Сайт о телевидении

Сайт о телевидении

» » Недостатки медианных фильтров. Цифровая обработка сигналов

Недостатки медианных фильтров. Цифровая обработка сигналов

Для уменьшения уровня шума . Медианный фильтр является нелинейным КИХ-фильтром .

Значения отсчётов внутри окна фильтра сортируются в порядке возрастания (убывания); и значение, находящееся в середине упорядоченного списка, поступает на выход фильтра. В случае четного числа отсчетов в окне выходное значение фильтра равно среднему значению двух отсчетов в середине упорядоченного списка. Окно перемещается вдоль фильтруемого сигнала и вычисления повторяются.

Медианная фильтрация - эффективная процедура обработки сигналов, подверженных воздействию импульсных помех.

Примеры

Пример 1

Ниже рассматривается пример применения медианного фильтра для одномерного сигнала с окном размером в три отсчёта ко входному массиву x (искусственно введённые продублированные значения показаны полужирно ):

  • y = медиана[2 2 80] = 2
  • y = медиана = медиана = 6
  • y = медиана = медиана = 6
  • y = медиана = медиана = 3

и в итоге:

y = - выход медианного фильтра

Пример 2

Медианный фильтр M из входящего сигнала C, создаёт медианный образ сигнала \widetilde{C}. Входящий сигнал C, подаётся на медианный фильтр M:C \rightarrow \widetilde{C}.
В медианном фильтре сначала производится выбор значений попавших в окно фильтра при нахождении окна в точке x, \hat{O}(x):C \rightarrow O.
Далее производится сортировка значений окна O, функцией сравнения значений \Phi, и строится упорядоченное множество , а после выбирается медианное значение (медиана ): и записывается в \widetilde{C}(x)= o_{m}.

Таким образом медианный фильтр M:C \rightarrow \widetilde{C}, является последовательностью трёх действий:

  1. Выбор значений попавших в окно фильтра \hat{O}(x):C \rightarrow O.
  2. Сортировка значений окна \Phi(O) \rightarrow \widetilde{O}.
  3. Выбора из \widetilde{O} медианного значения m(\widetilde{O}) \rightarrow o_{m} и запись его в медианный образ сигнала \widetilde{C} в точку с координатой x, \widetilde{C}(x) = o_{m} .

Данные действия повторяются для каждой точки входящего сигнала.

2D Медианный фильтр (псевдокод)

Алгоритм примитивного 2D Медианного фильтра выглядит примерно так:

Allocate outputPixelValue edgex:= (window width / 2) rounded down edgey:= (window height / 2) rounded down for x from edgex to image width - edgex for y from edgey to image height - edgey allocate colorArray for fx from 0 to window width for fy from 0 to window height colorArray := inputPixelValue sort all entries in colorArray outputPixelValue[x][y] := colorArray

Особенности этого алгоритма:

  • Применяется лишь к одному цветовому каналу,
  • Не применяется к крайним пикселям.

См. также

Напишите отзыв о статье "Медианный фильтр"

Ссылки

  • (англ.)

Отрывок, характеризующий Медианный фильтр

– Как что? – заговорил князь Андрей, останавливаясь от волнения. – Да ты пойми, что мы, или офицеры, которые служим своему царю и отечеству и радуемся общему успеху и печалимся об общей неудаче, или мы лакеи, которым дела нет до господского дела. Quarante milles hommes massacres et l"ario mee de nos allies detruite, et vous trouvez la le mot pour rire, – сказал он, как будто этою французскою фразой закрепляя свое мнение. – C"est bien pour un garcon de rien, comme cet individu, dont vous avez fait un ami, mais pas pour vous, pas pour vous. [Сорок тысяч человек погибло и союзная нам армия уничтожена, а вы можете при этом шутить. Это простительно ничтожному мальчишке, как вот этот господин, которого вы сделали себе другом, но не вам, не вам.] Мальчишкам только можно так забавляться, – сказал князь Андрей по русски, выговаривая это слово с французским акцентом, заметив, что Жерков мог еще слышать его.
Он подождал, не ответит ли что корнет. Но корнет повернулся и вышел из коридора.

Гусарский Павлоградский полк стоял в двух милях от Браунау. Эскадрон, в котором юнкером служил Николай Ростов, расположен был в немецкой деревне Зальценек. Эскадронному командиру, ротмистру Денисову, известному всей кавалерийской дивизии под именем Васьки Денисова, была отведена лучшая квартира в деревне. Юнкер Ростов с тех самых пор, как он догнал полк в Польше, жил вместе с эскадронным командиром.
11 октября, в тот самый день, когда в главной квартире всё было поднято на ноги известием о поражении Мака, в штабе эскадрона походная жизнь спокойно шла по старому. Денисов, проигравший всю ночь в карты, еще не приходил домой, когда Ростов, рано утром, верхом, вернулся с фуражировки. Ростов в юнкерском мундире подъехал к крыльцу, толконув лошадь, гибким, молодым жестом скинул ногу, постоял на стремени, как будто не желая расстаться с лошадью, наконец, спрыгнул и крикнул вестового.
– А, Бондаренко, друг сердечный, – проговорил он бросившемуся стремглав к его лошади гусару. – Выводи, дружок, – сказал он с тою братскою, веселою нежностию, с которою обращаются со всеми хорошие молодые люди, когда они счастливы.
– Слушаю, ваше сиятельство, – отвечал хохол, встряхивая весело головой.
– Смотри же, выводи хорошенько!
Другой гусар бросился тоже к лошади, но Бондаренко уже перекинул поводья трензеля. Видно было, что юнкер давал хорошо на водку, и что услужить ему было выгодно. Ростов погладил лошадь по шее, потом по крупу и остановился на крыльце.
«Славно! Такая будет лошадь!» сказал он сам себе и, улыбаясь и придерживая саблю, взбежал на крыльцо, погромыхивая шпорами. Хозяин немец, в фуфайке и колпаке, с вилами, которыми он вычищал навоз, выглянул из коровника. Лицо немца вдруг просветлело, как только он увидал Ростова. Он весело улыбнулся и подмигнул: «Schon, gut Morgen! Schon, gut Morgen!» [Прекрасно, доброго утра!] повторял он, видимо, находя удовольствие в приветствии молодого человека.
– Schon fleissig! [Уже за работой!] – сказал Ростов всё с тою же радостною, братскою улыбкой, какая не сходила с его оживленного лица. – Hoch Oestreicher! Hoch Russen! Kaiser Alexander hoch! [Ура Австрийцы! Ура Русские! Император Александр ура!] – обратился он к немцу, повторяя слова, говоренные часто немцем хозяином.

Медианная фильтрация – метод нелинейной обработки сигналов, разработанный Тьюки. Этот метод оказывается полезным при подавлении шума на изображении. Одномерный медианный фильтр представляет собой скользящее окно, охватывающее нечетное число элементов изображения. Центральный элемент заменяется медианой всех элементов в окне. Медианой дискретной последовательности для нечетного N является тот ее элемент, для которого существуют элементов, меньших или равных ему по величине, и элементов, больших или равных ему по величине.

Пусть в окно попали элементы изображения с уровнями 80, 90, 200, 110 и 120; в этом случае центральный элемент следует заменить значением 110, которое является медианой упорядоченной последовательности 80, 90, 110, 200. Если в этом примере значение 200 является шумовым выбросом в монотонно возрастающей последовательности, то медианная фильтрация обеспечит существенное улучшение. Напротив, если значение 200 соответствует полезному импульсу сигнала (при использовании широкополосных датчиков), то обработка приведет к потере четкости воспроизводимого изображения. Таким образом, медианный фильтр в одних случаях обеспечивает подавление шума, в других вызывает нежелательное подавление сигнала.

Рассмотрим воздействие медианного и усредняющего (сглаживающего) фильтров с пятиэлементным окном на ступенчатый, пилообразный, импульсный и треугольный дискретные сигналы (рис. 4.23). Из этих диаграмм, видно, что медианный фильтр не влияет на ступенчатые или пилообразные функции, что обычно является желательным свойством. Однако этот фильтр подавляет импульсные сигналы, длительность которых

составляет менее половины ширины окна. Фильтр также вызывает уплощение вершины треугольной функции.

Возможности анализа действия медианного фильтра ограничены. Можно показать, что медиана произведения постоянной и последовательности равна:

кроме того,

Однако медиана суммы двух произвольных последовательностей и не равна сумме их медиан:

Это неравенство можно проверить на примере последовательностей 80, 90, 100, 110, 120 и 80, 90, 100, 90, 80.

Возможны различные стратегии применения медианного фильтра для подавления шумов. Одна из них рекомендует начинать с медианного фильтра, окно которого охватывает три элемента изображения. Если ослабление сигнала незначительно, окно фильтра расширяют до пяти элементов. Так поступают до тех пор, пока медианная фильтрация начинает приносить больше вреда, чем пользы.

Другая возможность состоит в осуществлении каскадной медианной фильтрации сигнала с использованием фиксированной или изменяемой ширины окна. В общем слу

чае те области, которые остаются без изменения после однократной обработки фильтром, не меняются и после повторной обработки. Области, в которых длительность импульсных сигналов составляет менее половины ширины окна, будут подвергаться изменениям после каждого цикла обработки.

Концепцию медианного фильтра легко обобщить на два измерения, применяя двумерное окно желаемой формы, например прямоугольное или близкое к круговому. Очевидно, что двумерный медианный фильтр с окном размера обеспечивает более эффективное подавление шума, чем последовательно примененные горизонтальный и вертикальный одномерные медианные фильтры с окном размера . Двумерная обработка, однако, приводит к более существенному ослаблению сигнала.

Величина является порогом фильтрации .В приложениях используется еще целый ряд простейших нелинейных фильтров. Например, модуль изображения, содержащего пиксели с отрицательным значением, или фильтр, обнуляющий все значения пикселей, меньше данного порога.

Более сложным фильтром, задействующим в вычислениях окрестность пикселя, является медиана. Медианная фильтрация определяется следующим образом:

(8.10)

т.е. результат фильтрации есть медианное значение пикселей окрестности 1 Медианой набора чисел является число из набора, не меньшее половины чисел набора и не большее другой половины чисел набора. , форма которой выбирается произвольно. В разделе 8.2 мы рассмотрели шумоподавление при помощи сглаживающих фильтров. Шум с нулевым математическим ожиданием, добавленный к исходному сигналу, является только одним из видов помех. Медианная фильтрация способна эффективно справляться с помехами в более общем случае, когда помехи независимо воздействуют на отдельные пиксели.Например, такими помехами являются "битые" и "горячие" пиксели при цифровой съемке, "снеговой" шум, когда часть пикселей заменяется на пиксели с максимальной интенсивностью, и т.п. Преимущество медианной фильтрации перед линейной сглаживающей фильтрацией заключается в том, что "горячий" пиксель на темном фоне будет заменен на темный, а не "размазан" по окрестности (рис. 8.6).

Последней парой фильтров, которые мы рассмотрим в этом разделе, являются фильтры минимум и максимум, которые определяются по правилам

(8.11)
(8.12)

т.е. результат фильтрации есть минимальное и максимальное значения пикселей окрестности.

Линейные пространственно-инвариантные (ЛПИ) фильтры полезны для реставрации и улучшения визуального качества изображений. Их можно применять, например, при реализации ви-неровских фильтров для снижения уровня шума на изображениях. Однако, чтобы подавить шум и при этом сохранить контурную часть изображений, приходится применять нелинейные или линейные пространственно-неинвариантные (ЛПНИ) фильтры. Ограничения на использование ЛПИ-фильтров в задачах реставрации изображений обсуждаются в .

Многие нелинейные и ЛПНИ-фильтры для реставрации изображений описаны в . В гл. 5 предыдущего тома, посвященного линейным фильтрам , были описаны калма-новские ЛПНИ-фильтры, используемые для подавления шума при реставрации изображений. В гл. 5 и 6 этого тома рассмотрена особая нелинейная процедура - медианная фильтрация. Обнаружено, что применение медианных фильтров эффективно для подавления некоторых видов шума и периодических помех без одновременного искажения сигнала . Такие фильтры стали весьма популярны в обработке изображений и речевых сигналов.

Поскольку теоретический анализ поведения медианных фильт ров очень труден, опубликовано очень мало результатов по этому вопросу. Две главы нашей книги содержат в основном новые результаты, не освещенные до сих пор в открытой литературе. В гл. 5 рассматриваются статистические свойства медианных фильтров. В частности, излагаются различные свойства выходного сигнала медианного фильтра при гауссовском шуме или сумме ступенчатой функции и гауссовского шума на входе.

Глава 6 посвящена детерминированным свойствам медианных фильтров. Особенно интересными представляются результаты, относящиеся к так называемым стабильным точкам медианных фильтров. Стабильной точкой является последовательность (в одномерном случае) или массив (в двумерном случае), которые не изменяются при медианной фильтрации. В гл. 6 Тян показал, что в одномерном случае стабильными точками медианных фильтров являются «локально-монотонные» последовательности. Исключение составляют некоторые периодические двоичные последовательности. В последнее время Галлагер и Вайс сумели устранить это исключение, ограничив длину последовательностей.

В гл. 6 кратко описан эффективный алгоритм медианной фильтрации, основанный на модификации гистограмм. В обсуждается аппаратурная реализация медианной фильтрации в реальном масштабе времени на основе цифровых избирательных схем. Метод нахождения медианы, основанный на двоичном представлении элементов изображения в апертуре фильтра, предложен в , где сравниваются аппаратурная реализация этого метода, алгоритм преобразования гистограмм и метод цифровых избирательных схем по сложности и скорости. Реализация медианных фильтров на двоичном матричном процессоре рассмотрена в . Разработан метод реализации медианных фильтров в конвейерном процессоре, работающем синхронно с видеосигналом .

В гл. 5 и 6 изложен материал главным образом теоретического характера. В качестве дополнения представим здесь некоторые экспериментальные результаты. На рис. 1.1 показаны примеры стабильных точек медианных фильтров. Даны исходное изображение (а) и результаты шестикратного применения трех различных медианных фильтров (б). Дальнейшее применение фильтров не вносит существенных изменений в результаты. Таким образом, изображения на рис. 1.1, б-г являются стабильными точками трех медианных фильтров.

Медианные фильтры особенно удобны для борьбы с импульсным (точечным) шумом. Этот факт иллюстрируется на рис. 1.2. На рис. 1.2, а показан результат передачи изображения 1.1, а по двоичному симметричному каналу с шумом при использовании импульсно-кодовой модуляции. В этом случае на изображении появляется импульсный шум. Применение медианного фильтра позволяет подавить большую часть шумовых выбросов (рис. 1.2, б),

(кликните для просмотра скана)

в то время как линейное сглаживание оказывается совершенно неэффективным (рис. 1.2, в).

Хотя в гл. 5 и 6 обсуждаются двумерные (пространственные) фильтры, очевидно, что к движущимся изображениям, таким, как телевизионные, могут применяться трехмерные медианные фильтры (пространственно-временные), т. е. апертура фильтра может быть трехмерной. Медианная временная фильтрация особенно удобна для подавления пачек шумовых выбросов, включая выпадение строк. Кроме того, она намного лучше, чем временное усреднение (линейное сглаживание), сохраняет движение. В описано несколько экспериментов по временной фильтрации (включая фильтрацию с компенсацией движения). В одном из экспериментов по фильтрации последовательность кадров панорамирования, содержащая белый гауссовский шум и случайные выпадения строк, подвергалась медианной фильтрации и линейному сглаживанию. Кадровая частота последовательности составляла 30 кадров/с, каждый кадр содержал примерно 200 строк по 256 элементов в каждой с 8 бит/отсчет. Панорамирование проводилось горизонтально со скоростью примерно 5 элементов изо бражения на кадр. Результаты по одному кадру показаны на рис. 1.3: зашумленный исходный кадр (а), тот же кадр после линейного сглаживания (б) и кадр, обработанный медианным фильтром (в). Необходимо отметить, что медианный фильтр дает

Рис. 1.3. (см. скан) Временная фильтрация последовательности кадров панорамирования: а - зашумленный оригинал; б - линейное сглаживание по трем кадрам; в - медианная фильтрация по трем кадрам

намного лучшие результаты в отношении снижения числа выпадений строк и сохранения резкости контуров. Однако для подавления гауссовского шума более эффективно линейное сглаживание. Приведенные данные согласуются с теоретическими (см. гл. 5 и 6).

Хотя и медианная фильтрация и линейное сглаживание используются для улучшения субъективного качества изображения, пока не ясно, способствуют ли они дальнейшему машинному анализу изображений - распознаванию образов или измерениям на изображении. Были проведены тщательные исследования влияния линейной и медианной фильтрации на эффективность выделения контуров, анализ формы и текстурный анализ. Некоторые результаты приведены в .

Все линейные алгоритмы фильтрации приводят к сглаживанию резких перепадов яркости изображений, прошедших обработку. Этот недостаток, особенно существенный, если потребителем информации является человек, принципиально не может быть исключен в рамках линейной обработки. Дело в том, что линейные процедуры являются оптимальными при гауссовском распределении сигналов, помех и наблюдаемых данных. Реальные изображения, строго говоря, не подчиняются данному распределению вероятностей. Причем, одна из основных причин этого состоит в наличии у изображений разнообразных границ, перепадов яркости, переходов от одной текстуры к другой и т. п. Поддаваясь локальному гауссовскому описанию в пределах ограниченных участков, многие реальные изображения в этой связи плохо представляются как глобально гауссовские объекты. Именно это и служит причиной плохой передачи границ при линейной фильтрации.

Вторая особенность линейной фильтрации - ее оптимальность, как только что упоминалось, при гауссовском характере помех. Обычно этому условию отвечают шумовые помехи на изображениях, поэтому при их подавлении линейные алгоритмы имеют высокие показатели. Однако, часто приходится иметь дело с изображениями, искаженными помехами других типов. Одной из них является импульсная помеха. При ее воздействии на изображении наблюдаются белые или (и) черные точки, хаотически разбросанные по кадру. Применение линейной фильтрации в этом случае неэффективно - каждый из входных импульсов (по сути - дельта-функция) дает отклик в виде импульсной характеристики фильтра, а их совокупность способствует распространению помехи на всю площадь кадра.

Удачным решением перечисленных проблем является применение медианной фильтрации, предложенной Дж. Тьюки в 1971 г. для анализа экономических процессов. Наиболее полное исследование медианной фильтрации применительно к обработке изображений представлено в сборнике . Отметим, что медианная фильтрация представляет собой эвристический метод обработки, ее алгоритм не является математическим решением строго сформулированной задачи. Поэтому исследователями уделяется большое внимание анализу эффективности обработки изображений на ее основе и сопоставлению с другими методами.

При применении медианного фильтра (МФ) происходит последовательная обработка каждой точки кадра, в результате чего образуется последовательность оценок. В идейном отношении обработка в различных точках независима (этим МФ похож на масочный фильтр), но в целях ее ускорения целесообразно алгоритмически на каждом шаге использовать ранее выполненные вычисления.

При медианной фильтрации используется двумерное окно (апертура фильтра), обычно имеющее центральную симметрию, при этом его центр располагается в текущей точке фильтрации. На рис. 3.10 показаны два примера наиболее часто применяемых вариантов окон в виде креста и в виде квадрата. Размеры апертуры принадлежат к числу параметров, оптимизируемых в процессе анализа эффективности алгоритма. Отсчеты изображения, оказавшиеся в пределах окна, образуют рабочую выборку текущего шага.

Рис. 3.10. Примеры окон при медианной фильтрации

Двумерный характер окна позволяет выполнять, по существу, двумерную фильтрацию, поскольку для образования оценки привлекаются данные как из текущих строки и столбца, так и из соседних. Обозначим рабочую выборку в виде одномерного массива ; число его элементов равняется размеру окна, а их расположение произвольно. Обычно применяют окна с нечетным числом точек (это автоматически обеспечивается при центральной симметрии апертуры и при вхождении самой центральной точки в ее состав). Если упорядочить последовательность по возрастанию, то ее медианой будет тот элемент выборки, который занимает центральное положение в этой упорядоченной последовательности. Полученное таким образом число и является продуктом фильтрации для текущей точки кадра. Понятно, что результат такой обработки в самом деле не зависит от того, в какой последовательности представлены элементы изображения в рабочей выборке . Введем формальное обозначение описанной процедуры в виде:

. (3.48)

Рассмотрим пример. Предположим, что выборка имеет вид: , а элемент 250, расположенный в ее центре, соответствует текущей точке фильтрации (рис. 3.10). Большое значение яркости в этой точке кадра может быть результатом воздействия импульсной (точечной) помехи. Упорядоченная по возрастанию выборка имеет при этом вид {45,55,75,99,104,110,136,158,250}, следовательно, в соответствии с процедурой (3.48), получаем . Видим, что влияние “соседей” на результат фильтрации в текущей точке привело к “игнорированию” импульсного выброса яркости, что следует рассматривать как эффект фильтрации. Если импульсная помеха не является точечной, а покрывает некоторую локальную область, то она также может быть подавлена. Это произойдет, если размер этой локальной области будет меньше, чем половина размера апертуры МФ. Поэтому для подавления импульсных помех, поражающих локальные участки изображения, следует увеличивать размеры апертуры МФ.

Из (3.48) следует, что действие МФ состоит в “игнорировании” экстремальных значений входной выборки - как положительных, так и отрицательных выбросов. Такой принцип подавления помехи может быть применен и для ослабления шума на изображении. Однако исследование подавления шума при помощи медианной фильтрации показывает, что ее эффективность при решении этой задачи ниже, чем у линейной фильтрации .

Результаты экспериментов, иллюстрирующие работу МФ, приведены на рис. 3.11. В экспериментах применялся МФ, имеющий квадратную апертуру со

стороной равной 3. В левом ряду представлены изображения, искаженные помехой, в правом - результаты их медианной фильтрации. На рис. 3.11.а и рис. 3.11.в показано исходное изображение, искаженное импульсной помехой. При ее наложении использовался датчик случайных чисел с равномерным на интервале законом распределения, вырабатывающий во всех точках кадра независимые случайные числа. Интенсивность помехи задавалась вероятностью ее возникновения в каждой точке. Если для случайного числа , сформированного в точке , выполнялось условие , то яркость изображения в этой точке замещалась числом 255, соответствующим максимальной яркости (уровню белого). На рис. 3.11.а действием импульсной помехи искажено 5 % (=0.05), а на рис. 3.11.в - 10 % элементов изображения. Результаты обработки говорят о практически полном подавлении помехи в первом случае и о ее значительном ослаблении во втором.

Рис. 3.11. Примеры медианной фильтрации

Рис. 3.11.д показывает изображение, искаженное независимым гауссовским шумом при отношении сигнал/шум дБ, а рис. 3.11.е - результат его фильтрации медианным фильтром. Условия данного эксперимента позволяют сравнивать его результаты с результатами рассмотренной выше линейной фильтрации. В таблице 3.1 приведены данные, дающие возможность такого сравнения. Для различных методов фильтрации в этой таблице приводятся значения относительного среднего квадрата ошибок и коэффициента ослабления шума для случая, когда отношение сигнал/шум на входе фильтра составляет -5 дБ.

Табл.3.1. Сравнение эффективности подавления шума при фильтрации изображений, дБ

масочный фильтр с оптимальн. КИХ

масочный фильтр с равномерн. КИХ

двумерный рекуррентн. фильтр

двумерный фильтр Винера

Наибольшей эффективностью обладает двумерный фильтр Винера, уменьшающий средний квадрат ошибок в 17 раз. Медианный фильтр имеет наименьшую из всех рассмотренных фильтров эффективность, ему соответствует =5.86. Тем не менее, это число свидетельствует о том, что и при его помощи удается значительно снизить уровень шума на изображении.

Вместе с тем, как говорилось выше, и что демонстрирует рис. 3.11.е, медианная фильтрация в меньшей степени сглаживает границы изображения, чем любая линейная фильтрация. Механизм этого явления очень прост и заключается в следующем. Предположим, что апертура фильтра находится вблизи границы, разделяющей светлый и темный участки изображения, при этом ее центр располагается в области темного участка. Тогда, вероятнее всего, рабочая выборка будет содержать большее количество элементов с малыми значениями яркости, и, следовательно, медиана будет находиться среди тех элементов рабочей выборки, которые соответствуют этой области изображения. Ситуация меняется на противоположную, если центр апертуры смещен в область более высокой яркости. Но это и означает наличие чувствительности у МФ к перепадам яркости.