей таблицы учтено проектирование станционной и линейной части, а так же закладных устройств (кабельпроводов) в местах размещения вторичных часов.

2. Стоимость проектирования электроснабжения оборудования системы электрочасофикации определяется по пункту 3.11.

3.9. Кабельпроводы и закладные устройства для сетей систем электросвязи

Таблица 3.9.1

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

Кабельпроводы (закладные) для сетей систем электросвязи с плотностью до 6 кв.м на абонентское, при количестве абонентских устройств в одном здании:

от 50 до 100

от 100 до 300

от 300 до 500

от 500 до 700

от 700 до 1000

от 1000 до 1500

от 1500 до 2000

от 2000 до 4000

от 4000 до 6000

Кабельпроводы (закладные) для сетей систем электросвязи с плотностью от 6 до 12 кв.м на абонентское устройство, при количестве абонентских устройств в одном здании:

от 50 до 100

от 100 до 300

от 300 до 500

от 500 до 700

от 700 до 1000

от 1000 до 1500

от 1500 до 2000

от 2000 до 4000

от 4000 до 6000

Кабельпроводы (закладные) для сетей систем электросвязи с плотностью свыше 12 кв.м на абонентское устройство, при количестве абонентских устройств в одном здании:

от 50 до 100

от 100 до 300

от 300 до 500

от 500 до 700

от 700 до 1000

от 1000 до 1500

от 1500 до 2000

от 2000 до 4000

от 4000 до 6000

Примечания:

1. Данная таблица применяется для определения стоимости проектирования объединенных закладных устройств и кабельпроводов при проектировании комплекса систем электросвязи, определяемых настоящим сборником.

2. Плотность на одно абонентское устройство определяется делением полезной площади здания в кв.м (включая коридоры) на количество абонентских устройств.

3. При проектировании закладных устройств в неполном объеме принимается, что вертикальная прокладка сетей электросвязи составляет 20%, горизонтальная - 80% (в том числе по коридорам - 30%, по помещениям - 50%) от объема работ, определяемого по таблице 3.9.1.

3.11 Системы звукоусиления, видеопроекции, отображения информации, лингафонные системы, мини аудио-видео студии и комплекс систем электросвязи в залах многоцелевого назначения

Таблица 3.10.1

Система звукоусиления

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

Система звукоусиления в залах с количеством мест:

от 200 до 400

от 400 до 800

от 800 до 1000

от 1000 до 1500

от 1500 до 2000

Примечания:

1. Базовыми ценами не учтено выполнение электроакустического расчета системы.

2. Базовые цены рассчитаны для речевого режима работы системы.

3. Базовыми ценами учтено проектирование кабельпроводов и закладных устройств.

4. Стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

Таблица 3.10.2

Мини аудио-видео студии

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

Комплекс аудио программ

Комплекс видео программ

Комплекс аудио-видео программ

Примечания:

1. Базовыми ценами не учтено выполнение акустического расчета и рекомендаций по обработке студии и аппаратных комплекса.

2. Стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

Таблица 3.10.3

Система видеопроекции

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

Система видеопроекция на экран с диагональю, метров:

от 1,2 до 2,7

от 2,7 до 4,7

от 4,7 до 7,0

от 7,0 до 10,0

Примечания:

1. Базовыми ценами учтено проектирование технологической части экрана. Стоимость проектирования механической части экрана определяется дополнительно по соответствующему нормативно-методическому документу.

2. Стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

Таблица 3.10.4

Комплекс систем электросвязи в залах многоцелевого назначения

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

Комплекс систем электросвязи в залах, с числом мест:

от 700 до 1600

от 1600 до 2000

Примечания:

1. Комплекс систем электросвязи включает в себя следующие подсистемы:

Звукоусиления с речевым и музыкальными режимами работы;

Видеопроекция на большой экран;

Аппаратно-программный блок с мини студией (8%);

Режиссерско-постановочной связи (12%);

Трансляции мероприятий из зала в помещения здания (10%);

Перевода речи до 4-х языков и технологического наблюдения для перевода речи (20%).

2. В случае отсутствия в комплексе некоторых подсистем к базовой цене применяется понижающий коэффициент с учетом процентного вклада данных подсистем. Вклад указан в скобках после названия подсистемы.

3. Стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

Таблица 3.10.5

Лингафонные системы

Наименование объекта проектирования

Натуральный показатель «Х»

Параметры базовой цены

а, тыс. руб.

в, тыс.руб./ед. натур. пок.

Лингафонные системы, с числом мест в одном помещении:

Примечание: стоимость проектирования электроснабжения оборудования определяется по пункту 3.11.

3.11. Электроснабжение систем электросвязи, предусмотренных настоящим сборником

Таблица 3.11.1

Примечания:

1. Группой подключения является линия электрической сети от распределительного щита до точки (точек) подключения слаботочного устройства с установкой в щите отдельного аппарата защиты,

2. При размещении слаботочного оборудования вне электрощитовой с установкой дополнительного распределительного щита, к базовой цене применяется коэффициент 1,2.

ПРИЛОЖЕНИЯ

Приложение 1

Принятые сокращения

Приложение 2

Примеры расчета стоимости работ

Пример 1. Волоконно-оптические сети (ВОЛС) системы кабельного телевидения (СКТВ).

1. Исходные данные.

1.1. Волоконно-оптическая сеть протяженностью 900 м.

1.2. Число волоконно-оптических узлов - 5.

2. Расчет стоимости.

2.1. Базовая цена проектирования волоконно-оптических сетей СКТВ определяется по формуле (2.1) на основании данных таблицы 3.1.1 (пункт 1):

Ц (б) = а + в х Х = 66,0 + 8,0 х 5 = 106,0 тыс. руб.

К в = 0,4 - коэффициент, учитывающий разработку проектной документации.

С (т) = С (б) х К пер = 42,4 х 3,533 = 149,8 тыс.руб.

Пример 2. Коаксиальные магистральные сети системы кабельного телевидения (СКТВ) на 50 каналов.

1. Исходные данные.

1.1. Коаксиальная магистральная сеть протяженностью 550 м.

1.2. Число домов - 3.

1.3. Проектная документация - 40% согласно таблице 1.1.

2. Расчет стоимости.

2.1. Базовая цена проектирования коаксиальных магистральных сетей СКТВ определяется по формуле (2.1) на основании данных таблицы 3.1.2 (пункт 2):

Ц (б) = а + в х Х = 54,0 + 0,022 х550 = 66,1 тыс. руб.

2.2. Стоимость разработки проектной документации в базовом уровне цен определяется по формуле (2,2):

К в = 0,4 - коэффициент, учитывающий разработку проектной документации;

2.3. Стоимость разработки проектной документации в текущем уровне цен по состоянию на IV квартал 2016 года определяется по формуле (4.1) «Общих указаний по применению Московских региональных рекомендаций. МРР-1.1-16» и составляет:

С (т) = С (б) х К пер = 26,44 х 3,533 = 93,41 тыс.руб.

где К пер =3,533 - коэффициент пересчета (инфляционного изменения) базовой стоимости работ градостроительного проектирования, осуществляемых с привлечением средств бюджета города Москвы, в уровень цен IV квартала 2016 года (согласно приложению к приказу Москомэкспертизы № МКЭ-ОД/16-1 от 21.01.2016).

Пример 3. Домовая распределительная сеть (ДРС) системы кабельного телевидения (СКТВ) на 50 каналов, без абонентской разводки.

1. Исходные данные.

1.1. 17-ти этажный, 4-х секционный жилой дом

1.2. Число абонентов - 256

1.3. Проектная документация - 40% согласно таблице 1.1.

2. Расчет стоимости.

2.1. Базовая цена проектирования домовой распределительной сети (ДРС) определяется по формуле (2.1) на основании данных таблицы 3.1.4 (пункт 1):

Ц (б) = а + в х Х = 67,0 + 0,150 х256 = 105,4 тыс.руб.

2.2. Стоимость разработки проектной документации в базовом уровне цен определяется по формуле (2.2):

К в = 0,4 - коэффициент, учитывающий разработку проектной документации

2.3. Стоимость разработки проектной документации в текущем уровне цен по состоянию на IV квартал 2016 года определяется по формуле (4.1) «Общих указаний по применению Московских региональных рекомендаций. МРР-1.1-16» и составляет:

С (т) = С (б) х К пер = 42,2 х 3,533 = 149,1 тыс.руб.

где К пер =3,533 - коэффициент пересчета (инфляционного изменения) базовой стоимости работ градостроительного проектирования, осуществляемых с привлечением средств бюджета города Москвы, в уровень цен IV квартала 2016 года (согласно приложению к приказу Москомэкспертизы № МКЭ-ОД/16-1 от 21.01.2016).

Понятие и виды электросвязь

1. Современные виды электросвязи

Все виды электросвязи можно условно разделить на четыре группы передачи:

· звуковых сообщений

· неподвижных оптических сообщений;

· подвижных оптических изображений;

· сообщений между ЭВМ.

· передачи сообщений, только при развитии IP - телефонии.

Телеграфная связь и передача данных служат для передачи дискретных сообщений в виде текстов (телеграмм) и цифровых данных соответственно. Причем передача данных обеспечивает более скоростную и качественную передачу сообщений.

Факсимильная связь и ее разновидность (передача газетных полос) обеспечивают передачу оптических сообщений в виде неподвижных изображений (в том числе и цветных).

Телефонная связь и системы звукового вещания предназначены для передачи звуковых сообщений. Телефонная связь обеспечивает ведение переговоров между людьми (абонентами), а звуковое вещание -- одностороннюю и высококачественную передачу звуковых сообщений (радиопрограмм), предназначенных одновременно для многих слушателей.

Телевизионное вещание и видеотелефонная связь обеспечивают одновременную передачу оптических и звуковых сообщений. При этом телевидение обеспечивает одностороннюю передачу массовых сообщений, а видеотелефонная связь -- двустороннюю передачу индивидуальных сообщений, позволяя вести переговоры, при которых собеседники видят друг друга. Этот вид электросвязи получил широкое распространение, из-за относительно высокой стоимости Каждый вид электросвязи реализуется с помощью определенной системы, обеспечивающей передачу на расстояние конкретных сообщений. Поэтому в электросвязи существуют системы: телефонной, телеграфной, факсимильной, видеотелефонной связи, передачи газет, передачи данных, а также звукового и телевизионного вещания. Состав и схемы этих систем определяются характером и видом передаваемых сообщений.

Телефонные, телеграфные, видеотелефонные системы и системы передачи данных обеспечивают одновременную двухстороннюю передачу сообщений между абонентами, то есть позволяют вести переговоры. Для этого каждый абонент должен иметь как передатчик, так и приемник, связанные между собой двумя каналами связи, один из которых обеспечивает передачу сигналов в одном направлении, а другой в другом (обратном) направлении.

Системы звукового и телевизионного вещания, а также передачи газет обеспечивают одностороннюю передачу сообщений, предназначенных одновременно для большого числа абонентов. Каждый слушатель или группа слушателей, находящиеся у одного приемника, пользуется "своей" системой связи, состоящей из передатчика, канала связи и приемника. При этом передатчик является общим элементом одновременно для многих систем. Общее число систем соответствует числу приемников.

История развития пожарной автоматики

На смену морально и технически устаревшим пожарным извещателям АТИМ, АТП, ДТЛ, ДИ-1, КИ-1, РИД-1, ИДФ-1, ИДФ-1М, ПОСТ-1 и приемно-контрольного оборудования СКПУ-1, СДПУ-1, ППКУ-1М, ТОЛЮ/100...

Многоканальная система передачи информации

Необходимо отметить, что для рассматриваемой СПДИ выполняются необходимые условия функционирования многоканальной системы электросвязи, а именно и. Целесообразно запас рассматриваемого канала связи по пропускной способности Ск>Iс =1...

Модернизация телефонной сети в сельской местности Республики Казахстан

Модернизируемая сельская сеть предполагает: использование цифровых АТС большей, чем в настоящее время, емкости в сочетании с необслуживаемыми абонентскими выносами. Современные сети строятся с использованием удаленных концентраторов...

Основы инфокоммуникационных технологий

Электросвязь -- передача информации с помощью электрических сигналов по проводам, волоконно-оптическому кабелю или радиоволн. Принцип электросвязи основан на преобразовании сигналов сообщения (звук...

Понятие и виды электросвязь

Системы для передачи непрерывных сообщений. Системы телефонной связи предназначены для передачи на расстояние звуковых (акустических) сообщений, создаваемых голосовыми связками и воспринимаемых органом слуха (ухом) человека...

Понятие и виды электросвязь

Витая пара является самой дешёвой и распространённой средой передачи данных. Она состоит из двух изолированных медных проводов, свитых друг с другом. Витая пара широко используется внутри зданий для объединения компьютеров в локальные сети...

Понятие и виды электросвязь

Классификация решений профессиональной мобильной радиосвязи (ПМР) определяется различием потребностей заказчиков, а также их отраслевой спецификой. Как и вся коммуникационная инфраструктура предприятия...

Разработка компонентов инфраструктуры сервисного обслуживания встроенной памяти гибкой автоматизированной системы на кристалле

В настоящее время значительная часть подобных конфигурируемых проектов разрабатывается в виде печатной платы как комбинация микросхем программируемой и жесткой логики, аналоговых блоков, микроконтроллеров...

Расчет экономической эффективности внедрения новых служб

Современные лазерные гироскопы

Современный лазерный гироскоп представляет собой сложную оптико-электронную систему, основным элементом которой является КОКГ. Конструкция лазерного гироскопа выполняется в виде монолитного блока из высококачественного кварца или ситалла...

Стандартизация оборудования в области радиосвязи

Организацией, обеспечивающей стандартизацию оборудования связи в глобальном масштабе при ООН, является Международный союз электросвязи (МСЭ)...

Эксплуатация трассовых радиолокаторов и радиолокационных комплексов

1.1 Состав и структура общегосударственной системы связи.

1 .2 Архитектура ЕСЭ. Статус сетей, служб, систем электросвязи.

1.3 Классификация служб, пользователей и услуг.

1.4 Номенклатура и виды предоставляемых услуг.

1.5 Основные тенденции развития сетей электросвязи.

1.6 Этапы развития ЕСЭ России.

1.7 Общие требования к сетям электросвязи.

Раздел 1 посвящен концептуально – целевым основам построения, развития

и общим огранизационно – техническим положениям Единой сети электросвязи

Российской Федерации. В данном разделе с системных позиций рассмотрено назначение, состав и структура Общегосударственной системы связи РФ. Особое внимание уделено архитектуре Единой сети электросвязи (ЕСЭ), принципам ее построения, категориям сетей, входящим в состав ЕСЭ. Рассмотрено назначение первичной сети, вторичных сетей, систем электросвязи и служб электросвязи. Приведены классификация пользователей сети, услуг и служб электросвязи. Значительное внимание уделено номенклатуре услуг электросвязи, предостав-ляемых населению страны, в настоящее время и недалеком будущем. Указаны основные тенденции развития электросвязи в мире, что в значительной степени определяет процесс развития ЕСЭ. Важное место в разделе занимает рассмотрение

этапов развития ЕСЭ, определяющие техническую политику, проводимую Министерством информационных технологий и связи РФ. Значительное внимание

уделяется требованиям, предъявляемым к сетям связи, которые определяют политику разработки средств связи, проектирования и эксплуатации сетей электросвязи. Для контроля уровня усвоения изучаемого материала приводятся

контрольные вопросы. Для повышения уровня знаний и оперативного получения

справочной информации приведен список литературы и глоссарий.

1.1 Состав и структура общегосударственной системы связи

Существование современного общества немыслимо без обмена информацией. Информация, понимаемая в широком смысле этого слова как отраженное разнообразие окружающего мира, выполняет в обществе следующие основные функции: коммуникативную , или функцию общения людей; познавательную, целью которой является получение новой информации; управленческую, целью которой является формирование целесообразного поведения управляемой системы. Для интенсификации информационных процессов при общении людей в первой половине прошлого века началось развитие средств электрической связи, обеспечивающих ускорение в первую очередь таких форм движения информации, как передача и распределение. За полтора столетия средства связи много раз изменялись, появлялись новые виды электрической связи, однако основная их функция в обществе – интенсификация коммуникатив-ных процессов – сохранилась. Потребности в интенсификации информаци-онных процессов, связанных с управленческой и познавательной деятель-ностью людей, привели к созданию вычислительной техники. Средства вычислительной техники позволили ускорить такие формы движения информации, как обработка, поиск, хранение, восприятие, отображение, распределение и др. Органическое объединение, интеграция средств элек-тросвязи и вычислительной техники позволили обеспечить согласованное ускорение всех форм движения информации, интенсификацию всех инфор-мационных процессов в обществе. Целесообразная информационная деятельность людей, информация и сред-ства информационной деятельности являются основными компонентами информационной системы общества. Если целью информационной деятель-ности является общение с помощью средств связи, то создаваемая для этой цели информационная система называется системой связи . В соответствии системным подходом при создании любой системы объеди-нение компонентов в систему, их взаимодействия, связи и отношения дол-жны быть направлены на достижение общей цели. В частности, в рамках системы связи должны быть согласованы принципы взаимодействия средств связи, указаны их параметры, установлены порядок пользования этими средствами, определены методы эксплуатации, пропорции и перспективы их развития, согласованы цели назначения всех элементов и подсистем с общей целью функционирования системы.

В нашей стране для наиболее полного удовлетворения потребностей населе-ния, органов государственной власти и управления, обороны и безопасности правопорядка, а также хозяйствующих объектов в услугах электрической и почтовой связи создается и действует система связи Российской Федера-ции (СС РФ). Система связи РФ (Связь РФ) объединяет все системы связи страны по организационному, технологическому, методологическому и другим признакам в единую систему связи и представляет собой совокупность сетей, служб связи и других средств обеспечения, расположенных и функционирующих на территории РФ. Средства СС РФ совместно со средствами ВТ (вычислительной техники) составляют техническую основу информатизации общества. Структура системы связи РФ, представлена на рис. 1.1

Рис. 1.1 Состав системы связи РФ

В СРФ входят федеральная связь и технологические системы связи. Основными компонентами федеральной связи являются федеральная электросвязь (ФЭС) и федеральная почтовая связь (ФПС).

Электросвязь – всякая передача или прием знаков, сигналов, письменного текста, изображений, звуков по проводной, радио -, оптической и другим электромагнитным системам.

Почтовая связь – прием, обработка, перевозка и доставка почтовых отправлений, а также перевод денежных средств.

Федеральная электросвязь включает системы связи общего пользования, системы связи специального назначения и выделенные системы связи.

Системы связи общего пользования - составная часть СС РФ, открытая для пользования всем физическим и юридическим лицам, в услугах которых этим лицам не может быть отказано.

Выделенные системы связи – это системы электросвязи физических и юридических лиц, не имеющих выхода на системы связи общего пользования.

Системы связи специального назначения предназначены для обеспечения нужд государственного управления, обороны, безопасности и охраны право-порядка в Российской Федерации. Такие системы связи не могут быть использованы для возможного оказания услуг населению. Технологические системы связи – это системы электросвязи предприятий, учреждений и организаций, создаваемые для управления внутрипроизвод-ственной деятельностью и технологическими процессами, не имеющие выхо-да на системы общего пользования. При наличии свободных ресурсов в технологических системах связи эти сетевые ресурсы могут быть присоеди-нены к системе связи общего пользования и использованы для предоставле-ния возможных услуг любому пользователю. Выделенные системы связи также могут быть присоединены к системе электросвязи общего пользования, если они соответствуют ее требованиям. В настоящее время в состав Федеральной электросвязи входят следующие системы электросвязи общего пользования: телефонной связи (СТФС); телеграфной связи (СТгС); факсимильной связи (СФС); передача газет (СПГ); передача данных (СПД); распределения программ звукового вещания (СРПЗВ); распределения программ телевизионного вещания (СРПТВ). В процессе развития СС РФ состав систем электросвязи претерпевает суще-ственные изменения за счет интеграции ряда систем и образования новых. Этот процесс обусловлен, прежде всего, внедрением новых технологий и новых технических решений на сетях электросвязи. В качестве первого шага интеграции отдельных систем электросвязи возможно объединение систем электросвязи, обеспечивающих передачу документальных сообщений, в систему документальной электросвязи (СДЭС). Дальнейшее развитие интеграции связано с созданием системы с интеграцией служб (N – ISDN и B - ISDN) и интеллектуальных систем электросвязи, а также системы связи нового (следующего) поколения - NGN. Система телефонной связи(T C ) предназначена для удовлетворения потребностей населения, учреждений, организаций и предприятий в передаче телефонных, факсимильных сообщений и данных со скоростью не более 64 кбит/с. Система ТС обеспечивает выход на технологические телефонные сети, международную телефонную сеть, а также связь с подвижными абонен-тами и Internet. Система телеграфной связи обеспечивает передачу документальных сообщений, представленных в виде буквенно-цифрового текста. Система передачи данных обеспечивает передачу данных широкому кругу предприятий и учреждений страны, населению, а также для удовлетворения нужд автоматизированных систем управления. Система факсимильной связи обеспечивает передачу неподвижных, как цветных, так черно-белых, полутоновых и штриховых изображений в виде фотографий, рисунков, графиков, рукописных текстов и т.п. на любом языке и с любым алфавитом, нанесенных на бланки типовых размеров. Система передачи газет предназначена для передачи оригиналов-оттисков газет, поступающих от издательств в пункты децентрализованной печати. Система распределения сигналов программ звукового вещания предназ-начена для передачи программ вещания населению страны. Система распределения сигналов телевизионных программ предназначена для реализации телевизионного вещания.

Средства обеспечения СС РФ

Все средства, обеспечивающие нормальное функционирование СС РФ, можно разделить на средства технического, программного, методического, информационного и организационного обеспечения. Техническое обеспечение СС РФ – совокупность устройств и систем связи, электронных и вычислительных машин и систем, линейных и гражданский сооружений, объединенных в единый комплекс технических средств связи страны. Программное обеспечение – совокупность операционных систем, трансля-торов, компиляторов, пакетов прикладных программ и эксплуатационных документов, обеспечивающих функционирование СС РФ. Методическое обеспечение – совокупность методов, моделей, алгоритмов, правил, нормативов, инструкций, регламентирующих взаимодействие техни-ческих средств и людей с техническими средствами в процессе функциони-рования СС РФ. Информационное обеспечение включает: описание аппаратуры; справочные данные (например, телефонные справочники); сообщения для программ радио и телевизионного вещания; учетные и архивные сведения, необходимые для планирования и развития СС РФ; текущие сведения о функционировании системы и другую информацию. Организационное обеспечение включает : инструкции, руководящие материалы, приказы, штатные расписания, а также документы, определя-ющие цели, права, обязанности, режимы работы, взаимодействие работников и организационных подразделений на различных стадиях функционирования и развития Системы связи РФ. Опыт и разработки в создании больших организационно-технических систем показывает, что переоценка роли каких-либо средств обеспечения, может свести на нет все усилия по созданию эффективно действующей системы связи. В соответствии с принципами целостности системной методологии на всех этапах развития системы ее необходимо рассматривать как целое, т.е. учитывать все ее компоненты, их связи и отношения, существенно влияющие на достижение цели, на ее системные свойства.