Сайт о телевидении

Сайт о телевидении

» » Определитель матрицы n го порядка можно вычислить. Определитель n-го порядка. Свойства определителей. Миноры и алгебраические дополнения. Теорема Лапласа и ее следствие Определитель n-го порядка

Определитель матрицы n го порядка можно вычислить. Определитель n-го порядка. Свойства определителей. Миноры и алгебраические дополнения. Теорема Лапласа и ее следствие Определитель n-го порядка

Для более точного и сложного определения и для того, чтобы говорить об определителях порядка больше третьего, потребуется вспомнить еще кое-что. Нас интересует термин подстановка, даже не столько определение, сколько способ её вычисление.

Для подстановки принята запись:
, т.е. пары чисел, записанные в столбик, причем так, что верхние числа идут последовательно (вообще говоря, столбцы можно менять местами).

Подстановки бывают четными и нечетными. Для того, чтобы выяснить, является данная подстановка четной или нечетной, нужно обратить внимание на вторую строку, а точнее на порядок чисел в ней. Необходимо подсчитать количество пар чисел во второй строке, таких, что число, стоящее левее, больше числа, стоящего правее (). Если количество таких пар нечетно, то и подстановка называется нечетной, и, соответственно, если количество таких пар четно, то и подстановка называется четной.

Пример:
1)


4 стоит левее 3, левее 1, левее 2 — это уже три «неправильные» пары.
3 стоит левее 1 и 2 – еще две пары.
Итого 5 пар, т.е. это нечетная подстановка.
2)

Заметим, что числа в первой строке расположены не по порядку. Выполним перестановку столбцов.

Рассмотрим числа второго ряда.
3 стоит левее 2 и 1 – две пары,
2 стоит левее 1 – одна пара,
5 стоит левее 4 и 1 – две пары,
4 стоит левее1 – одна пара.
Итого 6 пар – подстановка четная.

Определение 2 (для студентов математических специальностей, раскрывающее всю суть определяемого понятия):

Определителем n-го порядка, соответствующим матрице
,
называется алгебраическая сумма слагаемых, составленная следующим образом: слагаемыми служат всевозможные произведения элементов матрицы, взятых по одному из каждой строки и каждого столбца, причем слагаемое берется со знаком плюс, если его индексы составляют четную подстановку, и со знаком минус – в противоположном случае.
Замечание: Объясним это определение на примере определителя третьего порядка, для которого уже известна формула вычисления.
.
1) «алгебраическая сумма слагаемых» — . И да, действительно, здесь шесть слагаемых.
2) «слагаемыми служат всевозможные произведения элементов матрицы, взятых по одному из каждой строки и каждого столбца» — рассмотрим например слагаемое . Его первый множитель взят из второй строки, второй – из первой, а третий из третьей. То же самое и со столбцами – первым множитель из первого столбца, второй из третьего, а последний из второго.
3) «причем слагаемое берется со знаком плюс, если его индексы составляют четную подстановку, и со знаком минус – в противоположном случае» — рассмотрим для примера слагаемые (со знаком плюс) и (со знаком минус).

Составим перестановки так, что в первой строке будут номера строк сомножителей, а во второй – номера столбцов.
Для слагаемого : (первый столбец – индекс первого сомножителя и т.д.)
Для слагаемого : .
Определим четность этих перестановок:
а) — элементы в первой строке стоят по порядку. Во второй строке не по порядку стоят пары:
2 левее 1 – одна пара,
3 левее 1 – одна пара.
Итого две пары, т.е. количество пар четно, значит перестановка четная, а значит, слагаемое должно входить в сумму со знаком плюс (как оно и есть на самом деле).
б) — элементы в первой строке стоят по порядку. Во второй строке не по порядку стоят пары:
2 левее 1 – одна пара.
Итого, количество пар чисел, стоящих так, что большее левее меньшего – 1 шт., т.е. нечетно, а значит и перестановка называется нечетной, и соответствующее слагаемое должно входить в сумму со знаком минус (да, это так).
Пример («Сборник задач по алгебре» под ред. А.И. Кострикина, №1001):

Выяснить, какие из следующих произведений входят в развернутое выражение определителей соответствующих порядков и с какими знаками.
а)
Обратим внимание на часть определния «по одному из каждой строки и каждого столбца». Все первые индексы сомножителей различны от 1 до 6(1, 2, 3, 4, 5, 6). Все вторые индексы сомножителей различны от 1 до 6 (3, 2, 1, 4, 5, 6).
Вывод – это произведение входит в развернутое выражение определителя 6-го порядка.

3 левее 2, 1 – две пары,
2 левее 1 – одна пара,
6 левее 5, 4 – две пары,
5 левее 4 – одна пара.
Итого 6 пар, т.е. перестановка четная и слагаемое входит в развернутую запись определителя со знаком «плюс».

б)
Все первые индексы сомножителей различны от 1 до 5(3, 1, 5, 4, 2). Все вторые индексы сомножителей различны от 1 до 5 (1, 3, 2, 5, 4).
Вывод – это произведение входит в развернутое выражение определителя 5-го порядка.
Определим знак этого слагаемого, для этого составим перестановку из индексов сомножителей:

Переставим столбцы так, чтобы числа в первой строке шли по порядку от меньшего к большему.

3 левее 1, 2 – две пары.
4 левее 1, 2 – две пары,
5 левее 2 – одна пара.
Итого 5 пар, т.е. перестановка нечетная и слагаемое входит в развернутую запись определителя со знаком «минус».
в) — обратим внимание на первый и шестой сомножители: и . Они оба взяты из 4-го столбца, а значит, это произведение не может входить в развернутое выражение определителя 7-го порядка.

Определители, их свойства и вычисление

1.Определители второго и третьего порядков; их вычисление .

Определитель первого порядка равен тому единственному элементу, из которого состоит соответствующая матрица.

Определитель второго порядка вычислим, например, по элементам первой строки

Запишем разложение данного определителя по элементам второй строки

Полученный результат совпадает с результатом вычисления определителя по первой строке. Этот же результат получится и при разложении по любому из столбцов. Рекомендуем это проверить самостоятельно.

Из сказанного можно заключить, что определитель второго порядка равен произведению элементов, стоящих на главной диагонали, минус произведение элементов, стоящих на побочной диагонали .

Определители n-го порядка; миноры и алгебраические дополнения. Свойства и вычисление определителей n-го порядка.

Определителем n-го порядка, соответствующим матрице
, называется алгебраическая сумма слагаемых, составленная следующим образом: слагаемыми служат всевозможные произведения элементов матрицы, взятых по одному из каждой строки и каждого столбца, причем слагаемое берется со знаком плюс, если его индексы составляют четную подстановку, и со знаком минус – в противоположном случае.
Замечание: Объясним это определение на примере определителя третьего порядка, для которого уже известна формула вычисления.
.
1) «алгебраическая сумма слагаемых» - . И да, действительно, здесь шесть слагаемых.
2) «слагаемыми служат всевозможные произведения элементов матрицы, взятых по одному из каждой строки и каждого столбца» - рассмотрим например слагаемое . Его первый множитель взят из второй строки, второй – из первой, а третий из третьей. То же самое и со столбцами – первым множитель из первого столбца, второй из третьего, а последний из второго.
3) «причем слагаемое берется со знаком плюс, если его индексы составляют четную подстановку, и со знаком минус – в противоположном случае» - рассмотрим для примера слагаемые (со знаком плюс) и (со знаком минус).

Составим перестановки так, что в первой строке будут номера строк сомножителей, а во второй – номера столбцов.
Для слагаемого : (первый столбец – индекс первого сомножителя и т.д.)
Для слагаемого : .
Определим четность этих перестановок:
а) - элементы в первой строке стоят по порядку. Во второй строке не по порядку стоят пары:
2 левее 1 – одна пара,
3 левее 1 – одна пара.
Итого две пары, т.е. количество пар четно, значит перестановка четная, а значит, слагаемое должно входить в сумму со знаком плюс (как оно и есть на самом деле).
б) - элементы в первой строке стоят по порядку. Во второй строке не по порядку стоят пары:
2 левее 1 – одна пара.
Итого, количество пар чисел, стоящих так, что большее левее меньшего – 1 шт., т.е. нечетно, а значит и перестановка называется нечетной, и соответствующее слагаемое должно входить в сумму со знаком минус (да, это так).

Минором элемента матрицы n -го порядка называется определитель матрицы (n-1) -го порядка, полученный из матрицы А вычеркиванием i -й строки и j -го столбца.

Пусть А = произвольная квадратная матрица n-го порядка с действительными (или комплексными) элементами.

Определение 7. Определителем матрицы А (определителем N-го порядка) Называется алгебраическая сумма n! слагаемых, каждое из которых есть произведение n элементов матрицы, взятых по одному из каждой строки и каждого столбца. При этом произведение берётся со знаком «+», если подстановка из индексов входящих в него элементов чётная, и со знаком «-» в противном случае.

Обозначение определителя: |А | = .

Например, при n = 6 произведение А21а13а62а34а46а55 является членом определителя, так как в него входит точно по одному элементу из каждой строки и из каждого столбца. Подстановка, составленная из его индексов будет . В ней 4-е инверсии в верхней строке и 2-е инверсии – в нижней. Общее число инверсий равно 6, т. е. подстановка чётная. Следовательно, данное произведение входит в разложение определителя со знаком «+».

Произведение А21а13а62а34а46а15 не является членом определителя, так как в него входят два элемента из первой строки.

Свойства определителей.

10. При транспонировании определитель не меняется (напомним, что транспонирование матрицы и определителя означает перемену строк и столбцов местами).

Действительно, если (-1)к является членом определителя, то все a1, a2, … , an различны и к – число инверсий в перестановке (a1, a2, … , an). При транспонировании номера строк станут номерами столбцов и наоборот. Следовательно, в произведении Все множители будут из разных столбцов и строк, т. е. это произведение будет входить в транспонированный определитель. Знак его будет определяться числом инверсий в подстановке . Но это число, очевидно равно к. Итак, (-1)к будет членом транспонированного определителя. Так как мы брали любой член данного определителя, а число членов в данном и транспонированном определителях одинаково, то отсюда и следует их равенство. Из доказанного свойства следует, что всё, что будет доказано для строк определителя, будет верно и для его столбцов.

20. Если все элементы строки (или столбца) определителя равны нулю, то определитель равен нулю.

Это следует из того, что по одному элементу указанной строки (или столбца) будет входить в каждый член определителя.

30. Если все элементы какой-нибудь строки определителя имеют общий множитель, то его можно вынести за знак определителя.

Действительно, если все элементы к-ой строки имеют общий множитель l, то их можно записать в виде . Любой член определителя будет иметь вид (-1)s. Следовательно, из всех членов определителя можно вынести множитель l.

40. Если две строки определителя поменять местами, то определитель сменит знак.

Действительно, если (-1)к любой член данного определителя, то в новом определителе номера строк р и q поменяются местами, а номера столбцов останутся прежними. Следовательно, в новом определителе это же самое произведение будет входить в виде (-1)s. Так как в номерах строк произошла одна транспозиция, а номера столбцов не изменились, то к и s имеют противоположные чётности. Итак, все члены данного определителя изменили знак, следовательно, и сам определитель изменил знак.

50. Если две строки определителя пропорциональны, то определитель равен нулю.

Действительно, пусть все элементы к-ой строки равны соответствующим элементам р-ой строки, умноженным на l, т. е. |А | = = = 0.

60. Если в определителе все элементы к-ой строки есть суммы двух слагаемых, то определитель равен сумме двух определителей, в которых все строки, кроме к-ой, такие же как и в данном определителе. На месте элементов к-ой строки одного из них стоят первые слагаемые элементов к-ой строки данного определителя, а на месте элементов к-ой строки второго – вторые их слагаемые.

Пусть элементы к-ой строки будут + Ск1, + Ск2 , …. , + Скn . Тогда любой член определителя будет иметь вид

(-1)s= (-1)s + (-1)s.

Собрав все первые слагаемые, мы получим определитель, отличающийся от данного только к-ой строкой. На месте к-ой строки будут стоять , , …. , . Собрав все вторые слагаемые, получим определитель тоже отличающийся от данного только к-ой строкой. В к-ой строке будут стоять Ск1, ск2 , …. , Скn .

70. Если к одной строке определителя прибавить другую его строку, все элементы которой умножены на одно и то же число, то определитель не изменится.

Это свойство является следствием двух предыдущих.

Если в определителе |А | вычеркнуть к-ую строку и р-ый столбец, то останется определитель (n–1)-го порядка. Он называется Минором, дополнительным для элемента и обозначается Мкр . Число (-1)к+р×МКр Называется Алгебраическим дополнением для элемента и обозначается Акр .

80. Дополнительный минор и алгебраическое дополнение не зависит от того, какой элемент стоит в к-ой строке и р-ом столбце определителя.

Лемма 1 D = . (8)

Доказательство. Если А11 = 0, то равенство (8) очевидно. Пусть А11 ¹ 0. Так как в каждый член определителя входит точно один элемент из первой строки, то ненулевыми членами определителя могут быть только те, в которые входит А11 . Все они имеют вид , где gк и к пробегают значения от 2 до N . Знак этого члена в определителе D определяется чётностью подстановки s = .Таким образом D есть алгебраическая сумма слагаемых вида Со знаками, определяемыми подстановкой s. Если в этой сумме вынести за скобки А11 , то получим, что D = А11 × S , где S Есть алгебраическая сумма слагаемых вида , знак которых определяется подстановкой s. Этих слагаемых, очевидно, (N – 1)!. Но подстановка s и подстановка имеют одинаковую чётность. Следовательно, S = М 11. Так как А11 = (-1)1+1×М 11 = М 11, то D = А11 ×А11 .

Лемма 2. D = (9)

Доказательство. В определителе D переставим р-ую строку последовательно с каждой предыдущей. При этом р-ая строка займёт место первой строки, но минор, дополнительный к элементу Арк не изменится. Всего будет сделано (Р – 1) перестановка строк. Если новый определитель обозначить D1, то D1 = (-1)р-1×D. В определителе D1 переставим К -ый столбец последовательно с каждым предыдущим столбцом, при этом будет сделано (К – 1) перестановка столбцов и минор, дополнительный к Арк , не изменится. Получится определитель

D2 = . Очевидно, D2 = (-1)к-1×D1 = (-1)р+к-2×D = (-1)р+к×D. По лемме 1, D2 = Арк ×М Рк. Отсюда D = Арк × (-1)р+к× М Рк = Арк ×Арк.

Теорема 3. Определитель равен сумме произведений элементов некоторой строки на их алгебраические дополнения, т. е. D = Ак1Ак1 + ак2 ×Ак2 +…+а Kn ×А Kn (10).

Доказательство. Пусть D = . Элементы к-ой строки запишем в виде Ак1 =ал1 + 0 + …+ 0, Ак2 = 0 + Ак2 + 0 + … + 0, … , А = 0 + 0 + …+ 0 + А . Используя свойство 60, получим, что D =
= = Ак1Ак1 + Ак2Ак2 + … + АА (использовали лемму 2).

Теорема 4. Сумма произведений элементов одной строки определителя на алгебраические дополнения соответствующих элементов другой строки равна нулю.

Доказательство. Пусть D = . По предыдущей теореме

D = . Если взять , то в определителе Dбудет две одинаковые строки, т. е. D будет равен нулю. Следовательно, 0 = , если р ¹ к.

Замечание. Теоремы 3 и 4 будут верны, если в их формулировках слово «строка» заменить на слово «столбец».

Способ вычисления определителя N-го порядка.

Для вычисления определителя N -го порядка достаточно в какой-нибудь строке (или столбце) получить как можно больше нулей, используя свойство 70, а потом использовать теорему 3. При этом вычисление определителя n-го порядка сведётся к вычислению определителя (N – 1)-го порядка.

Пример. Вычислите определитель D = .

. Получим нули во второй строке. Для этого Второй столбец 1) умножим на (-2) и прибавим к первому столбцу; 2) прибавим к третьему столбцу; 3) умножим на (-4) и прибавим к четвёртому столбцу. Получим, что D = . Разложим полученный определитель по элементам второй строки. При этом произведения всех элементов этой строки на их алгебраические дополнения, кроме элемента 1, равны нулю. Для того, чтобы получить алгебраическое дополнение для элемента 1, нужно вычеркнуть те строку и столбец, где этот элемент стоит, т. е. вторую строку и второй столбец. Знак алгебраического дополнения определяет (-1)2+2 = (-1)4 = +1. Итак, D = + . Получили определитель 3-го порядка. Этот определитель можно вычислить, используя диагонали и треугольники, но можно свести к определителю второго порядка. Умножим Первый столбец 1) на (-4) и прибавим ко второму столбцу, 2) умножим его на 2 и прибавим к третьему столбцу. Получим, что

Методы вычисления определителей n-го порядка.

Пусть дано упорядоченное множество n элементов. Всякое расположение n элементов в определённом порядке называется перестановкой из этих элементов.

Так как каждый элемент определяется своим номером, то будем говорить, что дано n натуральных чисел.

Число различных перестановок из n чисел равно n!

Если в некоторой перестановке из n чисел число i стоит раньше j , но i > j , т. е. большее число стоит раньше меньшего, то говорят, что пара i , j составляет инверсию .

Пример 1. Определить число инверсий в перестановке (1, 5, 4, 3, 2)

Решение.

Числа 5 и 4, 5 и 3, 5 и 2, 4 и 3, 4 и 2, 3 и 2 образуют инверсии. Общее число инверсий в данной перестановке равно 6.

Перестановка называется чётной , если общее число инверсий в ней чётное, в противном случае она называется нечётной . В рассмотренном выше примере дана чётная перестановка.

Пусть дана некоторая перестановка …, i , …, j , … (*) . Преобразование, при котором числа i и j меняются местами, а остальные остаются на своих местах, называется транспозицией . После транспозиции чисел i и j в перестановке (*) получится перестановка …, j , …, i , …, где все элементы, кроме i и j , остались на своих местах.

От любой перестановки из n чисел можно перейти к любой другой перестановке из этих чисел с помощью нескольких транспозиций.

Всякая транспозиция меняет чётность перестановки.

При n ≥ 2 число чётных и нечётных перестановок из n чисел одинаково и равно .

Пусть М – упорядоченное множество из n элементов. Всякое биективное преобразование множества М называется подстановкой n -й степени .

Подстановки записывают так: https://pandia.ru/text/78/456/images/image005_119.gif" width="27" height="19"> и все ik различны.

Подстановка называется чётной , если обе её строки (перестановки) имеют одинаковые чётности, т. е. либо обе чётные, либо обе нечётные. В противном случае подстановка называется нечётной .

При n ≥ 2 число чётных и нечётных подстановок n степени одинаково и равно .

Определителем квадратной матрицы А второго порядка А= называется число, равное =а11а22–а12а21.

Определитель матрицы называют также детерминантом . Для определителя матрицы А используют следующие обозначения: det A, ΔA.

Определителем квадратной матрицы А=третьего порядка называют число, равное │А│=а11а22а33+а12а23а31+а21а13а32‑а13а22а31‑а21а12а33‑а32а23а11

Каждое слагаемое алгебраической суммы в правой части последней формулы представляет собой произведение элементов матрицы, взятых по одному и только одному из каждого столбца и каждой строки. Для определения знака произведения полезно знать правило (его называют правилом треугольника), схематически изображённое на рис.1:

«+» «-»

https://pandia.ru/text/78/456/images/image012_64.gif" width="73" height="75 src=">.

Решение.

Пусть А – матрица n-го порядка с комплексными элементами:

А=https://pandia.ru/text/78/456/images/image015_54.gif" width="112" height="27 src=">(1) ..gif" width="111" height="51">(2) .

Определителем n-го порядка, или определителем квадратной матрицы А=(aij) при n>1, называется алгебраическая сумма всевозможных произведений вида (1) , причём произведение (1) берётся со знаком «+», если соответствующая ему подстановка (2) чётная, и со знаком «‑», если подстановка нечётная.

Минором М ij элемента aij определителя называется определитель, полученный из исходного вычёркиванием i -й строки и j - го столбца.

Алгебраическим дополнением А ij элемента aij определителя называют число А ij =(–1) i + j М ij , где М ij минор элемента aij .

Свойства определителей

1. Определитель не изменяется при замене всех строк соответствующими столбцами (определитель не изменится при транспонировании).

2. При перестановке двух строк (столбцов) определитель меняет знак.

3. Определитель с двумя одинаковыми (пропорциональными) строками (столбцами) равен нулю.

4. Общий для всех элементов строки (столбца) множитель можно вынести за знак определителя.

5. Определитель не изменится, если к элементам некоторой строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число, отличное от нуля.

6. Если все элементы некоторой строки (столбца) определителя равны нулю, то он равен нулю.

7. Определитель равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения (свойство разложения определителя по строке (столбцу)).

Рассмотрим некоторые способы вычисления определителей порядка n .

1. Если в определителе n-го порядка хотя одна строка (или столбец) состоят из нулей, то определитель равен нулю.

2. Пусть в определителе n-го порядка какая-то строка содержит отличные от нуля элементы. Вычисление определителя n-го порядка можно свести в этом случае к вычислению определителя порядка n-1. Действительно, используя свойства определителя, можно все элементы какой-либо строки, кроме одного, сделать нулями, а затем разложить определитель по указанной строке. Например, переставим строки и столбцы определителя так, чтобы на месте а11 стоял отличный от нуля элемент.

https://pandia.ru/text/78/456/images/image018_51.gif" width="32 height=37" height="37">.gif" width="307" height="101 src=">

Заметим, что переставлять строки (или столбцы) не обязательно. Можно нули получать в любой строке (или столбце) определителя.

Общего метода вычисления определителей порядка n не существует, если не считать вычисление определителя заданного порядка непосредственно по определению. К определителю того или иного специального вида применяются различные методы вычисления, приводящие к более простым определителям.

3. Приведем к треугольному виду. Пользуясь свойствами определителя, приводим его к так называемому треугольному виду, когда все элементы, стоящие по одну сторону от главной диагонали равны нулю. Полученный определитель треугольного вида равен произведению элементов, стоящих на главной диагонали. Если удобнее получить нули по одну сторону от побочной диагонали, то он будет равен произведению элементов побочной диагонали, взятому со знаком https://pandia.ru/text/78/456/images/image022_48.gif" width="49" height="37">.

Пример 3. Вычислить определитель разложением по строке

https://pandia.ru/text/78/456/images/image024_44.gif" width="612" height="72">

Пример 4. Вычислить определитель четвёртого порядка

https://pandia.ru/text/78/456/images/image026_45.gif" width="373" height="96 src=">.

2-й способ (вычисление определителя путём разложения его по строке):

Вычислим этот определитель разложением по строке, предварительно преобразовав его так, чтобы в какой-то его строке все элементы кроме одного обратились в ноль. Для этого прибавим первую строку определителя к третьей. Затем умножим третий столбец на (‑5) и сложим с четвёртым столбцом. Преобразованный определитель раскладываем по третьей строке. Минор третьего порядка приводим к треугольному виду относительно главной диагонали.

https://pandia.ru/text/78/456/images/image028_44.gif" width="202" height="121 src=">

Решение.

Вычтем из первой строки вторую, из второй – третью и т. д., наконец, из предпоследней последнюю (последняя строка остается без изменений).

https://pandia.ru/text/78/456/images/image030_39.gif" width="445" height="126 src=">

Первый определитель в сумме – треугольного вида относительно главной диагонали, поэтому он равен произведению диагональных элементов, т. е. (n–1)n. Второй определитель в сумме преобразуем, прибавив последнюю строку ко всем предыдущим строкам определителя. Полученный при этом преобразовании определитель будет треугольного вида относительно главной диагонали, поэтому он будет равен произведению диагональных элементов, т. е. nn-1:

=(n–1)n+(n–1)n + nn-1.

4. Вычисление определителя с помощью теоремы Лапласа. Если в определителе выделить k строк (или столбцов) (1£k£n-1), то определитель равен сумме произведений всех миноров k-ого порядка, расположенных в выделенных k строках (или столбцах), на их алгебраические дополнения.

Пример 6. Вычислить определитель

https://pandia.ru/text/78/456/images/image033_36.gif" width="538" height="209 src=">

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ №2

«ВЫЧИСЛЕНИЕ ОПРЕДЕЛИТЕЛЕЙ N-ГО ПОРЯДКА»

Вариант 1

Вычислить определители

https://pandia.ru/text/78/456/images/image035_39.gif" width="114" height="94 src=">

Рассматривая развернутое выражение для определителей

замечаем, что в каждое слагаемое входят в качестве сомножителей по одному элементу из каждой строки и по одному из каждого столбца определителя, причем всевозможные произведения этого вида входят в состав определителя со знаком плюс или минус. Это свойство полагается в основу обобщения понятия определителя на квадратные матрицы любого порядка. Именно: определителем квадратной матрицы порядка или, короче, определителем порядка называется алгебраическая сумма всевозможных произведений элементов матрицы, взятых по одному из каждой строки и по одному из каждого столбца, причем полученные произведения снабжены знаками плюс и минус по некоторому вполне определенному правилу. Это правило вводится

довольно сложным образом, и мы не будем останавливаться на его формулировке. Существенно отметить, что оно устанавливается так, что обеспечивается следующее важнейшее основное свойство определителя:

1. При перестановке двух строк определитель меняет знак на противоположный.

Для определителя 2 и 3-го порядков это свойство легко проверяется непосредственным вычислением. В общем случае оно доказывается на основе не сформулированного нами здесь правила знаков.

Определители обладают целым рядом других замечательных свойств, которые дают возможность с успехом использовать определители в разнообразных теоретических и численных расчетах, несмотря на чрезвычайную громоздкость определителя: ведь определитель n-го порядка содержит, как нетрудно видеть, слагаемых, каждое слагаемое состоит из сомножителей и слагаемые снабжены знаками по некоторому сложному правилу.

Переходим к перечислению основных свойств определителей, не останавливаясь на их подробных доказательствах.

Первое из этих свойств уже сформулировано выше.

2. Определитель не меняется при транспонировании его матрицы, т. е. при замене строк на столбцы с сохранением порядка.

Доказательство основано на подробном исследовании правила расстановки знаков в слагаемых определителя. Это свойство дает возможность всякое утверждение, касающееся строк определителя, перенести на столбцы.

3. Определитель есть линейная функция от элементов какой-либо его строки (или столбца). Подробнее

где представляют собой выражения, не зависящие от элементов строки.

Это свойство с очевидностью следует из того, что каждое слагаемое содержит по одному и только одному сомножителю из каждой, в частности строки.

Равенство (5) называется разложением определителя по элементам строки, а коэффициенты называются алгебраическими дополнениями элементов в определителе.

4. Алгебраическое дополнение элемента равно, с точностью до знака, так называемому минору определителя, т. е. определителю

долю порядка, получающемуся из данного посредством вычеркивания строки и столбца. Для получения алгебраического дополнения минор нужно взять со знаком . Свойства 3 и 4 сводят вычисление определителя порядка к вычислению определителей порядка

Из перечисленных основных свойств вытекает ряд интересных свойств определителей. Перечислим некоторые на них.

5. Определитель с двумя одинаковыми строками равен пулю.

Действительно, если определитель имеет две одинаковые строки, то при их перестановке определитель не изменяется, ибо строки одинаковые, но вместе с тем он, в силу первого свойства, меняет знак на обратный. Следовательно, он равен нулю.

Сумма произведений элементов какой-либо строки на алгебраические дополнения другой строки равна нулю.

Действительно, такай сумма является результатом разложения определителя с двумя одинаковыми строками по одной из них.

Общий множитель элементов какой-либо строки можно вынести за знак определителя.

Это следует из свойства 3.

8. Определитель с двумя пропорциональными строками равен нулю.

Достаточно вынести множитель пропорциональности, и мы получим определитель с двумя равными строками.

9. Определитель не меняется, если к элементам какой-либо строки добавить числа, пропорциональные элементам другой строки.

Действительно, в силу свойства 3 преобразованный определитель: равен сумме исходного определителя определителя с двумя пропорциональными строками, который равен нулю.

Последнее свойство дает хорошее средство для вычисления определителей. Используя это свойство можно, не менян величины определителя, преобразовать его матрицу так, чтобы в какой-либо строке (или столбце) все элементы, кроме одного, оказались равными нулю. Затем, разложив определитель но элементам этой строки (столбца), мы сведем вычисление определителя порядка к вычислению одного определителя порядка именно, алгебраического дополнения единственного отличного от нуля элемента выбранной строки.