Сайт о телевидении

Сайт о телевидении

» » Нейронные сети: какие бывают и как их используют бренды. Простыми словами о сложном: что такое нейронные сети

Нейронные сети: какие бывают и как их используют бренды. Простыми словами о сложном: что такое нейронные сети

От vc.ru том, как за несколько шагов создать простую нейронную сеть и научить её узнавать известных предпринимателей на фотографиях.

Шаг 0. Разбираемся, как устроены нейронные сети

Проще всего разобраться с принципами работы нейронных сетей можно на примере Teachable Machine — образовательного проекта Google.

В качестве входящих данных — то, что нужно обработать нейронной сети — в Teachable Machine используется изображение с камеры ноутбука. В качестве выходных данных — то, что должна сделать нейросеть после обработки входящих данных — можно использовать гифку или звук.

Например, можно научить Teachable Machine при поднятой вверх ладони говорить «Hi». При поднятом вверх большом пальце — «Cool», а при удивленном лице с открытым ртом — «Wow».

Для начала нужно обучить нейросеть. Для этого поднимаем ладонь и нажимаем на кнопку «Train Green» — сервис делает несколько десятков снимков, чтобы найти на изображениях закономерность. Набор таких снимков принято называть «датасетом».

Теперь остается выбрать действие, которое нужно вызывать при распознании образа — произнести фразу, показать GIF или проиграть звук. Аналогично обучаем нейронную сеть распознавать удивленное лицо и большой палец.

Как только нейросеть обучена, её можно использовать. Teachable Machine показывает коэффициент «уверенности» — насколько система «уверена», что ей показывают один из навыков.

Шаг 1. Готовим компьютер к работе с нейронной сетью

Теперь сделаем свою нейронную сеть, которая при отправке изображения будет сообщать о том, что изображено на картинке. Сначала научим нейронную сеть распознавать цветы на картинке: ромашку, подсолнух, одуванчик, тюльпан или розу.

Для создания собственной нейронной сети понадобится Python — один из наиболее минималистичных и распространенных языков программирования, и TensorFlow — открытая библиотека Google для создания и тренировки нейронных сетей.

Устанавливаем Python

Мое знакомство с нейронными сетями произошло, когда вышло приложение Prisma. Оно обрабатывает любую фотографию, с помощью нейронных сетей, и воспроизводит ее с нуля, используя выбранный стиль. Заинтересовавшись этим, я бросился искать статьи и «туториалы», в первую очередь, на Хабре. И к моему великому удивлению, я не нашел ни одну статью, которая четко и поэтапно расписывала алгоритм работы нейронных сетей. Информация была разрознена и в ней отсутствовали ключевые моменты. Также, большинство авторов бросается показывать код на том или ином языке программирования, не прибегая к детальным объяснениям.

П ервым и самым важным моим открытием был плейлист американского программиста Джеффа Хитона, в котором он подробно и наглядно разбирает принципы работы нейронных сетей и их классификации. После просмотра этого плейлиста, я решил создать свою нейронную сеть, начав с самого простого примера. Вам наверняка известно, что когда ты только начинаешь учить новый язык, первой твоей программой будет Hello World. Это своего рода традиция. В мире машинного обучения тоже есть свой Hello world и это нейросеть решающая проблему исключающего или(XOR). Таблица исключающего или выглядит следующим образом:

Соответственно, нейронная сеть берет на вход два числа и должна на выходе дать другое число - ответ. Теперь о самих нейронных сетях.

Что такое нейронная сеть?

Нейронная сеть - это последовательность нейронов, соединенных между собой синапсами. Структура нейронной сети пришла в мир программирования прямиком из биологии. Благодаря такой структуре, машина обретает способность анализировать и даже запоминать различную информацию. Нейронные сети также способны не только анализировать входящую информацию, но и воспроизводить ее из своей памяти. Заинтересовавшимся обязательно к просмотру 2 видео из TED Talks: Видео 1 , Видео 2 ). Другими словами, нейросеть это машинная интерпретация мозга человека, в котором находятся миллионы нейронов передающих информацию в виде электрических импульсов.

Какие бывают нейронные сети?

Пока что мы будем рассматривать примеры на самом базовом типе нейронных сетей - это сеть прямого распространения (далее СПР). Также в последующих статьях я введу больше понятий и расскажу вам о рекуррентных нейронных сетях. СПР как вытекает из названия это сеть с последовательным соединением нейронных слоев, в ней информация всегда идет только в одном направлении.

Для чего нужны нейронные сети?

Нейронные сети используются для решения сложных задач, которые требуют аналитических вычислений подобных тем, что делает человеческий мозг. Самыми распространенными применениями нейронных сетей является:

Классификация - распределение данных по параметрам. Например, на вход дается набор людей и нужно решить, кому из них давать кредит, а кому нет. Эту работу может сделать нейронная сеть, анализируя такую информацию как: возраст, платежеспособность, кредитная история и тд.

Предсказание - возможность предсказывать следующий шаг. Например, рост или падение акций, основываясь на ситуации на фондовом рынке.

Распознавание - в настоящее время, самое широкое применение нейронных сетей. Используется в Google, когда вы ищете фото или в камерах телефонов, когда оно определяет положение вашего лица и выделяет его и многое другое.

Теперь, чтобы понять, как же работают нейронные сети, давайте взглянем на ее составляющие и их параметры.

Что такое нейрон?

Нейрон - это вычислительная единица, которая получает информацию, производит над ней простые вычисления и передает ее дальше. Они делятся на три основных типа: входной (синий), скрытый (красный) и выходной (зеленый). Также есть нейрон смещения и контекстный нейрон о которых мы поговорим в следующей статье. В том случае, когда нейросеть состоит из большого количества нейронов, вводят термин слоя. Соответственно, есть входной слой, который получает информацию, n скрытых слоев (обычно их не больше 3), которые ее обрабатывают и выходной слой, который выводит результат. У каждого из нейронов есть 2 основных параметра: входные данные (input data) и выходные данные (output data). В случае входного нейрона: input=output. В остальных, в поле input попадает суммарная информация всех нейронов с предыдущего слоя, после чего, она нормализуется, с помощью функции активации (пока что просто представим ее f(x)) и попадает в поле output.

Важно помнить , что нейроны оперируют числами в диапазоне или [-1,1]. А как же, вы спросите, тогда обрабатывать числа, которые выходят из данного диапазона? На данном этапе, самый простой ответ - это разделить 1 на это число. Этот процесс называется нормализацией, и он очень часто используется в нейронных сетях. Подробнее об этом чуть позже.

Что такое синапс?

Синапс это связь между двумя нейронами. У синапсов есть 1 параметр - вес. Благодаря ему, входная информация изменяется, когда передается от одного нейрона к другому. Допустим, есть 3 нейрона, которые передают информацию следующему. Тогда у нас есть 3 веса, соответствующие каждому из этих нейронов. У того нейрона, у которого вес будет больше, та информация и будет доминирующей в следующем нейроне (пример - смешение цветов). На самом деле, совокупность весов нейронной сети или матрица весов - это своеобразный мозг всей системы. Именно благодаря этим весам, входная информация обрабатывается и превращается в результат.

Важно помнить , что во время инициализации нейронной сети, веса расставляются в случайном порядке.

Как работает нейронная сеть?

В данном примере изображена часть нейронной сети, где буквами I обозначены входные нейроны, буквой H - скрытый нейрон, а буквой w - веса. Из формулы видно, что входная информация - это сумма всех входных данных, умноженных на соответствующие им веса. Тогда дадим на вход 1 и 0. Пусть w1=0.4 и w2 = 0.7 Входные данные нейрона Н1 будут следующими: 1*0.4+0*0.7=0.4. Теперь когда у нас есть входные данные, мы можем получить выходные данные, подставив входное значение в функцию активации (подробнее о ней далее). Теперь, когда у нас есть выходные данные, мы передаем их дальше. И так, мы повторяем для всех слоев, пока не дойдем до выходного нейрона. Запустив такую сеть в первый раз мы увидим, что ответ далек от правильно, потому что сеть не натренирована. Чтобы улучшить результаты мы будем ее тренировать. Но прежде чем узнать как это делать, давайте введем несколько терминов и свойств нейронной сети.

Функция активации

Функция активации - это способ нормализации входных данных (мы уже говорили об этом ранее). То есть, если на входе у вас будет большое число, пропустив его через функцию активации, вы получите выход в нужном вам диапазоне. Функций активации достаточно много поэтому мы рассмотрим самые основные: Линейная, Сигмоид (Логистическая) и Гиперболический тангенс. Главные их отличия - это диапазон значений.

Линейная функция

Эта функция почти никогда не используется, за исключением случаев, когда нужно протестировать нейронную сеть или передать значение без преобразований.

Сигмоид

Это самая распространенная функция активации, ее диапазон значений . Именно на ней показано большинство примеров в сети, также ее иногда называют логистической функцией. Соответственно, если в вашем случае присутствуют отрицательные значения (например, акции могут идти не только вверх, но и вниз), то вам понадобиться функция которая захватывает и отрицательные значения.

Гиперболический тангенс

Имеет смысл использовать гиперболический тангенс, только тогда, когда ваши значения могут быть и отрицательными, и положительными, так как диапазон функции [-1,1]. Использовать эту функцию только с положительными значениями нецелесообразно так как это значительно ухудшит результаты вашей нейросети.

Тренировочный сет

Тренировочный сет - это последовательность данных, которыми оперирует нейронная сеть. В нашем случае исключающего или (xor) у нас всего 4 разных исхода то есть у нас будет 4 тренировочных сета: 0xor0=0, 0xor1=1, 1xor0=1,1xor1=0.

Итерация

Это своеобразный счетчик, который увеличивается каждый раз, когда нейронная сеть проходит один тренировочный сет. Другими словами, это общее количество тренировочных сетов пройденных нейронной сетью.

Эпоха

При инициализации нейронной сети эта величина устанавливается в 0 и имеет потолок, задаваемый вручную. Чем больше эпоха, тем лучше натренирована сеть и соответственно, ее результат. Эпоха увеличивается каждый раз, когда мы проходим весь набор тренировочных сетов, в нашем случае, 4 сетов или 4 итераций.

Важно не путать итерацию с эпохой и понимать последовательность их инкремента. Сначала n раз увеличивается итерация, а потом уже эпоха и никак не наоборот. Другими словами, нельзя сначала тренировать нейросеть только на одном сете, потом на другом и тд. Нужно тренировать каждый сет один раз за эпоху. Так, вы сможете избежать ошибок в вычислениях.

Ошибка

Ошибка - это процентная величина, отражающая расхождение между ожидаемым и полученным ответами. Ошибка формируется каждую эпоху и должна идти на спад. Если этого не происходит, значит, вы что-то делаете не так. Ошибку можно вычислить разными путями, но мы рассмотрим лишь три основных способа: Mean Squared Error (далее MSE), Root MSE и Arctan. Здесь нет какого-либо ограничения на использование, как в функции активации, и вы вольны выбрать любой метод, который будет приносить вам наилучший результат. Стоит лишь учитывать, что каждый метод считает ошибки по разному. У Arctan, ошибка, почти всегда, будет больше, так как он работает по принципу: чем больше разница, тем больше ошибка. У Root MSE будет наименьшая ошибка, поэтому, чаще всего, используют MSE, которая сохраняет баланс в вычислении ошибки.

Root MSE

Arctan

Принцип подсчета ошибки во всех случаях одинаков. За каждый сет, мы считаем ошибку, отняв от идеального ответа, полученный. Далее, либо возводим в квадрат, либо вычисляем квадратный тангенс из этой разности, после чего полученное число делим на количество сетов.

Задача

Теперь, чтобы проверить себя, подсчитайте результат, данной нейронной сети, используя сигмоид, и ее ошибку, используя MSE.

Данные:

I1=1, I2=0, w1=0.45, w2=0.78 ,w3=-0.12 ,w4=0.13 ,w5=1.5 ,w6=-2.3.

Решение

H1input = 1*0.45+0*-0.12=0.45

H1output = sigmoid(0.45)=0.61

H2input = 1*0.78+0*0.13=0.78

H2output = sigmoid(0.78)=0.69

O1input = 0.61*1.5+0.69*-2.3=-0.672

O1output = sigmoid(-0.672)=0.33

O1ideal = 1 (0xor1=1)

Error = ((1-0.33)^2)/1=0.45

Результат - 0.33, ошибка - 45%.

Большое спасибо за внимание! Надеюсь, что данная статья смогла помочь вам в изучении нейронных сетей. В следующей статье, я расскажу о нейронах смещения и о том, как тренировать нейронную сеть, используя метод обратного распространения и градиентного спуска.

Использованные ресурсы:

Всем привет!

Буквально вчера нашел книгу Тарика Рашида «Создай свою нейросеть». Книга является бестселлером (топ 1 продаж) в разделе «Искусственный интеллект». Книга свежая, вышла в прошлом году.

Впечатления от первых разделов замечательные. Одно из лучших введений в сферу нейросетей из всех мною виденных. Книга мне так понравилась, что я решил перевести ее на русский язык и выкладывать сюда в виде статей. Часть материала из книги пойдет на улучшение уже существующих глав, часть на следующие.

Перевел уже два первых раздела 1 главы. Вы можете этих разделов.

Читайте - наслаждайтесь!

1 Глава. Как они работают.

1.1 Легко для меня, тяжело для тебя

Все компьютеры являются калькуляторами в душе. Они умеют очень быстро считать.

Не стоит их в этом упрекать. Они отлично выполняют свою работу: считают цену с учетом скидки, начисляют долговые проценты, рисуют графики по имеющимся данным и так далее.

Даже просмотр телевизора или прослушивание музыки с помощью компьютера представляют собой выполнение огромного количества арифметических операций снова и снова. Это может прозвучать удивительно, но отрисовка каждого кадра изображения из нулей и единиц, полученных через интернет задействует вычисления, которые не сильно сложнее тех задач, которые мы все решали в школе.

Однако, способность компьютера складывать тысячи и миллионы чисел в секунду вовсе не является искусственным интеллектом. Человеку сложно так быстро складывать числа, но согласитесь, что эта работа не требует серьезных интеллектуальных затрат. Надо придерживаться заранее известного алгоритма по складыванию чисел и ничего более. Именно этим и занимаются все компьютеры - придерживаются четкого алгоритма.

С компьютерами все ясно. Теперь давайте поговорим о том, в чем мы хороши по сравнению с ними.

Посмотрите на картинки ниже и определите, что на них изображено:

Вы видите лица людей на первой картинке, морду кошки на второй и дерево на третьей. Вы распознали объекты на этих картинках. Заметьте, что вам хватило лишь взгляда, чтобы безошибочно понять, что на них изображено. Мы редко ошибаемся в таких вещах.

Мы мгновенно и без особого труда воспринимаем огромное количество информации, которое содержат изображения и очень точно определяем объекты на них. А вот для любого компьютера такая задача встанет поперек горла.

У любого компьютера вне зависимости от его сложности и быстроты нет одного важного качества - интеллекта, которым обладает каждый человек.

Но мы хотим научить компьютеры решать подобные задачи, потому что они быстрые и не устают. Искусственный интеллект как раз занимается решением подобного рода задач.

Конечно компьютеры и дальше будут состоять из микросхем. Задача искусственного интеллекта - найти новые алгоритмы работы компьютера, которые позволят решать интеллектуальные задачи. Эти алгоритмы не всегда идеальны, но они решают поставленные задачи и создают впечатление, что компьютер ведет себя как человек.

Ключевые моменты

  • Есть задачи легкие для обычных компьютеров, но вызывающие трудности и людей. Например, умножение миллиона чисел друг на друга.
  • С другой стороны, существуют не менее важные задачи, которые невероятно сложны для компьютера и не вызывают проблем у людей. Например, распознавание лиц на фотографиях.

1.2 Простая предсказательная машина

Давайте начнем с чего-нибудь очень простого. Дальше мы будет отталкиваться от материала, изученного в этом разделе.

Представьте себе машину, которая получает вопрос, «обдумывает» его и затем выдает ответ. В примере выше вы получали картинку на вход, анализировали ее с помощью мозгов и делали вывод об объекте, который на ней изображен. Выглядит это как-то так:

Компьютеры на самом деле ничего не «обдумывают». Они просто применяют заранее известные арифметические операции. Поэтому давайте будем называть вещи своими именами:

Компьютер принимает какие-то данные на вход, производит необходимые вычисления и выдает готовый результат. Рассмотрим следующий пример. Если на вход компьютеру поступает выражение ​\(3 \times 4 \) ​, то оно преобразуется в более простую последовательность сложений. Как итог, получаем результат - 12.

Выглядит не слишком впечатляюще. Это нормально. С помощью этих тривиальных примеров вы увидите идею, которую реализуют нейросети.

Теперь представьте себе машину, которая преобразует километры в мили:

Теперь представьте, что мы не знаем формулу, с помощью которой километры переводятся в мили. Мы знаем только, что зависимость между двумя этими величинами линейная . Это означает, что если мы в два раза увеличим дистанцию в милях, то дистанция в километрах тоже увеличится в два раза. Это интуитивно понятно. Вселенная была бы очень странной, если бы это правило не выполнялось.

Линейная зависимость между километрами и милями дает нам подсказку, в какой форме надо преобразовывать одну величину в другую. Мы можем представить эту зависимость так:

\[ \text{мили} = \text{километры} \times C \]

В выражении выше ​\(C \) ​ выступает в роли некоторого постоянного числа - константы. Пока мы не знаем, чему равно ​\(C \) ​.

Единственное, что нам известно - несколько заранее верно отмеренных расстояний в километрах и милях.

И как же узнать значение ​\(C \) ​? А давайте просто придумаем случайное число и скажем, что ему-то и равна наша константа. Пусть ​\(C = 0.5 \) ​. Что же произойдет?

Принимая, что ​\(C = 0.5 \) ​ мы из 100 километров получаем 50 миль. Это отличный результат принимая во внимания тот факт, что ​\(C = 0.5 \) ​ мы выбрали совершенно случайно! Но мы знаем, что наш ответ не совсем верен, потому что согласно таблице верных замеров мы должны были получить 62.137 мили.

Мы промахнулись на 12.137 миль. Это наша погрешность - разница между полученным ответом и заранее известным правильным результатом, который в данном случае мы имеем в таблице.

\[ \begin{gather*} \text{погрешность} = \text{правильное значение} — \text{полученный ответ} \\ = 62.137 — 50 \\ = 12.137 \end{gather*} \]

Вновь смотрим на погрешность. Полученное расстояние короче на 12.137. Так как формула по переводу километров в мили линейная (​\(\text{мили} = \text{километры} \times C \) ​), то увеличение значения ​\(C \) ​ увеличит и выходной результат в милях.

Давайте теперь примем, что ​\(C = 0.6 \) ​ и посмотрим, что произойдет.

Так как ​\(C=0.6 \) ​, то для 100 километров имеем ​\(100 \times 0.6 = 60 \) ​ миль. Это гораздо лучше предыдущей попытки (в тот раз было 50 миль)! Теперь наша погрешность очень мала - всего 2.137 мили. Вполне себе точный результат.

Теперь обратите внимание на то, как мы использовали полученную погрешность для корректировки значения константы ​\(C \) ​. Нам нужно было увеличить выходное число миль и мы немного увеличили значение ​\(C \) ​. Заметьте, что мы не используем алгебру для получения точного значения ​\(C \) ​, а ведь мы могли бы. Почему? Потому что на свете полно задач, которые не имеют простой математической связи между полученным входом и выдаваемым результатом.

Именно для задач, которые практически не решаются простым подсчетом нам и нужны такие изощренные штуки, как нейронные сети.

Боже мой! Мы хватанули слишком много и превысили правильный результат. Наша предыдущая погрешность равнялась 2.137, а теперь она равна -7.863. Минус означает, что наш результат оказался больше правильного ответа, так как погрешность вычисляется как правильный ответ — (минус) полученный ответ.

Получается, что при ​\(C=0.6 \) ​ мы имеем гораздо более точный выход. На этом можно было бы и закончить. Но давайте все же увеличим ​\(C \) ​, но не сильно! Пусть ​\(C=0.61 \) ​.

Так-то лучше! Наша машина выдает 61 милю, что всего на 1.137 милю меньше, чем правильный ответ (62.137).

Из этой ситуации с превышением правильного ответа надо вынести важный урок. По мере приближения к правильному ответу параметры машины стоит менять все слабее и слабее. Это поможет избежать неприятных ситуаций, которые приводят к превышению правильного ответа.

Величина нашей корректировки ​\(C \) ​ зависит от погрешности. Чем больше наша погрешность, тем более сильно мы меняем значение ​\(C \) ​. Но когда погрешность становиться маленькой, необходимо менять ​\(C \) ​ по чуть-чуть. Логично, не так ли?

Верьте или нет, но только что вы поняли самую суть работы нейронных сетей. Мы тренируем «машины» постепенно выдавать все более и более точный результат.

Важно понимать и то, как мы решали эту задачу. Мы не решали ее в один заход, хотя в данном случае так можно было бы поступить. Вместо этого, мы приходили к правильному ответу по шагам так, что с каждым шагом наши результаты становились лучше.

Не правда ли объяснения очень простые и понятные? Лично я не встречал более лаконичного способа объяснить, что такое нейросети.

Если вам что-то непонятно, задавайте вопросы на форуме.

Мне важно ваше мнение - оставляйте комментарии 🙂


Искусственный интеллект, нейронные сети, машинное обучение — что на самом деле означают все эти нынче популярные понятия? Для большинства непосвященных людей, коим и являюсь я сам, они всегда казались чем-то фантастическим, но на самом деле суть их лежит на поверхности. У меня давно созревала идея написать простым языком об искусственных нейронных сетях. Узнать самому и рассказать другим, что представляют собой эта технология, как она работают, рассмотреть ее историю и перспективы. В этой статье я постарался не залезать в дебри, а просто и популярно рассказать об этом перспективном направление в мире высоких технологий.


Искусственный интеллект, нейронные сети, машинное обучение - что на самом деле означают все эти нынче популярные понятия? Для большинства непосвященных людей, коим являюсь и я сам, они всегда казались чем-то фантастическим, но на самом деле суть их лежит на поверхности. У меня давно созревала идея написать простым языком об искусственных нейронных сетях. Узнать самому и рассказать другим, что представляет собой эта технология, как она работает, рассмотреть ее историю и перспективы. В этой статье я постарался не залезать в дебри, а просто и популярно рассказать об этом перспективном направление в мире высоких технологий.

Немного истории

Впервые понятие искусственных нейронных сетей (ИНС) возникло при попытке смоделировать процессы головного мозга. Первым серьезным прорывом в этой сфере можно считать создание модели нейронных сетей МакКаллока-Питтса в 1943 году. Учеными впервые была разработана модель искусственного нейрона. Ими также была предложена конструкция сети из этих элементов для выполнения логических операций. Но самое главное, учеными было доказано, что подобная сеть способна обучаться.

Следующим важным шагом стала разработка Дональдом Хеббом первого алгоритма вычисления ИНС в 1949 году, который стал основополагающем на несколько последующих десятилетий. В 1958 году Фрэнком Розенблаттом был разработан парцептрон - система, имитирующая процессы головного мозга. В свое время технология не имела аналогов и до сих пор является основополагающей в нейронных сетях. В 1986 году практически одновременно, независимо друг от друга американскими и советскими учеными был существенно доработан основополагающий метод обучения многослойного перцептрона . В 2007 году нейронные сети перенесли второе рождение. Британский информатик Джеффри Хинтоном впервые разработал алгоритм глубокого обучения многослойных нейронных сетей, который сейчас, например, используется для работы беспилотных автомобилей.

Коротко о главном

В общем смысле слова, нейронные сети - это математические модели, работающие по принципу сетей нервных клеток животного организма. ИНС могут быть реализованы как в программируемые, так и в аппаратные решения. Для простоты восприятия нейрон можно представить, как некую ячейку, у которой имеется множество входных отверстий и одно выходное. Каким образом многочисленные входящие сигналы формируются в выходящий, как раз и определяет алгоритм вычисления. На каждый вход нейрона подаются действенные значения, которые затем распространяются по межнейронным связям (синопсисам). У синапсов есть один параметр - вес, благодаря которому входная информация изменяется при переходе от одного нейрона к другому. Легче всего принцип работы нейросетей можно представить на примере смешения цветов. Синий, зеленый и красный нейрон имеют разные веса. Информация того нейрона, вес которого больше будет доминирующей в следующем нейроне.

Сама нейросеть представляет собой систему из множества таких нейронов (процессоров). По отдельности эти процессоры достаточно просты (намного проще, чем процессор персонального компьютера), но будучи соединенными в большую систему нейроны способны выполнять очень сложные задачи.

В зависимости от области применения нейросеть можно трактовать по-разному, Например, с точки зрения машинного обучения ИНС представляет собой метод распознавания образов. С математической точки зрения - это многопараметрическая задача. С точки зрения кибернетики - модель адаптивного управления робототехникой. Для искусственного интеллекта ИНС - это основополагающее составляющее для моделирования естественного интеллекта с помощью вычислительных алгоритмов.

Основным преимуществом нейросетей над обычными алгоритмами вычисления является их возможность обучения. В общем смысле слова обучение заключается в нахождении верных коэффициентов связи между нейронами, а также в обобщении данных и выявлении сложных зависимостей между входными и выходными сигналами. Фактически, удачное обучение нейросети означает, что система будет способна выявить верный результат на основании данных, отсутствующих в обучающей выборке.

Сегодняшнее положение

И какой бы многообещающей не была бы эта технология, пока что ИНС еще очень далеки от возможностей человеческого мозга и мышления. Тем не менее, уже сейчас нейросети применяются во многих сферах деятельности человека. Пока что они не способны принимать высокоинтеллектуальные решения, но в состоянии заменить человека там, где раньше он был необходим. Среди многочисленных областей применения ИНС можно отметить: создание самообучающихся систем производственных процессов, беспилотные транспортные средства, системы распознавания изображений, интеллектуальные охранные системы, робототехника, системы мониторинга качества, голосовые интерфейсы взаимодействия, системы аналитики и многое другое. Такое широкое распространение нейросетей помимо прочего обусловлено появлением различных способов ускорения обучения ИНС.

На сегодняшний день рынок нейронных сетей огромен - это миллиарды и миллиарды долларов. Как показывает практика, большинство технологий нейросетей по всему миру мало отличаются друг от друга. Однако применение нейросетей - это очень затратное занятие, которое в большинстве случаев могут позволить себе только крупные компании. Для разработки, обучения и тестирования нейронных сетей требуются большие вычислительные мощности, очевидно, что этого в достатке имеется у крупных игроков на рынке ИТ. Среди основных компаний, ведущих разработки в этой области можно отметить подразделение Google DeepMind, подразделение Microsoft Research, компании IBM, Facebook и Baidu.

Конечно, все это хорошо: нейросети развиваются, рынок растет, но пока что главная задача так и не решена. Человечеству не удалось создать технологию, хотя бы приближенную по возможностям к человеческому мозгу. Давайте рассмотрим основные различия между человеческим мозгом и искусственными нейросетями.

Почему нейросети еще далеки до человеческого мозга?

Самым главным отличием, которое в корне меняет принцип и эффективность работы системы - это разная передача сигналов в искусственных нейронных сетях и в биологической сети нейронов. Дело в том, что в ИНС нейроны передают значения, которые являются действительными значениями, то есть числами. В человеческом мозге осуществляется передача импульсов с фиксированной амплитудой, причем эти импульсы практически мгновенные. Отсюда вытекает целый ряд преимуществ человеческой сети нейронов.

Во-первых, линии связи в мозге намного эффективнее и экономичнее, чем в ИНС. Во-вторых, импульсная схема обеспечивает простоту реализации технологии: достаточно использование аналоговых схем вместо сложных вычислительных механизмов. В конечном счете, импульсные сети защищены от звуковых помех. Действенные числа подвержены влиянию шумов, в результате чего повышается вероятность возникновения ошибки.

Итог

Безусловно, в последнее десятилетие произошел настоящий бум развития нейронных сетей. В первую очередь это связано с тем, что процесс обучения ИНС стал намного быстрее и проще. Также стали активно разрабатываться так называемые «предобученные» нейросети, которые позволяют существенно ускорить процесс внедрения технологии. И если пока что рано говорить о том, смогут ли когда-то нейросети полностью воспроизвести возможности человеческого мозга, вероятность того, что в ближайшее десятилетие ИНС смогут заменить человека на четверти существующих профессий все больше становится похожим на правду.

Для тех, кто хочет знать больше

  • Большая нейронная война: что на самом деле затевает Google
  • Как когнитивные компьютеры могут изменить наше будущее

Компания под названием Bonsai присоединяется к движению за демократизацию машинного обучения. Скоро каждый сможет создать собственную нейросеть.

Если вы опытный футболист, который читает защитные схемы так же легко, как вывески на улице, или кинозвезда, чье имя само по себе может сделать кассу фильму, или биржевой маклер, знающий свое дело лучше Уоррена Баффетта, то наши поздравления: вас будут ценить так же, как специалиста по обработке данных или инженера по машинному обучению с докторской степенью Стэнфорда, Массачусетского технологического или Университета Карнеги-Меллон. Каждая компания Кремниевой долины – и все больше компаний в других регионах – стремится заполучить таких специалистов, участвуя в некоем подобии игры на захват флага, только в области кадровой политики. Компании все больше понимают, что их конкурентоспособность зависит от использования машинного обучения и , и количество вакансий для специалистов в этих областях значительно превышает то, что нужно , и другим супердержавам.

Но что если бы вы смогли получить преимущества использования ИИ без необходимости нанимать этих редких и дорогостоящих специалистов? Что если этот порог входа можно понизить с помощью умного ПО? Можно ли использовать глубинное обучение с менее разнообразным набором кадров?

Стартап под названием Bonsai и целая группа похожих компаний отвечают на этот вопрос «да». Приготовьтесь к демократизации искусственного интеллекта. Когда-нибудь это движение может объединить под своими знаменами миллионы, если не миллиарды людей.

На Конференции разработчиков искусственного интеллекта О’Райли в Нью-Йорке генеральный директор Bonsai Марк Хаммонд провел презентацию своей компании. (Также он объявил о раунде инвестиций на сумму в $6 млн – не такие уж большие деньги, учитывая тот факт, что в этом году размер венчурных инвестиций в сферу ИИ уже 1,5 млрд.) Презентация включала повторение одного из самых известных достижений элитных разработчиков глубинного обучения: прохождение алгоритмом DeepMind старых игр для компьютеров Atari в реальном времени. В частности, игра под названием Breakout («Теннис»), в которой платформа отбивает квадратный «мяч», разбивающий мерцающие блоки. (Игра, выпущенная в 1976 году, была прорывом для своего времени – над ней работал сам )

37 строчек кода – вся структура нейросети, которая обучается через классическую игру Atari. Источник: Bonsai

Вариант, предложенный DeepMind, был создан лучшими в мире специалистами по ИИ, которые обучали нейросеть основам игр от Atari, и результат их работы был достоин научных публикаций мирового класса. Версия от Bonsai является упрощением. Все начинается с системы развития, которая загружена в облако. Всего один программист, пусть даже тот, кто вообще не обучался основам ИИ, может в общих чертах описать игру, а система сама выберет подходящий алгоритм обучения, чтобы задействовать нейросеть. (Бедным докторам наук из DeepMind приходилось писать эти алгоритмы самостоятельно). На этом этапе программисту нужно всего лишь за пару минут заложить основные принципы игры – например, «ловить мяч на платформу» - а затем Bonsai сама займется развитием нейросети и ее оптимизацией для получения наилучшего результата. А нейросеть на выходе уже сама будет играть в «Теннис».

Версия игры, написанная Bonsai, укладывается всего в 37 строчек кода. Но эта простота обманчива. Когда Хаммонд объясняет, что находится в основе алгоритма, он показывает рисунок с демонстрацией того, как его система строит нейросеть, способную соперничать с одним из лучших творений Google. Самому программисту даже не пришлось вникать в тонкости машинного обучения. Смотри, мам, я могу без рук докторской степени!


Так играет в «Теннис» нейросеть, обученная системой Bonsai. Источник: Bonsai

Впечатляющий трюк. «Обычно меня трудно удивить демонстрацией, - рассказывает Джордж Уильямс, научный сотрудник Курантовского института математики Нью-Йоркского университета. - Однако то, что показал мне Марк, было вполне реально и в то же время потрясающе. Он взял все достижения машинного интеллекта и создал инструменты, которые позволят разработать новое поколение систем ИИ».

Пока неясно, останется ли Bonsai лидером этого движения. Но Уильямс прав. Следующим шагом в неотвратимом появлении все более умных компьютеров будет разработка инструментов машинного обучения для (относительных) чайников.

Bonsai была рождена на пляже. Хаммонд, бывший инженер и евангелист разработки ПО, уже какое-то время раздумывал над возможностями искусственного интеллекта. После ухода из Microsoft в 2004 году он стал заниматься нейробиологией в Йеле, затем в 2010 году недолгое время проработал в Numenta – стартапе по разработке ИИ, которым владел Джефф Хокинс (сооснователь компании Palm, производителя КПК). Затем Хаммонд открыл еще одну компанию в совсем другой сфере, которую он затем продал.

Тогда, в 2012 году, Хаммонд приехал в Южную Калифорнию навестить друзей. Его маленький сын устал, и все пошли обратно к машине. Пока жена Хаммонда болтала с друзьями, а сын засыпал у него на руках, он провел мысленный эксперимент. В основе этого эксперимента лежал популярные мем из мира ИИ – концепция «мастер-алгоритма». Профессор Вашингтонского университета Педро Домингес в одноименной книге написал, что этот еще не созданный алгоритм мог бы стать панацеей для всех проблем отрасли. По идее, когда этот алгоритм все-таки изобретут, с его помощью можно будет методически внедрять системы ИИ куда угодно.

Хаммонд заключил, что нужно создать систему, которая позволит даже самому заурядному разработчику использовать инструменты ИИ

Но Хаммонд видел один изъян в этой идее. «Допустим, мы нашли этот мастер-алгоритм, – говорил он себе, пока 18-месячный сын дремал у него на руках – кто станет внедрять его в бесчисленном множестве возможных сценариев?» На данный момент использовать такие инструменты под силу только настоящим адептам машинного обучения. Возможностей использования ИИ будет слишком много для ограниченного числа этих людей. Так он пришел к заключению, что нужно создать систему, которая снизит порог входа и позволит даже самому заурядному разработчику использовать эти инструменты. Такой системе не нужны будут инженеры крайне узкой специализации для обучения нейросетей. Программисты смогут сами обучать их для получения желаемого результата.

Пока Хаммонд обдумывал свои идеи, он провел аналогии с историей программирования. Изначально операторам компьютеров приходилось кропотливо писать код, который обеспечивал работу оборудования. Затем программисты взяли на вооружение набор стандартных инструкций, который был назван языком ассемблера и ускорил процесс – но вам все еще нужно было иметь очень высокий уровень подготовки, чтобы довести дело до ума. Прорыв случился, когда инженеры создали компилятор – программу, которая преобразовывала код на более удобных, так называемых языках «высокого уровня» (от самых первых BASIC и LISP до нынешних Python и C), в код на языке ассемблера. Только после этого создание мощных приложений стало доступно даже профессионалам относительно низкого уровня. Хаммонд считает, что сейчас, благодаря инструментам вроде TensorFlow от Google, системы ИИ вышли на уровень языка ассемблера, то есть инженерам уже становится легче создавать нейросети, но это все равно остается доступным тем, кто действительно понимает принцип их работы. Хаммонд хотел создать аналог компилятора, чтобы упростить все еще больше.

Этой идеей он поделился с Кином Брауном, бывшим коллегой из Microsoft, который недавно продал свой игровой стартап китайской интернет-компании. Идея ему понравилась, так как в то время он как раз пробовал заниматься машинным обучением, используя доступные на тот момент инструменты. «Вообще я человек неглупый, - говорит Браун - я приехал в Китай и выучил их язык, работал программистом в Microsoft, но даже для меня это было слишком». Он согласился стать сооснователем Bonsai. (Название было выбрано, потому что в этом японском искусстве достигается идеальный баланс между естественным и искусственным. Еще одно преимущество появилось, когда владельцы интернет-домена разрешили молодой компании зарегистрировать свой сайт по адресу bons.ai .)

Bonsai – не единственная компания, работающая над решением проблемы нехватки квалифицированных специалистов по ИИ. Некоторые из более крупных компаний поняли необходимость обучения собственных кадров и обучения обычных программистов в мастеров по нейросетям: в Google создали целую серию внутренних программ, а Apple стала обращать внимание на навыки и личные качества программистов, которые помогли бы им быстрее освоить нужные умения. Как уже говорилось выше, Google также выпустила в широкий доступ программу TensorFlow, благодаря которой ее инженерам проще создавать нейросети. Уже доступны и другие наборы инструментов для создания ИИ, и, без сомнения, таких инструментов будет становиться только больше.

«Мы открываем новые возможности для тех, кто не является ученым или программистом»

В то же время другие стартапы тоже трудятся во имя демократизации ИИ. Компания Bottlenose решает проблему нехватки ученых, но для другой целевой аудитории: если Bonsai делает свой продукт в первую очередь для разработчиков ПО, Bottlenose планирует облегчить жизнь бизнес-аналитикам. Однако мотивы те же самые. «Мы открываем новые возможности для тех, кто не является ученым или программистом», - говорит генеральный директор компании Нова Спивак. Некоторые стартапы собираются затронуть еще больше пользователей: презентация компании Clarifai на конференции О’Райли называлась «Как сделать так, чтобы каждый человек на планете мог обучить и использовать ИИ».

Таким образом, хотя Bonsai, похоже, появилась в нужное время в нужном месте, сейчас индустрия ИИ настолько бурно развивается, что у стартапа Хаммонда могут возникнуть трудности с привлечением к себе внимания. Адам Чейер, специалист по ИИ, который участвовал в создании и сейчас занимает пост главного инженера , уже видел продукт Bonsai и остался очень впечатлен. Но он отмечает, что, хотя Bonsai делает ИИ доступным даже новичкам, людям все равно придется совершать умственные усилия, чтобы разобраться в их языке программирования и общем устройстве системы. «Когда новый продукт выпускает большая компания вроде Google, люди со всех ног бросаются его пробовать. Но если такой же продукт делает стартап, привлечь к нему людей намного сложнее. Хватит ли у них сил, чтобы задействовать достаточное количество пользователей и сделать свой инструмент популярным? Получится ли все у Bonsai или нет – сложно сказать прямо сейчас».

Компания создала систему из нескольких компонентов, среди которых Brain, облачная система для создания нейросетей, язык написания скриптов под названием Inkling и Mastermind, «интегрированная среда для разработки», которая предоставляет программистам все необходимые инструменты в одном месте. («Приложение для создания приложений», - объясняет Браун). Система Bonsai доступна для бета-тестирования.

Марк Хаммонд в главном офисе Bonsai в центре Беркли. Фото: Backchannel

Как объясняет Хаммонд, построение нейросети с помощью Bonsai в нескольких ключевых моментах отличается от того, как это делают профессионалы. На сегодня вам приходится решать, какие инструменты лучше всего подходят для решения проблемы, а для этого решения требуются знания и опыт. По словам Хаммонда, Bonsai делает это за вас. Вам остается только изложить основы того, чему вы хотите научить систему.

Так что пока опытные инженеры систем ИИ «тренируют» сеть, сравнивая информацию на выходе с желаемым результатом (например, показывая сети фотографии собак и поощряя ее при выводе подходящих характеристик), Bonsai позволяет вам «научить» систему, просто разбив весь процесс на основные принципы. Если продолжить пример с собаками, то вы могли бы упомянуть такие вещи, как четыре лапы, морда и язык, свисающий изо рта. Вы даете только необходимую базу, а облачный «умный движок» Bonsai, в который входит и «мозг», доводит дело до конца.

Такой подход дает косвенный положительный эффект: ученые, обучившие традиционную нейросеть, часто понятия не имеют, как именно творится магия, потому что такие сети в основном перенастраивают себя сами, организуя все понятным только себе образом. В случае с Bonsai понять принципы мышления сети можно по тем правилам, которые заложил пользователь. «Программное обеспечение не должно быть черным ящиком», - говорит Хаммонд. К примеру, если вы создаете программу для беспилотного автомобиля, и он не остановился в нужный момент, вы должны иметь возможность вникнуть и понять, почему система приняла такое решение. Примерно так же Amazon объясняет , почему та или иная книга появилась у вас в рекомендациях.

Один большой вопрос к подходу Bonsai состоит в том, снизят ли все эти абстрактные вещи производительность и эффективность. Обычно именно это происходит при использовании компиляторов: программы, написанные с их помощью, работают не так быстро и эффективно, как те, что написаны на языке ассемблера и передаются напрямую в аппаратную часть. Кроме того, говорить, что система, которая сама выбирает инструмент для использования, делает это лучше тех профессоров, которым уже вроде как и не нужно заниматься построением нейросетей, было бы явным преувеличением.

«Я думаю, всегда приходится идти на компромисс, - говорит Лайла Третиков, специалист по ИИ, ранее работавшая главой фонда Wikimedia Foundation и консультировавшая Bonsai. - Результаты будут не совсем такими же, как если задействовать группу ученых. Но я не уверена, что важнее: качество или сама по себе возможность это сделать». Адам Чейер из Viv также предполагает, что код Bonsai может работать не так эффективно, как ПО, оптимизированное под конкретную задачу. «Но это все равно чертовски хороший код, и он позволяет вам не вдаваться в ненужные тонкости», - добавляет он. Чейер также говорит, что в его компании, где как раз работают столь ценные специалисты по ИИ, вряд ли будут пользоваться Bonsai - разве что для создания прототипа какой-либо из идей перед тем, как реализовать ее старым проверенным способом.

Bonsai помогает движению за появление доступа к ИИ у людей, не имеющих специальной подготовки

Хаммонд, в свою очередь, заверяет, что проигрыш в качестве при использовании Bonsai совсем не велик. «Производительность со временем увеличивается, – говорит он – в это просто нужно поверить». Когда-нибудь в это можно будет не только поверить, но и проверить.

У Bonsai большие планы на следующие несколько месяцев. Совсем скоро компания объявит о начале сотрудничества с производителем компонентов Nvidia, и клиенты Bonsai смогут получить более качественные результаты при использовании оборудования этой марки. Также компания опубликует информацию о своем договоре с центром Siemens TTB, который последние несколько месяцев тестировал систему Bonsai в области автоматизации и контроля производства.

Bonsai пытается решить проблемы, которые не смогли решить даже самые могущественные компании. «Мы работаем над многими играми», - добавляет Хаммонд и объясняет, что игры решают ключевые проблемы, которые планируют разрешить в Bonsai. «Некоторые игры не поддаются даже DeepMind. Хотя они научили свой алгоритм играть во множество игр помимо «Тенниса», пока их система еще не способна играть в «Пакмена».

Но намного важнее то, как Bonsai помогает движению за появление доступа к ИИ у людей, не имеющих специальной подготовки. Со временем инструменты высокого уровня будут становиться все мощнее и, в конце концов, станут повсеместными. Дойдем ли мы до того момента, когда каждый человек сможет обучить и использовать искусственный интеллект? Скажем так: очень много денег поставлено именно на этот вариант развития событий.