Сайт о телевидении

Сайт о телевидении

» » Операционные системы

Операционные системы

Операционная система (ОС) – это комплекс программного обеспечения, основная задача которого обеспечивать возможность рационального использования оборудования компьютера наиболее удобным для пользователя образом.О С - это по преимуществу администратор ресурсов, она управляет процессорами, памятью, устройствами ввода-вывода и данными.

Обобщённую структуру вычислительной системы можно представить в виде совокупности технического и программного обеспечения. Техническое обеспечение: процессор, память, монитор, дисковые устройства и т.д. Все программное обеспечение принято делить на две части: прикладное и системное. К прикладному программному обеспечению, как правило, относятся разнообразные пользовательские программы, игры,

текстовые процессоры и т.п.

Системное программное обеспечение – комплекс программ, способствующих функционированию и разработке прикладных программ. Таким образом, операционная система является фундаментальным компонентом системного программного обеспечения.

Классификация ОС

Существует несколько подходов для классификации операционных систем. Можно отметить следующие критерии классификации:

– реализация многозадачности.

По числу одновременно выполняемых задач операционные системы могут быть разделены на два класса:

1 - многозадачные (Unix, OS/2, Windows), полностью реализует мультипрограммный режим;

2 - однозадачные (например, MS-DOS).

– поддержка многопользовательского режима.

По числу одновременно работающих пользователей ОС можно разделить на:

1 - однопользовательские (MS-DOS, Windows 3.x);

2 - многопользовательские (Windows NT, Unix), характеризуются наличием у механизмов защиты персональных данных каждого пользователя.

– многопроцессорная обработка.

По этому критерию ОС делятся на:

1 - однопроцессорные;

2 - многопроцессорные, характеризуются поддержкой мультипроцесси-рования и более сложными алгоритмами управления ресурсами (Linux, Solaris, Windows NT и в ряде других). Многопроцессорные системы состоят из двух или более центральных процессоров, осуществляющих параллельное выполнение команд.

Многопроцессорные ОС делятся на:

1 - симметричные, в которых на каждом процессоре функционирует одно и то же ядро и задача может быть выполнена на любом процессоре, то есть обработка полностью децентрализована;

2 - асимметричные, в которых процессоры неравноправны, т.е. существует главный процессор (master) и подчиненные (slave), загрузку и характер работы которых определяет главный процессор.

– работа в режиме реального времени.

Для работы в режиме реального времени предназначены специализированные ОС. Системы реального времени – операционные системы, характеризуемые предельно допустимым временем реакции на внешнее событие, в течение которого должна быть выполнена программа, управляющая объектом. Основное требование – система должна обрабатывать поступающие данные быстрее, чем те могут поступать, причем от нескольких источников одновременно. Системы реального времени используются для управления различными техническими объектами или технологическими процессами. Столь жесткие ограничения сказываются на архитектуре систем реального времени, например, в них может отсутствовать виртуальная память, поддержка которой дает непредсказуемые задержки в выполнении программ.

Назначение

Главное назначение ОС - это управление ресурсами , а главные ресурсы, которыми она управляет, - это аппаратура компьютера:

Процессор,

Устройства ввода-вывода.

Функции

· ОС реализует множество различных функций, в том числе:

· определяет так называемый интерфейс пользователя,

· обеспечивает разделение аппаратных ресурсов между пользователями,

· дает возможность работать с общими данными в режиме коллективного пользования,

· планирует доступ пользователей к общим ресурсам ,

· обеспечивает эффективное выполнение операций ввода-вывода ,

· осуществляет восстановление информации и вычислительного процесса в случае ошибок.

Требования

1. Надежностью. Система должна быть, по меньшей мере, так же надежна, как и аппаратура на которой она работает. В случае ошибки в программном или аппаратном оборудовании система должна обнаружить ошибку и либо попытаться исправить положение, либо постараться свести ущерб к минимуму.

2. Защитой. Система должна быть защищена от несанкционированного доступа.

3. Эффективностью. ОС представляет собой сложный комплекс программных средств, который использует значительную часть аппаратных ресурсов для своих собственных надобностей. Следовательно, сама система должна быть как можно более экономичной, чтобы большая часть ресурсов оставалась в распоряжении пользователей. Кроме того, система должна управлять ресурсами пользователей так, чтобы свести к минимуму время простоя, или, другими словами, добиться максимальной загруженности ресурса.

4. Предсказуемостью. Пользователь предпочитает, чтобы обслуживание не слишком сильно менялось в течение продолжительного времени. В частности, запуская программу, пользователь должен иметь представление, основанное на предыдущем опыте, о том, когда ему ожидать выдачи результатов.

5. Удобством. ОС должна быть достаточно гибкой и удобной для пользователя.

Системы можно разделить на несколько классов.

ДОС (Дисковые Операционные Системы). Это системы, берущие на себя выполнение только первых четырех функций. Как правило, это просто некий резидентный набор подпрограмм, не более того. Он загружает пользовательскую программу в память и передает ей управление, после чего программа делает с системой все, что ей заблагорассудится. Считается желательным, чтобы после завершения программы машина оставалась в таком состоянии, чтобы ДОС могла продолжить работу. (принципиально же, ДОС ничем не может помешать программе перевести систему в нерабочее состояние).

Дисковая операционная система MS DOS для IBM PC является примером систем подобного класса. Она, правда, умеет загружать несколько программ, но не предоставляет средств для исполнения этих программ. Более того, с точки зрения документированных функций, этим программам нельзя работать (существуют, однако, так называемые недокументированные задние двери (backdoors)).

Существование систем такого класса обусловлено их простотой и тем, что они потребляют мало ресурсов. Еще одна причина, по которой такие системы могут использоваться даже на довольно мощных машинах - требование программной совместимости с ранними моделями того же семейства компьютеров.

ОС. К этому классу относятся системы, берущие на себя выполнение всех вышеперечисленных функций. Разделение на ОС и ДОС идет, по-видимому, от систем IBM DOS/360 и OS/360 для больших компьютеров этой фирмы, клоны которых известны у нас в стране под названием ЕС ЭВМ серии 10XX. (Кстати, у IBM была еще TOS/360, Tape Operating System - Ленточная Операционная Система).

Здесь и далее под ОС мы будем подразумевать системы ``общего назначения"", то есть рассчитанные на интерактивную работу одного или нескольких пользователей в режиме разделения времени, при не очень жестких требованиях на время реакции системы на внешние события. Как правило, в таких системах уделяется большое внимание защите самой системы, программного обеспечения и пользовательских данных от ошибочных и злонамеренных программ и пользователей. Обычно такие системы используют встроенные в архитектуру процессора средства защиты и виртуализации памяти. К этому классу относятся такие широко распространенные системы, как VAX/VMS, системы семейства Unix и OS/2, хотя последняя не обеспечивает одновременной работы нескольких пользователей и защиты пользователей друг от друга.

Часто такие системы являются подсистемой ОС общего назначения: MS DOS и MS Windows-эмуляторы под UNIX и OS/2, окно DOS в MS Windows, эмулятор RT-11 в VAX/VMS.

Системы реального времени. Это системы, предназначенные для облегчения разработки так называемых приложений реального времени. Это программы, управляющие некомпьютерным по природе оборудованием, часто с очень жесткими ограничениями по времени. Примером такого приложения может быть программа бортового компьютера крылатой ракеты, системы управления ускорителем элементарных частиц или промышленным оборудованием. Такие системы обязаны поддерживать многопроцессность, гарантированное время реакции на внешнее событие, простой доступ к таймеру и внешним устройствам. Такие системы могут по другим признакам относиться как к классу ДОС (RT-11), так и к ОС (OS-9, QNX). Часто такие системы (например, VxWorks) рассчитаны на работу совместно с управляющей host-машиной, исполняющей "нормальную" операционную систему.

Кросс-загрузчики. Это системы - полностью ориентированные на работу с host-машиной. Чаще всего они используются для написания и отладки кода, позднее прошиваемого в ПЗУ. Это системы программирования микроконтроллеров семейства Intel 8048 и подобных им, TDS (Transputer Development System) фирмы Inmos, и многие другие. Такие системы, как правило, включают в себя набор компиляторов и ассемблеров, работающих на host-системе (реже - загружаемых с host-машины в целевую систему), библиотеки, выполняющие большую часть функций ОС при работе программы (но не загрузку этой программы!), и средства отладки.

Системы промежуточных типов. Существуют системы, которые с первого взгляда нельзя отнести к одному из вышеперечисленных классов. Такова, например, система RT-11, которая, по сути своей, является ДОС, но позволяет одновременное исполнение нескольких программ с довольно богатыми средствами взаимодействия и синхронизации. Другим примером промежуточной системы являются MS Windows 3.x и Windows 95 которые, как ОС, используют аппаратные средства процессора для защиты и виртуализации памяти и даже могут обеспечивать некоторое подобие многозадачной работы, но не защищают себя и программы от ошибок других программ.

Назначение операционной системы:

Операционная система (ОС) - комплекс системных и управляющих программ, предназначенных для наиболее эффективного использования всех ресурсов вычислительной системы (ВС) (Вычислительная система - взаимосвязанная совокупность аппаратных средств вычислительной техники и программного обеспечения, предназначенная для обработки информации) и удобства работы с ней.

Назначение ОС - организация вычислительного процесса в вычислительной системе, рациональное распределение вычислительных ресурсов между отдельными решаемыми задачами; предоставление пользователям многочисленных сервисных средств, облегчающих процесс программирования и отладки задач. Операционная система исполняет роль своеобразного интерфейса (Интерфейс - совокупность средств сопряжения и связи устройств компьютера, обеспечивающих их эффективное взаимодействие) между пользователем и ВС, т.е. ОС предоставляет пользователю виртуальную ВС. Это означает, что ОС в значительной степени формирует у пользователя представление о возможностях ВС, удобстве работы с ней, ее пропускной способности. Различные ОС на одних и тех же технических средствах могут предоставить пользователю различные возможности для организации вычислительного процесса или автоматизированной обработки данных.

В программном обеспечении ВС операционная система занимает основное положение, поскольку осуществляет планирование и контроль всего вычислительного процесса. Любая из компонентов программного обеспечения обязательно работает под управлением ОС.

Классификация операционных систем:

Операционные системы могут различаться особенностями реализации внутренних алгоритмов управления основными ресурсами компьютера (процессорами, памятью, устройствами), особенностями использованных методов проектирования, типами аппаратных платформ, областями использования и многими другими свойствами.

В зависимости от особенностей использованного алгоритма управления процессором, операционные системы делят на многозадачные и однозадачные, многопользовательские и однопользовательские, на системы, поддерживающие многонитевую обработку и не поддерживающие ее, на многопроцессорные и однопроцессорные системы.

По числу одновременно выполняемых задач операционные системы могут быть разделены на два класса:

1. однозадачные;

2. многозадачные.

Однозадачные ОС в основном выполняют функцию предоставления пользователю виртуальной машины, делая более простым и удобным процесс взаимодействия пользователя с компьютером. Однозадачные ОС включают средства управления периферийными устройствами, средства управления файлами, средства общения с пользователем.

Многозадачные ОС, кроме вышеперечисленных функций, управляют разделением совместно используемых ресурсов, таких как процессор, оперативная память, файлы и внешние устройства.

Многозадачные ОС подразделяются на три типа в соответствии с использованными при их разработке критериями эффективности:

1. системы пакетной обработки;

2. системы разделения времени;

3. системы реального времени.

Системы пакетной обработки предназначались для решения задач в основном вычислительного характера, не требующих быстрого получения результатов. Главной целью и критерием эффективности систем пакетной обработки является максимальная пропускная способность.

Системы разделения времени призваны исправить основной недостаток систем пакетной обработки - изоляцию пользователя-программиста от процесса выполнения его задач. Каждому пользователю системы разделения времени предоставляется терминал, с которого он может вести диалог со своей программой.

Системы реального времени применяются для управления различными техническими объектами. Критерием эффективности для систем реального времени является их способность выдерживать заранее заданные интервалы времени между запуском программы и получением результата (управляющего воздействия). Это время называется временем реакции системы, а соответствующее свойство системы - реактивностью.

Некоторые операционные системы могут совмещать в себе свойства систем разных типов, например, часть задач может выполняться в режиме пакетной обработки, а часть - в режиме реального времени или в режиме разделения времени. В таких случаях режим пакетной обработки часто называют фоновым режимом.

По числу одновременно работающих пользователей ОС делятся на:

1. однопользовательские;

2. многопользовательские.

Главным отличием многопользовательских систем от однопользовательских является наличие средств защиты информации каждого пользователя от несанкционированного доступа других пользователей. Следует заметить, что не всякая многозадачная система является многопользовательской, и не всякая однопользовательская ОС является однозадачной.

Среди множества существующих вариантов реализации многозадачности можно выделить две группы алгоритмов:

1. невытесняющая многозадачность;

2. вытесняющая многозадачность.

Основным различием между вытесняющим и невытесняющим вариантами многозадачности является степень централизации механизма планирования процессов. В первом случае механизм планирования процессов целиком сосредоточен в операционной системе, а во втором - распределен между системой и прикладными программами. При невытесняющей многозадачности активный процесс выполняется до тех пор, пока он сам, по собственной инициативе, не отдаст управление операционной системе для того, чтобы та выбрала из очереди другой готовый к выполнению процесс. При вытесняющей многозадачности решение о переключении процессора с одного процесса на другой принимается операционной системой, а не самим активным процессом.

На свойства операционной системы непосредственное влияние оказывают аппаратные средства, на которые она ориентирована. По типу аппаратуры различают операционные системы персональных компьютеров, мини-компьютеров, мейнфреймов, кластеров и сетей ЭВМ. Среди перечисленных типов компьютеров могут встречаться как однопроцессорные варианты, так и многопроцессорные. В любом случае специфика аппаратных средств, как правило, отражается на специфике операционных систем.

Основа программного обеспечения персонального компьютера - операционная система, представляющая собой комплекс служебных и системных программных компонентов, обеспечивающих человеко-компьютерное взаимодействие и выполнение прочих программ. С одной стороны, она тесно взаимосвязана с базовым программным обеспечением компьютера, включенным в BIOS, однако она сама выступает в качестве опоры для программ более высокого уровня - прикладного, а также большей части прикладных программ. Для работы компьютера обязательным условием выступает присутствие операционной системы на его жестком диске. При включении устройства она считывается с жесткого диска и записывается в ОЗУ, данный процесс получил название загрузка. В связи с тем, что сейчас существует множество разнообразных систем, ориентированных на решение конкретных и общих задач, вполне естественным является то, что имеется классификация операционных систем. Давайте приведем ее в кратком виде.

Классификация операционных систем зависит от особенностей реализации управляющих алгоритмов областями использования и ресурсами компьютера. В зависимости от алгоритма процессорного управления принято подразделять операционные системы на однозадачные и многозадачные, однопроцессорные и многопроцессорные, однопользовательские и и локальные.

Классификация операционных систем по количеству одновременно выполняемых задач: многозадачные и однозадачные. Однозадачные системы используют средства файлового периферийными устройствами, а также и средства взаимосвязи с пользователями. Для многозадачных систем характерно использование тех же средств, что и для однозадачных, но при этом они управляют разделением ресурсов, используемых совместно: оперативная память, процессор, внешние устройства и файлы.

Типы по областям использования многозадачности: системы обработки данных в пакетном режиме, системы реального времени и с разделением времени. Основным назначением систем пакетной обработки данных является решение задач, не требующих быстрого получения результата. Их основной целью является решение наибольшего количества задач за единицу времени или максимальная Такие системы позволяют добиваться большой производительности при решении больших объемов задач, однако они снижают эффективность пользовательской работы в режиме интерактивности. Системы с разделением времени выделяют небольшой временной промежуток для решения каждой задачи, поэтому ни одна задача на продолжительное время не занимает процессор. При минимальном выбранном промежутке времени может создаваться видимость одновременного выполнения ряда задач. При понижении пропускной способности такие системы позволяют пользователю весьма эффективно работать в интерактивном режиме. Системами реального времени пользуются для управления техническим объектом или технологическим процессом.

Классификация операционных систем по численности одновременно работающих пользователей: много- и однопользовательские. В многопользовательских у каждого пользователя имеется возможность настроить для себя интерфейс системы, то есть у них имеется возможность создать собственные ярлыки, индивидуальную схему цветов и прочее. В таких системах имеются и средства защиты информации от доступа иных пользователей.

Наличие в системе средств многопроцессорной является важнейшей характеристикой, подобные средства представлены в Net Ware, OS/2, Widows NT.

Так как мы привыкли использовать систему Windows, то вас может волновать именно ее классификация. Итак, основные операционные системы Windows, которые использовались у нас для рядовых пользователей, это Windows 95, 98, NT, XP, Seven.

1. Особенности алгоритмов управления ресурсами

a. Многозадачные и однозадачные. Многозадачные делятся на вытесняющие (процесс может быть принудительно снят с обслуживания) многозадачность и не вытесняющие многозадачность

b. Однопользовательские и многопользовательские

c. Системы поддерживающие многопотоковую обработку и не поддерживающие

d. Многопроцессорные и однопроцессорные. Многопроцессорные ОС могут классифицироваться по способу организации вычислительного процесса на симметричные и асимметричные (Асимметричные – все основное – на одном проце, остальное – на другом; симметричные – все на 1 проце)

2. Особенности аппаратной платформы

a. Персональные компы b. Мини-компы

c. Мейнфреймы d. Кластеры e. Сети ЭВМ

3. Особенности областей использования

a. Система пакетной обработки – для задач вычислит характера, главный критерий эффективности – максимальная пропускная способность

b. Система разделения времени – каждой задаче выделяется определенный квант времени – Удобство работы пользователя

c. Система реального времени – Способна выдерживать заранее заданные интервалы времени между запуском прои и получением результата, это время – время реакции системы, соответствующее свойство системы – реактивность (главный критерий эффективности)

4. Особенности методов построения

a. По способу организации ядра системы выделяются монолитное ядро или микроядро (почти во всех ОС, но не в чистом виде).

b. Функциональные и объектно-ориентированные ОС – какие концепции использовались при написании ОС

c. Наличие нескольких прикладных сред (например, под Виндой идет все из ДОСа)

d. ОС с распределенной организацией

РАЗНОВИДНОСТИ СОВРЕМЕННЫХ ОС

1. MS-DOS является наиболее широко распространенной операционной системой для персональных компьютеров. Имеет графический интерфейс, но ограничение памяти, доступной DOS-программ - 640 К. Еще один "черный шар" против DOS - полное отсутствие мультизадачности. DOS предназначена для одновременного выполнения только одной прои

2. Windows 3.1x - Обеспечена возможность работы со всеми прикладными программами MS-DOS (текстовыми процессорами, СУБД, электронными таблицами и пр.). Windows 3.1 может работать в одном из трех режимов: Real (реальном), Standart (стандартном), 386 Enhanced (расширенном)

3. Windows 95 - способность работать с 16-разрядными прикладными программами Windows, программами, унаследованными от DOS, и старыми драйверами устройств реального режима и в то же время совместимой с истинными 32-разрядными прикладными программами и 32-разрядными драйверами виртуальных устройств.



4. Windows NT представляет собой операционную систему сервера, приспособленную для использования на рабочей станции (для получения приемлемой производительности необходимы быстродействующий процессор и по меньшей мере 16 Mb ОЗУ). Собственные прикладным программам выделяется 2 Gb особого адресного пространства, от границы 64 К до 2 Gb (первые 64 К полностью недоступны)

5. OS/2 Warp - это новая ОС с графическим интерфейсам пользователя (ГИП), в то время как Windows представляет собой ГИП, работающий "поверх" DOS. OS/2 является полностью защищенной операционной системой, благодаря чему невозможны конфликты между программами в памяти. OS/2 способна выполнять одновременно несколько прикладных программ.

ОС как виртуальная машина и как система управления ресурсами. Задачи ОС

ОС как виртуальная машина

Чтобы успешно решать свои задачи, ныне пользователь или программист может обойтись без досконального знания аппаратного устройства компа и может даже не знать системы команд процессора.Программное и аппаратное обеспечение можно выстроить в виде иерархии, каждый уровень которой представляет собой виртуальную машину со своим интерфейсом-Аппаратная часть-операционная система-системные библиотеки-прикладные прои.ОС как интерфейс между пользователем и компом (виртуальная машина).При разработке ОС широко применяется абстрагирование, которое является важным методом упрощения, и позволяет сконцентрироваться на взаимодействии высокоуровневых компонентов систем, игнорируя детали их реализации. В этом смысле ОС представляет собой интерфейс между пользователем и компом.

Архитектура большинства компьютеров на уровне машинных программ очень неудобна для написания прикладным программ. Например, работа с диском предполагает знание внутреннего устройства его электронных компонента – контроллера, для ввода команд вращения диска, поиска и форматирования дорожек, чтения и записи секторов. Средний программист не в состоянии учитывать все особенности работы оборудования (разработки драйверов устройств), а должен иметь простое высокоуровневое абстрактное представление пространства диска, как набор файлов.



ФАЙЛ можно открыть для чтения или записи и использовать для получения или сброса инфы, потом закрывать. Это проще чем задумываться о деталях перемещения головок диска или организации работы мотора. Аналогично, с помощью простых абстракций скрываются от программиста все подробности организации прерываний работы таймера, управление памятью и т.д. ОС представляется пользователю как интерфейс, или виртуальная машина с которой проще работать чем непосредственно с оборудованием компа.

ОС как менеджер ресурсов.

ОС предназначена для управления всеми частями весьма сложной архитектуры компа. Например, когда несколько программ работающих на одном компьютере будут пытаться одновременно осуществить вывод на принтер без управления со стороны ОС, была бы мешанина строчек и страниц. ОС предотвращает такого рода хаос за счет буферизации инфы, предназначенной для печати на диске, и организации очереди на печать. Для многопользовательских компьютеров необходимость управления ресурсами и их защиты еще более очевидна. ОС как менеджер ресурсов осуществляет упорядочение и контролирование распределения процессора, памяти и других ресурсов между различными программами.ОС как защитник пользователей и их программ.При совместной работе нескольких пользователей на одной ВС возникает проблема организации их безопасной деятельности. Необходимо обеспечивать сохранение инфы на диске чтобы никто не мог удалить или повредить чужие файлы. Прои одних пользователей не должны производить вмешательства в прои других пользователей, а так же нужно пресекать попытки несанкционированного использования ВС. Эту деятельность осуществляет ОС как организатор безопасной работы пользователей и их программ.ОС как постоянно функционирующее ядро.ОС это программа постоянно работающая на компьютере и взаимодействующая со всеми прикладными программами.Однако, во многих современных ОС постоянно работает на компьютере лишь часть ОС, которую принято называть ядром ОС.

Т.о. существует много точек зрения на то, что такое ОС. Невозможно дать ей адекватное строгое определение. Проще сказать не что есть ОС, а для чего она нужна и что она делает. Для выяснения этого вопроса полезно рассматривать историю развития вычислительных систем.

ОС выполняет множество функций, которые обычно группируются в соответствии с видом ресурса, которым управляет операционная система, либо со специфической задачей, применимой ко всем видам ресурсов. Можно выделить следующие функции современной многозадачной многопользовательской операционнной системы: управление процессами, управление памятью, управление файлами и внешними устройствами, защита данных и администрирование, интерфейс прикладного программирования, пользовательский интерфейс.Наиболее общим подходом к структуризации ОС является её разделение всех её модулей на две группы:

ядро – модули, выполняющие основные функции ОС, решающие внутрисистемные задачи организации вычислительного процесса, такие как переключение контекста, управление памятью, обработка прерываний, работа с внешними устройствами и т.п. компоненты, реализующие дополнительные функции ОС – всевозможные служебные прои, или утилиты

Операционная система предназначена для управления выполнением пользовательских программ, планирования и управления вычислительными ресурсами ЭВМ.

Операционная система, с одной стороны, выступает как интерфейс между аппаратурой компьютера и пользователем с его задачами, с другой стороны, предназначена для эффективного использования ресурсов вычислительной системы и организации надежных вычислений.

Системы управления файлами предназначены для организации более удобного доступа к данным, организованным как файлы.

Вместо низкоуровневого доступа к данным с указанием конкретных физических адресов система управления файлами позволяет использовать логический доступ с указанием имени файла.

Любая система управления файлами не существует сама по себе - она разработана для работы в конкретной ОС и с конкретной файловой системой. То есть можно было бы систему управления файлами отнести к ОС.

Но в связи с тем, что:

  • 1) ряд ОС позволяет работать с несколькими файловыми системами (либо с одной из нескольких, либо сразу с несколькими одновременно); а дополнительную файловую систему можно установить (т.е. они самостоятельны);
  • 2) простейшие ОС могут работать и без файловых систем; системы управления файлами выделяются в отдельную группу системных программ.

Заметим, что часто в специальной литературе системы управления файлами относят все-таки к операционным системам.

Операционные системы различаются особенностями реализации алгоритмов управления ресурсами компьютера, областями использования.

Так, в зависимости от алгоритма управления процессором, операционные системы делятся на:

  • · Однозадачные и многозадачные.
  • · Однопользовательские и многопользовательские.
  • · Однопроцессорные и многопроцессорные системы.
  • · Локальные и сетевые.

По числу одновременно выполняемых задач операционные системы делятся на два класса:

  • · Однозадачные (MS DOS).
  • · Многозадачные (OS/2, Unix, Windows).

В однозадачных системах используются средства управления периферийными устройствами, средства управления файлами, средства общения с пользователями. Многозадачные ОС используют все средства, которые характерны для однозадачных, и, кроме того, управляют разделением совместно используемых ресурсов: процессор, ОЗУ, файлы и внешние устройства.

В зависимости от областей использования многозадачные ОС подразделяются на три типа:

  • · Системы пакетной обработки (ОС ЕС).
  • · Системы с разделением времени (Unix, Linux, Windows).
  • · Системы реального времени (RT11).

Системы пакетной обработки предназначены для решения задач, которые не требуют быстрого получения результатов. Главной целью ОС пакетной обработки является максимальная пропускная способность или решение максимального числа задач в единицу времени.

Эти системы обеспечивают высокую производительность при обработке больших объемов информации, но снижают эффективность работы пользователя в интерактивном режиме.

В системах с разделением времени для выполнения каждой задачи выделяется небольшой промежуток времени, и ни одна задача не занимает процессор надолго. Если этот промежуток времени выбран минимальным, то создается видимость одновременного выполнения нескольких задач. Эти системы обладают меньшей пропускной способностью, но обеспечивают высокую эффективность работы пользователя в интерактивном режиме.

Системы реального времени применяются для управления технологическим процессом или техническим объектом, например, летательным объектом, станком и т.д.

По числу одновременно работающих пользователей на ЭВМ ОС разделяются на однопользовательские (MS DOS) и многопользовательские (Unix, Linux, Windows 95 - XP).

В многопользовательских ОС каждый пользователь настраивает для себя интерфейс пользователя, т.е. может создать собственные наборы ярлыков, группы программ, задать индивидуальную цветовую схему, переместить в удобное место панель задач и добавить в меню Пуск новые пункты.

В многопользовательских ОС существуют средства защиты информации каждого пользователя от несанкционированного доступа других пользователей.

Многопроцессорные и однопроцессорные операционные системы. Одним из важных свойств ОС является наличие в ней средств поддержки многопроцессорной обработки данных. Такие средства существуют в OS/2, Net Ware, Widows NT. По способу организации вычислительного процесса эти ОС могут быть разделены на асимметричные и симметричные.

Одним из важнейших признаков классификации ЭВМ является разделение их на локальные и сетевые. Локальные ОС применяются на автономных ПК или ПК, которые используются в компьютерных сетях в качестве клиента.

В состав локальных ОС входит клиентская часть ПО для доступа к удаленным ресурсам и услугам. Сетевые ОС предназначены для управления ресурсами ПК включенных в сеть с целью совместного использования ресурсов. Они представляют мощные средства разграничения доступа к информации, ее целостности и другие возможности использования сетевых ресурсов.

программный антивирусный системный файловый