Сайт о телевидении

Сайт о телевидении

» » Помехи и искажения. Помехи в радиоканалах

Помехи и искажения. Помехи в радиоканалах

При передаче сигнала по линии связи он искажается и воспроизводится с некоторой ошибкой. Причиной таких ошибок являются искажения сигналов в канале связи и помехи, воздействующие на сигнал .

Искажения часто обусловлены известными характеристиками линии связи и тогда могут быть устранены путем надлежащей коррекции.

Помехи заранее неизвестны и поэтому не могут быть полностью устранены. Они весьма разнообразны как по своему происхождению, так и по физическим свойствам. Можно дать следующую классификацию помех по месту их возникновения:

атмосферные помехи;

промышленные помехи (индустриальные помехи);

космические помехи;

электризационные помехи;

помехи посторонних каналов связи;

внутренние шумы.

Атмосферные помехи обусловлены электрическими процессами в атмосфере и, прежде всего, грозовыми разрядами. Энергия этих помех сосредоточена, главным образом, в области ДВ и СВ.

Промышленные помехи возникают из-за резких изменений тока в электрических цепях всевозможных электроустановок. К ним относятся помехи от электротранспорта, электрических моторов, медицинских установок, систем зажигания двигателей и т.д.

Космические помехи создаются радиоизлучением внеземных источников. Они создают общий шумовой фон и в наибольшей степени проявляются на ультракоротких волнах.

Электризационные помехи, часто возникающие во время пурги или песчаной бури, создаются наэлектризованными снежными частицами или песчинками. Эти помехи возникают при скорости ветра свыше 5,5 м/с и ощутимы на частотах ниже 15 МГц.

Помехи посторонних каналов связи – обусловлены работой посторонних радиостанций. С учетом источника происхождения их называют также стационарными. Этот вид помех наиболее характерен для КВ диапазоне.

В зависимости от характера изменения во времени различают флуктуационные, импульсные (сосредоточенные во времени) и узкополосные (сосредоточенные по спектру) помехи.

Флуктуационная помеха представляет собой непрерывное колебание, меняющееся случайным образом. Часто она описывается нормальным законом распределения. Быстрое изменение во времени позволяет заменить реальные флюктуационные помехи так называемым белым шумом - процессом с постоянным спектром.

Импульсные помехи представляет собой случайную последовательность коротких сигналов обычно следующих редко, что реакция приемника на текущий импульс успевает уменьшится до нуля к моменту появления очередного импульса. Типичными примерами таких помех являются сигналы, создаваемые разрядами молний или искрением контактов в электрических двигателях.

Сосредоточенные по спектру помехи занимают сравнительно узкую полосу частот, существенно меньшую полосы частот сигнала. Чаще всего они обусловлены сигналами посторонних радиостанций, или излучениями промышленных или медицинских генераторов высокой частоты различного назначения.

В зависимости от характера воздействия различают аддитивную помеху суммирующуюся с полезным сигналом и мультипликативную помеху

,

где – переданный сигнал, – аддитивная помеха;

Помехи в системах связи

Внешние помехи принимаются антенной вместе с полезным сигналом и создаются:

а) электромагнитными процессами, происходящими в атмосфере, ионосфере и космическом пространстве;

б) электроустановками и соседними р/станциями;

в) средствами постановки преднамеренных помех.

Внутренние помехи локализованы в различных элементах системы радиосвязи (флуктуационные шумы ламп и полупроводниковых приборов, нестабильность питающих напряжений и т.п.). Характеристики внутренних помех приемного устройства обычно пересчитываются к его входу.

Внутренние и внешние помехи являются аддитивными, когда на входе ПрУ сигнал представляется в виде:

где S(t) - передаваемый сигнал, n(t) - помеха. Аддитивные помехи: флуктуационные, импульсные и синусоидальные.

А. К Флуктуационным помехам (ФП) относятся шумы приемника и шумы среды распространения сигнала. Их спектр на входе ПУ обычно шире полосы пропускания ПУ. Плотность вероятности ФП часто является нормальной. В большинстве случаев ее принимают как аддитивный БГШ.

Б. Импульсные помехи представляют собой непериодическую последовательность одиночных радиоимпульсов и создаются атмосферными и промышленными источниками помех. (В некоторых случаях посторонними каналами связи).

В. Синусоидальные помехи (СП) - помехи, сосредоточенные по спектру (ширина их спектра мала по сравнению с полосой пропускания приемного тракта). Источники СП:

  • станции преднамеренных помех;
  • генераторы ВЧ сигналов;
  • радиостанции эталонных частот. К синусоидальным можно отнести комбинированные помехи внутри самого приемника.

Искажения сигналов в линиях связи

Искажения сигналов в ЛС обусловлены хаотическим изменением коэффициента передачи физической среды, в которой распространяется сигнал. Изменения коэффициента проявляется в флуктуациях амплитуды и фазы в точке приема. В КВ и УКВ диапазонах частот возникают искажения сигналов в виде замираний, обусловленных многолучевостью распространения сигналов. Обычно такие искажения называют мультипликативной помехой. В этом случае радиосигнал представляется в виде произведения

передаваемого сигнала S(t), и помехи m(t).

В общем случае на полезный сигнал воздействуют аддитивная и мультипликативная помехи.

Речевые сообщения и методы их преобразования

Речь - непрерывный нестационарный случайный процесс, образованный следующими друг за другом звуками.

Звуки речи образуются в результате прохождения воздушного потока из легких через голосовые связки, полость рта и носа. Спектральная плотность речевого процесса S(t), определенная экспериментально, представлена на рисунке 1.

Она достигает максимального значения на частоте 500 Гц. Ширина спектра на уровне 0,5 составляет примерно 3 КГц (DF=3400-3100) для служебной связи. В радиовещании художественных программ (КВ) – 50-4500 Гц, в УКВ спектр ТЛФ КС – 30-10000 Гц.

Возможные способы передачи речи делятся на:

  • непосредственную передачу речевого сигнала;
  • передача с предварительным преобразованием речевого сигнала.

Непосредственная передача речевого сообщения может осуществляться по аналоговым, импульсным и цифровым каналам. В аналоговых КС сигналом является гармоническое колебание, один из параметров которого (амплитуда, частота, фаза) изменяется по закону речевого сообщения. При передаче речевых сообщений по импульсным КС по закону речевого процесса изменяются параметры радиоимпульсов (амплитуда, длительность и время появления). В цифровых КС непрерывные речевые сообщения передаются с помощью цифровых сигналов.

Передача с предварительным преобразованием речевого сигнала осуществляется по каналам связи, имеющим физические ограничения, в частности малую полосу пропускания (скорость передачи информации). Для этого аналоговый сигнал предварительно искажается в основном двумя путями:

  • путем непосредственной компрессии (сжатия по амплитуде, частоте или длительности передачи звуков);
  • >на основе методов функционального преобразования, а затем, на приемной стороне, восстанавливается. Последний подход широко используется в современных сотовых сетях связи.

Помеха – это любое воздействие, накладывающееся на полезный сигнал и затрудняющее его прием. Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывная связь. Появление импульсных помех часто связано с автоматической коммутацией и с перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или совсем исчезает.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Этот вид помех особенно сказывается в диапазоне ультракоротких волн. В этом диапазоне имеют значение и космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах.

Классификацию помех можно провести по следующим признакам:

— по происхождению (месту возникновения);

— по физическим свойствам;

— по характеру воздействия на сигнал.

К помехам по происхождению в первую очередь относятся внутренние шумы аппаратуры (тепловые шумы) обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Случайное тепловое движение носителей заряда в любом проводнике вызывает случайную разность потенциалов на его концах. Среднее значение напряжения равно нулю, а переменная составляющая проявляется как шум. Квадрат эффективного напряжения теплового шума определяется известной формулой Найквиста

где Т- абсолютная температура, которую имеет сопротивление R;

F — полоса частот; k =1,37*10 (-23) Вт.сек/град- постоянная Больцмана.

К помехам по происхождению, во вторую очередь, относятся помехи от посторонних источников, находящихся вне каналов связи:

— атмосферные помехи (громовые разряды, полярное сияние, и др.), обусловленные электрическими процессами в атмосфере;

— индустриальные помехи, возникающие в электрических цепях электроустановок (электротранспорт, электрические двигатели, системы зажигания двигателей, медицинские установки и другие.);

— помехи от посторонних станций и каналов, возникающих от различных нарушений режима их работы и свойств каналов;

— космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах, галактиках и других внеземных объектах.

По физическим свойствам помех различают:

— Флуктуационные помехи;

— Сосредоточеные помехи.

Флуктуационные помехи . Среди аддитивных помех особое место занимает флуктационная помеха, которая является случайным процессом с нормальным распределением (гауссов процесс). Этот вид помех практически имеет место во всех реальных каналах.

Электрическую структуру флуктуационной помехи можно представить себе как последовательность бесконечно коротких импульсов, имеющих случайную амплитуду и следующих друг за другом через случайные промежутки времени. При этом импульсы появляются один за другим настолько часто, что переходные явления в приемнике от отдельных импульсов накладываются, образуя случайный непрерывный процесс.

Так, источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда (электронов, ионов). Дискретная природа электрического тока проявляется в электронных лампах и полупроводниковых приборах в виде дробового эффекта.

Наиболее распространенной причиной шума являются флуктуации, обусловленные тепловым движением.

Длительность импульсов, составляющих флуктуационную помеху, очень мала, поэтому спектральная плотность помехи постоянна вплоть до очень высоких частот.

К сосредоточенным по времени (импульсным) помехам относят помехи в виде одиночных импульсов, следующих один за другим через такие большие промежутки времени, что переходные явления в радиоприемнике от одного импульса успевают практически затухнуть к моменту прихода следующего импульса.

Сосредоточенные по спектру помехи . К этому виду помех принято относить сигналы посторонних радиостанций, излучения генераторов высокой частоты различного назначения и т. п. В отличие от флуктационных и импульсных помех, спектр которых заполняет полосу частот приёмника, ширина спектра сосредоточенной помехи в большинстве случаев меньше полосы пропускания приёмника. В диапазоне коротких волн этот вид помех является основным, определяющим помехоустойчивость связи.

По характеру воздействия на сигнал различают:

— аддитивные помехи;

— мультипликативные помехи.

Аддитивной называется помеха, мгновенные значения которой складываются с мгновенными значениями сигнала. Мешающее воздействие аддитивной помехи определяется суммированием с полезным сигналом. Аддитивные помехи воздействует на приемное устройство независимо от сигнала и имеют место даже тогда, когда на входе приемника отсутствует сигнал.

Мультипликативной называется помеха, мгновенные значения которой перемножаются с мгновенными значениями сигнала. Мешающее действие мультипликативных помех проявляется в виде изменения параметров полезного сигнала, в основном амплитуды. В реальных каналах электросвязи обычно имеют место не одна, а совокупность помех.

Под искажениями понимают такие изменения форм сигнала, которые обусловлены известными свойствами цепей и устройств, по которым проходит сигнал. Главная причина искажений сигнала – переходные процессы в линии связи, цепях передатчика и приемника. При этом различают искажения: линейные и нелинейные возникающие в соответствующих линейных и нелинейных цепях. В общем случае искажения отрицательно сказываются на качестве воспроизведения сообщений и не должны превышать установленных значений (норм).

При известных характеристиках канала связи форму сигнала на его выходе всегда можно рассчитать по методике, изложенной в теории линейных и нелинейных цепей. Дальнейшие изменения формы сигнала можно скомпенсировать корректирующими цепями или просто учесть при последующей обработке в приемнике. Это уже дело техники.

ДРУГОЕ ДЕЛО ПОМЕХИ — ОНИ заранее не известны и поэтому не могут быть устранены полностью.

Борьба с помехами — основная задача теории и техники связи. Любые теоретические и технические решения, о выполнении кодера или декодера, передатчика и приемника системы связи должны приниматься с учетом того, что в линии связи имеются помехи. При всем многообразии методов борьбы с помехами их можно свести к трем направлениям:

— подавление помех в месте их возникновения. Это достаточно эффективное и широко применяемое мероприятие, но не всегда приемлемо. Ведь существуют источники помех, на которые воздействовать нельзя (грозовые разряды, шумы Солнца и др.);

— уменьшение помех на путях проникновения в приемник;

— ослабление влияния помех на принимаемое сообщение в приемнике, демодуляторе, декодере. Именно это направление для нас является предметом изучения.

Помеха в канале – это посторонний сигнал, спектр в котором частично или полностью совпадает с полезным сигналом. Помехи существуют как при наличии сигнала, так и при его отсутствии и обусловлены свойствами каналообразующего оборудования и внешними причинами. Соответственно, помехи делятся на два вида: внутренние и внешние .

К внутренним помехам относят тепловые помехи всех элементов, образующих канал, и помехи, вызванные нелинейностью устройств, входящих в канал связи.

К внешним помехам относят шумы нелинейных переходов, возникающие за счёт переходных влияний между параллельными цепями, шумы радиостанций, атмосферные помехи(пыльные бури, дожди), промышленные помехи(шумы от электроустановок и электрифицированных ЖД).

В линейных трактах, образованных различными линиями связи, наиболее значимы следующие виды помех: шумы линейных переходов, которые занимают половину мощности шумов в каналах связи, а так же тепловой шум и шумы нелинейных переходов.

В коаксиальных кабелях тепловые шумы и шумы нелинейных переходов приблизительно равны.

В ВЛС наиболее весомы внешние шумы. Это наиболее шумный канал.

Нормой шума в канале связи считается его мощность 10000пВт на 2.5 тысяч км. Действующую мощность и напряжение в канале принято оценивать псофометрическими единицами, то есть на выходе канала подключают псофометр (вольтметр с квадратичной шкалой, ко входу которого подключен псофометрический фильтр, оценивающий особенности чувствительности человеческого уха. Ухо человека наиболее чувствительно в диапазоне от 0,8 до 1,2кГц.

Псофометрический коэффициент вольтметра равен 0,75.

Если измеряют шум в каналах телевидения, то на входе такого вольтметра установлен контур, учитывающий особенности глаза. В каналах вещания псофометр рассчитан на диапазон до 15кГц.

Собственные помехи.

Тепловой шум, обусловленный хаотическим движением электронов, присутствует во всех элементах канала. К нему относят шумы транзисторов, диодов, ламп и так далее. Тепловой шум имеет флуктуационный характер, так как складывается из последовательности независимых кратковременных импульсов. Спектр такого шума практически равномерен в диапазоне до 6ГГц, поэтому уровень теплового шума в КТЧ при 20 0 С равен приблизительно –139дБм. Уровень собственных шумов на протяжении линейного тракта остаётся постоянным, а уровень сигнала, передаваемого по тракту, уменьшается. Причём большее затухание получают каналы, расположенные в верхнем диапазоне частот.

Помехозащищённость – это разница между уровнем сигнала и шума.

Для повышения помехозащищённости от собственного шума высокочастотных спектральных составляющих сигнала системы обычно работают в режиме с “перекосом уровней” ΔР.

Однако перекос уровней не компенсирует неравномерность затухания линейного тракта.

Перекос уровней делают меньше затухания, так как если компенсировать всю неравномерность, то в низкочастотных каналах появится недопустимый уровень шумов нелинейных переходов за счёт большой мощности сигнала в верхних каналах. Перекос уровней предназначен не для коррекции линейных искажений, а для повышения помехозащищённости от собственных шумов линейного тракта каналов, расположенных в высокочастотной области.

Атмосферные помехи.

К атмосферным помехам относят: газовые разряды, магнитные бури, полярные сияния, снежные и песчаные бури, осадки, и другие атмосферные явления большой интенсивности.

Уровень атмосферных помех в каналах ВЛС колеблется в диапазоне от –70 до – 80дБм.

Шумы линейных переходов.

Возникают вследствие электромагнитных влияний между параллельными цепями, в результате неоднородностей в линии связи, а также через 3 – и цепи.

Способы уменьшения шумов.

1.) Согласование выхода систем передачи со входом в линейный тракт.

2.) Инверсия и сдвиг линейного спектра для систем, работающим по параллельным цепям.

Инверсия спектра приводит к тому, что шумы в линейных переходах становятся не внятными, значит их влияние уменьшается, что эквивалентно повышению помехозащищённости на 7 дБм.

3.) Применение вариантов линейного спектра со сдвигом частот.

Вследствие сдвига частот переходные разговоры также будут не внятными, а помехозащищённость увеличится на 2 – 4 дБм в зависимости от величины сдвига.

Импульсные помехи.

Импульсные помехи – это кратковременные импульсы напряжения, амплитуда которых превышает амплитуду полезного сигнала. Причиной импульсных помех являются атмосферные помехи, а также плохие контакты, пайка и низкая квалификация обслуживающего персонала. Они возникают при переключении импульсного оборудования с основного на резервный. Импульсные помехи в телефонных каналах и каналах вещания проявляются в виде треска, а в каналах передачи данных снижают достоверность связи.

Импульсные помехи:

1.) Не должны превышать порога 100мВ с вероятностью 2·10 -5 за час.

2.) Не должны быть больше порога 200мВ с вероятностью 2·10 -6 за один час.

3.) Не должны быть больше порога 300мВ с вероятностью 1·10 -6 за один час.

Методы борьбы с помехами.

Защита кабельных линий связи от электромагнитных влияний осуществляется с помощью газоразрядников в оконечном оборудовании и повышения квалификации обслуживающего персонала.

На вход РПУ вместе с сигналом попадают аддитивные помехи. Такого рода помехами являются:

Атмосферные и космические шумы;

Помехи от промышленных установок;

Станционные помехи от других передатчиков;

Собственные шумы тракта РПУ, приведенные ко входу.

Можно все аддитивные помехи разбить на три группы:

Флуктуационные (шумовые);

Сосредоточенные по спектру (станционные);

Сосредоточенные по времени (импульсные).

Шумы тракта РПУ можно представить стационарным гауссовским процессом с нулевым средним и односторонней спектральной плотностью (энергетическим спектром)

k - постоянная Больцмана k =1,38·10 -23 [ Дж /К ] ,T 0 - температура окружающей среды по шкале Кельвина (T 0 =273°+ t°C).

F ш - коэффициент шума приемника.

Коэффициент шума F ш показывает во сколько раз реальный приемник ухудшает отношение сигнал /шум по мощности по сравнению с идеальным (нешумящим) приемником, уровень шума у которого обусловлен активным сопротивлением источника сигнала.

Средняя мощность белого шума в эквивалентной шумовой полосе Df э тракта РПУ

, (2.51)

где K 0 - значение АЧХ на центральной частоте.

Отметим, что гауссовский шум является самым мощным разрушителем информации на основании максимума его энтропии.

Узкополосный гауссовский шум n(t) как и модулированный сигнал можно записать в комплексной форме ,где вещественный сигнал

определен как

где N(t) – огибающая; q ш (t) - фаза шумового процесса;

; ; (2.54)

N с (t) и N s (t) - низкочастотные квадратурные составляющие.

. Импульсные помехи , воздействуя на резонансные цепи РПУ, могут создавать длительными переходными процессами в них серьезное мешающее воздействие приему сигналов.

Для импульсных помех необходимо знать интенсивность их потока и распределение уровня их амплитуд. Если известно, что на интервале времени 1с имеет место в среднем ν импульсных помех, то появление k помех на интервале Т с вероятностью P(k ) описывается законом Пуассона

(2.55)

Пусть при передаче телеграфных сообщений длительность элемента равна ∆t .Вероятность поражения элемента сообщения импульсной помехой . Следовательно, если на интервале Т имеется элементов, то среднее количество независимых интервалов, которое будет поражено импульсными помехами в выражении (2.55). Это выражение определяет вероятность числа элементов, пораженных импульсной помехой в сеансе связи длительностью Т.

Станционные помехи - средние уровни помех распределены по логарифмически - нормальному закону.

Контрольные вопросы к разделу 2.

1. Диапазон мгновенных значений непрерывного сообщения.



2. Модель ДИБП.

3. Выражение для динамического диапазона речевого сигнала.

4. Выражение для ряда Котельникова и условия при дискретизации непрерывных сообщений.

5. Условие некоррелированности отсчетов при дискретизации непрерывных сообщений по Котельникову.

6. Условие восстановления сигнала u(t) с финитным спектром по его отсчетам.

7. Закон, среднее значение и дисперсия аддитивной погрешности равномерного скалярного квантования процесса.

8. ОСШК АЦП гауссовского речевого сигнала при скалярном равномерном квантовании.

9. Необходимые требования к базисным функциям обобщенного ряда аппроксимации колебания с ограниченной энергией.

10. Чем отличается амплитудный спектр при аппроксимации колебания тригонометрическим рядом Фурье и комплексным рядом Фурье?

11. Чему равно расстояние между векторами колебаний, представленных рядом Фурье?

12. Выражения комплексного амплитудного спектра периодичес-кого сигнала и спектральной плотности непериодических сигналов.

13. Свойства пары преобразования Фурье.

14. Определение АКФ, ВКФ непериодического и периодического детерминированных сигналов.

15. Определение СПМ непериодического детерминированного и случайного сигналов, стационарных процессов.

16. СПМ синхронного модулирующего сигнала БВН. Что дает равная вероятность символов НЧ сигнала БВН?

17. Вещественный модулированный ВЧ сигнал в полярной форме записи. Комплексная огибающая (в полярной, квадратурной форме) модулированного сигнала.

18. Квадратурная форма записи ВЧ модулированного сигнала.

19. Что означает процесс модуляции сигнала?

20. АМ и ЧМ модуляция, спектры при гармоническом сообщении.

21. СПА и СПМ модулированного колебания.

22. Виды помех. Формы записи узкополосного гауссовского шума.

23. Закон Пуассона для импульсных помех.