Сайт о телевидении

Сайт о телевидении

» » Ne 555 микросхема даташит. Микросхема таймер NE555 радиолюбительские конструкции

Ne 555 микросхема даташит. Микросхема таймер NE555 радиолюбительские конструкции

Теория Практика Добавить тег

Теория и практика применения таймера 555.Часть вторая.

Часть вторая. Практическая.

В этой части мы продолжим ездить по вашим мозгам на таймере 555, однако уже с практической точки зрения - рассмотрим конкретные схемы включения микросхемы.
Итак,
Схема 1:

Эта штуковина начинает работать (пищать) если по каким-то причинам станет вдруг темно. То есть, на фоторезистор LDR1 перестанет попадать свет или световой поток уменьшится до некоего критического уровня.

Эта схема предназначена для раздражения слухового нерва в том случае, если напряжение на входе "Контроль" упадет ниже 9 вольт.

Простейший вид узла сигнализации. Если датчик S2 замкнется, на выходе таймера появится высокий уровень и останется таковым, даже если датчик вернется в исходное состояние. Вернуть низкий уровень на выход микросхемы можно кнопкой "Сброс".

Аналогична Схеме 1, правда можно подстраивать частоту тона пищания резистором R2.

Метроном. Издает мерное тикание, чтобы начинающие музыканты не сбивались с ритма, ну или хорошо спали. Частота тиков подстраивается резистором R1.

10-минутный таймер. Запускается нажатием на кнопку "Сброс-запуск", при этом загорается светодиод HL2, например - зеленый. По истечении временного интервала, загорится светодиод HL1, например - красный. Интервал можно подстроить резистором R4.

Триггер Шмидта. Полезная вещь, если вам необходимо получить прямоугольные импульсы из синусоидального сигнала, даже искаженного и зашумленного.

Генератор повышенной точности и стабильности. Частота подстраивается резистором R1. Диоды - любые германиевые. Можно также применить диоды Шоттки.

Детектор пропущенных импульсов. Может пригодиться. Транзистор можно заменить на отечественный КТ3107.

Твухтональная сирена. Занятная схема для экспериментов с включением двух таймеров сразу.

Ну пока все.
Вопросы, как обычно, складываем

NE555 это легендарная микросхема таймер, которая стала одной из первых интегральных микросборок. Она несет в себе около 20 транзисторов и используется для работы в двух режимах. В режиме непосредственно таймера и генератора прямоугольных импульсов.

Справочная документация по 555 таймеру

Заполните одно из значений ниже, и нажмите кнопку Рассчитать и калькулятор определит вам целый ряд возможных вариантов для сопротивлений резисторов R1, R2 & значение емкости конденсатора.

Справочник - распиновка с подробным описанием всех выводов микросхемы таймера серии 555

Схема сирены генерирующая кричащий звук на таймере NE555

Причем уровень громкости зависит от количества света попадающего на светочувствительный резистор

Двухтональная сирена на NE555

Работа схемы совсем не сложная, таймеры NE555 представляют собой два генератора, низкочастотный генератор (первый слева на схеме) управляет работой второго высокочастотного генератора (уменьшая и увеличивая частоту генерации), далее импульсы следуют на транзисторный усилитель VT1, к эмиттеру которого подключен восьми омный динамик.

В тот момент, когда пьезоэлектрический датчик улавливает механическое воздействие, он формирует электрический импульс, который является сигналом для запуска моностабильного мультивибратора, выход которого подключен к сдвоенной оптопаре.

Эта схема световой сигнализации срабатывает при резком падении уровня освещения датчика, запуская при этом звуковой сигнал тревоги. Устройство не срабатывает при плавном изменении яркости. Чтобы увеличить ресурс батареи питания, звуковой сигнал звуковой сигнал тревоги звучит от одной до десяти секунд, время звучания можно регулировать с помощью построечного сопротивления R5.

Основа схемы стробоскопа таймерные устройства, собранные на микросхемах КР1006ВИ1 (отечественный аналог серии 555) которые обладают более стабильными временными характеристиками, так как длительности импульса и паузы между импульсами не зависят от напряжения источника питания.

Очень хороший способ при регулирование яркости свечения светодиодов это использование широтно-импульсной модуляции, т.к светодиоды запитаны рекомендуемым током и есть возможность производить регулирование яркости свечения за счет подачи питания с более высокой частотой. Изменение периода прямо пропорционально связано с яркостью.

Для акустической сигнализации часто применяют звуки, напоминающие сирену. Их получают электромеханическим или электронным способом. Предлагаемое электронное устройство сигнализации обладает тем преимуществом, что тембр звука сирены можно изменять. Оно состоит из задающего генератора, модулятора и усилителя. Задающий генератор выполнен на интегральной микросхеме B555D (см. принципиальную схему). Желаемый тембр звучания подбирают с помощью резистора R4. Частоту генератора, равную 1 кГц, устанавливают резистором R6 и конденсатором С4. Завывающий звук сирены получают путем подачи с генератора на транзисторе VT1 синусоидального сигнала частотой примерно 1 Гц. на вывод 5 микросхемы. Благодаря диоду VD1 и входному сопротивлению микросхемы, равному 5 кОм, происходит модуляция электрических колебаний, вырабатываемых задающим генератором, с частотой 1 Гц.

Продолжаем обзор таймера 555 . В данной статье рассмотрим примеры практического применения данной микросхемы. Теоретический обзор можно прочитать .

Пример №1 — Сигнализатор темноты.

Схема издает звуковой сигнал при наступлении темноты. Пока фоторезистор освещен, на выводе №4 установлен низкий уровень, а значит, NE555 находится в режиме сброса. Но как только освещение падает, сопротивление фоторезистора возрастает и на выводе №4 появляется высокий уровень и как следствие таймер запускается, издавая звуковой сигнал.

Пример №2 — Модуль сигнализации.

Схема представляет один из модулей автосигнализации, который подает сигнал при изменении угла наклона автомобиля. В качестве датчика применен ртутный выключатель. В исходном состоянии датчик не замкнут и на выходе NE555 установлен низкий уровень. При изменении угла наклона автомобиля ртутная капля замыкает контакты, и низкий уровень на выводе №2 запускает таймер.

В результате чего на выходе появляется высокий уровень, который управляет каким-либо исполнительным устройством. Даже после размыкания контактов датчика таймер все равно останется в активном состоянии. Отключить его можно, если остановить работу таймера, подав на вывод №4 низкий уровень. C1 — керамический конденсатор емкостью 0.1мкФ ().

Пример №3 — Метроном.

Метроном — устройство, используемое музыкантами. Он отсчитывает необходимый ритм, который может быть отрегулирован переменным резистором. Схема построена по схеме генератора прямоугольных импульсов. Частота метронома определяется RC-цепочкой.

Пример №4 — Таймер.


Таймер на 10 минут. Таймер включается путем нажатия на кнопку «Пуск», при этом загорается светодиод HL1. По прошествии выбранного временного интервала загорается светодиод HL2. Переменным резистором можно подстроить временной интервал.

Пример №5 — Триггер Шмитта на 555 таймере.


Это очень простая, но эффективная схема . Схема позволяет, подавая на вход зашумленный аналоговый сигнал, получить чистый прямоугольный сигнал на выходе

Каждый радиолюбитель не раз встречался с микросхемой NE555. Этот маленький восьминогий таймер завоевал колоссальную популярность за функциональность, практичность и простоту использования. На 555 таймере можно собрать схемы самого различного уровня сложности: от простого триггера Шмитта, с обвеской всего в пару элементов, до многоступенчатого кодового замка с применением большого количества дополнительных компонентов.

В данной статье детально ознакомимся с микросхемой NE555, которая, несмотря на свой солидный возраст, по-прежнему остается востребована. Стоит отметить, что в первую очередь данная востребованность обусловлена применением ИМС в схемотехнике с использованием светодиодов.

Описание и область применения

NE555 является разработкой американской компании Signetics, специалисты которой в условиях экономического кризиса не сдались и смогли воплотить в жизнь труды Ганса Камензинда. Именно он в 1970 году сумел доказать важность своего изобретения, которое на тот момент не имело аналогов. ИМС NE555 имела высокую плотность монтажа при низкой себестоимости, чем заслужила особый статус.

Впоследствии её стали копировать конкурирующие производители из разных стран мира. Так появилась отечественная КР1006ВИ1, которая так и осталась уникальной в данном семействе. Дело в том, что в КР1006ВИ1 вход останова (6) имеет приоритет над входом запуска (2). В импортных аналогах других фирм такая особенность отсутствует. Данный факт следует учитывать при разработке схем с активным использованием двух входов.

Однако в большинстве случаев приоритеты не влияют на работу устройства. С целью снижения мощности потребления, ещё в 70-х годах прошлого века был налажен выпуск таймера КМОП-серии. В России микросхема на полевых транзисторах получила название КР1441ВИ1.

Наибольшее применение 555 таймер нашёл в построении схем генераторов и реле времени с возможностью задержки от микросекунд до нескольких часов. В более сложных устройствах он выполняет функции по исключению дребезга контактов, ШИМ, восстановлению цифрового сигнала и так далее.

Особенности и недостатки

Особенностью таймера является внутренний делитель напряжения, который задаёт фиксированный верхний и нижний порог срабатывания для двух компараторов. Ввиду того что делитель напряжения нельзя исключить, а пороговым напряжением нельзя управлять, область применения NE555 сужается.

Таймеры, собранные на КМОП-транзисторах, лишены перечисленных недостатков и не нуждаются в монтаже внешних конденсаторов.

Основные параметры ИМС серии 555

Внутреннее устройство NE555 включает в себя пять функциональных узлов, которые можно видеть на логической диаграмме. На входе расположен резистивный делитель напряжения, который формирует два опорных напряжения для прецизионных компараторов. Выходные контакты компараторов поступают на следующий блок – RS-триггер с внешним выводом для сброса, а затем на усилитель мощности. Последним узлом является транзистор с открытым коллектором, который может выполнять несколько функций, в зависимости от поставленной задачи.

Рекомендуемое напряжение питания для ИМС типа NA, NE, SA лежит в интервале от 4,5 до 16 вольт, а для SE может достигать 18В. При этом ток потребления при минимальном Uпит равен 2–5 мА, при максимальном Uпит – 10–15 мА. Некоторые ИМС 555 КМОП-серии потребляют не более 1 мА. Наибольший выходной ток импортной микросхемы может достигать значения в 200 мА. Для КР1006ВИ1 он не выше 100 мА.

Качество сборки и производитель сильно влияют на условия эксплуатации таймера. Например, диапазон рабочих температур NE555 составляет от 0 до 70°C, а SE555 от -55 до +125°C, что важно знать при конструировании устройств для работы в открытой окружающей среде. Более детально ознакомиться с электрическими параметрами, узнать типовые значения напряжения и тока на входах CONT, RESET, THRES, и TRIG можно в datasheet на ИМС серии XX555.

Расположение и назначение выводов

NE555 и её аналоги преимущественно выпускаются в восьмивыводном корпусе типа PDIP8, TSSOP или SOIC. Расположение выводов независимо от корпуса – стандартное. Условное графическое обозначение таймера представляет собой прямоугольник с надписью G1 (для генератора одиночных импульсов) и GN (для мультивибраторов).

  1. Общий (GND). Первый вывод относительно ключа. Подключается к минусу питания устройства.
  2. Запуск (TRIG). Подача импульса низкого уровня на вход второго компаратора приводит к запуску и появлению на выходе сигнала высокого уровня, длительность которого зависит от номинала внешних элементов R и С. О возможных вариациях входного сигнала написано в разделе «Одновибратор».
  3. Выход (OUT). Высокий уровень выходного сигнала равен (Uпит-1,5В), а низкий – около 0,25В. Переключение занимает около 0,1 мкс.
  4. Сброс (RESET). Данный вход имеет наивысший приоритет и способен управлять работой таймера независимо от напряжения на остальных выводах. Для разрешения запуска необходимо, чтобы на нём присутствовал потенциал более 0,7 вольт. По этой причине его через резистор соединяют с питанием схемы. Появление импульса менее 0,7 вольт запрещает работу NE555.
  5. Контроль (CTRL). Как видно из внутреннего устройства ИМС он напрямую соединен с делителем напряжения и в отсутствие внешнего воздействия выдаёт 2/3 Uпит. Подавая на CTRL управляющий сигнал, можно получить на выходе модулированный сигнал. В простых схемах он подключается к внешнему конденсатору.
  6. Останов (THR). Является входом первого компаратора, появление на котором напряжения более 2/3Uпит останавливает работу триггера и переводит выход таймера в низкий уровень. При этом на выводе 2 должен отсутствовать запускающий сигнал, так как TRIG имеет приоритет перед THR (кроме КР1006ВИ1).
  7. Разряд (DIS). Соединен напрямую с внутренним транзистором, который включен по схеме с общим коллектором. Обычно к переходу коллектор-эмиттер подключают времязадающий конденсатор, который разряжается, пока транзистор находится в открытом состоянии. Реже используется для наращивания нагрузочной способности таймера.
  8. Питание (VCC). Подключается к плюсу источника питания 4,5–16В.

Режимы работы NE555

Таймер 555 серии работает в одном из трёх режимов, рассмотрим их более детально на примере микросхемы NE555.

Одновибратор

Принципиальная электрическая схема одновибратора приведена на рисунке. Для формирования одиночных импульсов, кроме микросхемы NE555, понадобится сопротивление и полярный конденсатор. Схема работает следующим образом. На вход таймера (2) подают одиночный импульс низкого уровня, который приводит к переключению микросхемы и появлению на выходе (3) высокого уровня сигнала. Продолжительность сигнала рассчитывается в секундах по формуле:

По истечении заданного времени (t) на выходе формируется сигнал низкого уровня (исходное состояние). По умолчанию вывод 4 объединен с выводом 8, то есть имеет высокий потенциал.

Во время разработки схем нужно учесть 2 нюанса:

  1. Напряжение источника питания не влияет на длительность импульсов. Чем больше напряжение питания, тем выше скорость заряда времязадающего конденсатора и тем больше амплитуда выходного сигнала.
  2. Дополнительный импульс, который можно подать на вход после основного, не повлияет на работу таймера, пока не истечет время t.

На работу генератора одиночных импульсов можно влиять извне двумя способами:

  • подать на Reset сигнал низкого уровня, который переведёт таймер в исходное состояние;
  • пока на вход 2 поступает сигнал низкого уровня, на выходе будет оставаться высокий потенциал.

Таким образом, с помощью одиночных сигналов на входе и параметров времязадающей цепочки можно получать на выходе импульсы прямоугольной формы с чётко заданной длительностью.

Мультивибратор

Мультивибратор представляет собой генератор периодических импульсов прямоугольной формы с заданной амплитудой, длительностью или частотой, в зависимости от поставленной задачи. Его отличие от одновибратора состоит в отсутствии внешнего возмущающего воздействия для нормального функционирования устройства. Принципиальная схема мультивибратора на базе NE555 показана на рисунке.

В формировании повторяющихся импульсов участвуют резисторы R 1 , R 2 и конденсатор С 1 . Время импульса (t 1), время паузы(t 2), период (T) и частоту (f) рассчитывают по нижеприведенным формулам: Из данных формул несложно заметить, что время паузы не сможет превысить время импульса, то есть достичь скважности (S=T/t 1) более 2 единиц не удастся. Для решения проблемы в схему добавляют диод, катод которого соединяют с выводом 6, а анод с выводом 7.

В datasheet на микросхемы часто оперируют величиной, обратной скважности - Duty cycle (D=1/S), которую отображают в процентах.

Схема работает следующим образом. В момент подачи питания конденсатор С 1 разряжен, что переводит выход таймера в состояние высокого уровня. Затем С 1 начинает заряжаться, набирая ёмкость до верхнего порогового значения 2/3 U ПИТ. Достигнув порога ИМС переключается, и на выходе появляется низкий уровень сигнала. Начинается процесс разряда конденсатора (t 1), который продолжается до нижнего порогового значения 1/3 U ПИТ. По его достижении происходит обратное переключение, и на выходе таймера устанавливается высокий уровень сигнала. В результате схема переходит в автоколебательный режим.

Прецизионный триггер Шмитта с RS-триггером

Внутри таймера NE555 встроен двухпопроговый компаратор и RS-триггер, что позволяет реализовывать прецизионный триггер Шмитта с RS-триггером на аппаратном уровне. Входное напряжение делится компаратором на три части, при достижении каждой из которых происходит очередное переключение. При этом величина гистерезиса (обратного переключения) равна 1/3 U ПИТ. Возможность применения NE555 в качестве прецизионного триггера востребована в построении систем автоматического регулирования.

3 наиболее популярные схемы на основе NE555

Одновибратор

Практический вариант схемы одновибратора на TTL NE555 приведен на рисунке. Схема питается однополярным напряжением от 5 до 15В. Времязадающими элементами здесь являются: резистор R 1 – 200кОм-0,125Вт и электролитический конденсатор С 1 – 4,7мкФ-16В. R 2 поддерживает на входе высокий потенциал, пока некоторое внешнее устройство не сбросит его до низкого уровня (например, транзисторный ключ). Конденсатор С 2 защищает схему от сквозных токов в моменты переключения.

Активизация одновибратора происходит в момент кратковременного замыкания на землю входного контакта. При этом на выходе формируется высокий уровень длительностью:

t=1,1*R 1 *C 1 =1,1*200000*0,0000047=1,03 c.

Таким образом, данная схема формирует задержку выходного сигнала относительно входного на 1 секунду.

Мигание светодиодом на мультивибраторе

Отталкиваясь от рассмотренной выше схемы мультивибратора можно собрать простую светодиодную мигалку. Для этого к выходу таймера последовательно с резистором подключают светодиод. Номинал резистора находят по формуле:

R=(U ВЫХ -U LED)/I LED ,

U ВЫХ – амплитудное значение напряжения на выводе 3 таймера.

Количество подключаемых светодиодов зависит от типа применяемой микросхемы NE555, её нагрузочной способности (КМОП или ТТЛ). Если необходимо мигать светодиодом мощностью более 0,5 Вт, то схему дополняют транзистором, нагрузкой которого станет светодиод.

Реле времени

Схема регулируемого таймера (электронное реле времени) показана на рисунке.
С её помощью можно вручную задавать длительность выходного сигнала от 1 до 25 секунд. Для этого последовательно с постоянным резистором в 10 кОм устанавливают переменный номиналом в 250 кОм. Ёмкость времязадающего конденсатора увеличивают до 100 мкФ.

Схема работает следующим образом. В исходном состоянии на выводе 2 присутствует высокий уровень (от источника питания), а на выводе 3 низкий уровень. Транзисторы VT1, VT2 закрыты. В момент подачи на базу VT1 положительного импульса по цепи (Vcc-R2-коллектор-эмиттер-общий провод) протекает ток. VT1 открывается и переводит NE555 в режим отсчета времени. Одновременно на выходе ИМС появляется положительный импульс, который открывает VT2. В результате ток эмиттера VT2 приводит к срабатыванию реле. Пользователь может в любой момент прервать выполнение задачи, кратковременно закоротив RESET на землю.

Транзисторы SS8050, приведенные на схеме, можно заменить на КТ3102.

Рассмотреть все популярные схемы на основе NE555 в одной статье невозможно. Для этого существуют целые сборники, в которых собраны практические наработки за всё время существования таймера. Надеемся, что приведенная информация послужит ориентиром во время сборки схем, в том числе нагрузкой которых служат светодиоды.

Читайте так же

Микросхема таймер NE555 включает около 20 транзисторов, 15 резисторов, 2 диода. Выходной ток 200 мА, ток потребления примерно на 3 мА больше. Напряжение питания от 4,5 до 18 вольт. Точность таймера не зависит от изменения напряжения питания и составляет не более 1% от расчетного значения.

Datasheet микросхемы NE555, а также калькулятор для расчета обвязки можно скачать в конце статьи.

Назначение выводов:

Вывод №1 — Земля.

Вывод подключается к минусу питания или к общему проводу схемы.

Вывод №2 — Запуск.

Этот вывод является одним из входов №2. При подаче на этот вход импульса низкого уровня, который должно быть не более 1/3 напряжения питания, происходит запуск таймера и на выводе №3 появляется напряжение высокого уровня на время, которое задается внешним сопротивлением Ra+Rb и конденсатором С. Данный режим работы называется — режим моностабильного . Импульс, подаваемый на вывод №2, может быть как прямоугольным, так и синусоидным и по длительности он должен быть меньше чем время заряда конденсатора С.

Вывод №3 — Выход.

Высокий уровень равен напряжению питания минус 1,7 Вольта. Низкий уровень равен примерно 0,25 вольта. Время переключения с одного уровня на другой происходит примерно за 100 нс.

Вывод №4 — Сброс.

При подаче на этот вывод напряжения низкого уровня (не более 0,7в) произойдет сброс таймера и на выходе его установится напряжение низкого уровня. Если в схеме нет необходимости в режиме сброса, то данный вывод необходимо подключить к плюсу питания.

Вывод №5 — Контроль.

Обычно, этот вывод не используется. Однако его применение может значительно расширить функциональность таймера. При подаче напряжения на этот вывод можно управлять длительностью выходных импульсов таймера, а значит отказаться от RC времязадающей цепочки. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в и до напряжения питания. Соответственно на выходе получится FM модулированный сигнал.

Если этот вывод не используется, то его лучше подключить через 0,01мкФ к общему проводу.

Вывод №6 — Стоп.

Этот вывод является одним из входов компаратора №1. При подаче на этот вывод импульса высокого уровня (не менее 2/3 напряжения питания), работа таймера останавливается, и на выходе таймера устанавливается напряжение низкого уровня. Как и на вывод №2, на этот вывод можно подавать импульсы как прямоугольные, так и синусоидные.

Вывод №7 — Разряд.

Этот вывод соединен с коллектором транзистора Т1, эмиттер которого соединен с общим проводом. При открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор закрыт, когда на выходе таймера высокий уровень и открыт, когда на выходе низкий уровень.

Вывод №8 — Питание.

Напряжение питания таймера составляет от 4,5 до16 вольт.

Таймер может работать в двух режимах: моностабильный мультивибратор и генератор прямоугольных импульсов.

1. Моностабильный мультивибратор.

Моностабильный означает, что стабильное состояние у таймера только одно, когда он выключен. Во включенное состояние его можно перевести временно, подав на вход таймера какой-либо сигнал. Время нахождения таймера в активном режиме определяется RC цепочкой.

В начальном состоянии, на выходе таймера (вывод №3) низкий уровень — примерно 0,25 вольт, транзистор Т1 открыт и соответственно конденсатор разряжен. Это состояние таймера стабильное. При поступлении на вход (вывод №2) импульса низкого уровня, включается компаратор №2, который переключает триггер таймера, и как результат на выходе таймера устанавливается высокий уровень. Транзистор Т1 закрывается и через резистор R начинает заряжаться конденсатор С. И пока заряжается конденсатор С на выходе таймера сохраняется высокий уровень. За это время изменения сигнала на входе (вывод №2) не вызовут никакое воздействие на таймер. После того как напряжение на конденсаторе С достигнет 2/3 напряжения питания, включается компаратор №1 и тем самым переключает триггер. В результате на выходе (вывод №3) установится низкий уровень, и таймер восстановит исходное, стабильное состояние. Транзистор Т1 откроется и разрядит конденсатор С.

2. Генератор прямоугольных импульсов.

Таймер генерирует последовательность прямоугольных импульсов определяемых RC цепочкой.

В начальном состоянии конденсатор С разряжен и на входах обоих компараторов низкий уровень, близкий к нулю. Компаратор №2 переключает внутренний триггер и как следствие этого на выходе таймера (вывод №3) устанавливается высокий уровень. Транзистор Т1 закрывается и конденсатор С начинает заряжаться через цепочку резисторов R1 и R2.

Когда, в результате зарядки, напряжение на конденсаторе достигает 2/3 напряжения питания, компаратор №1 переключает триггер, который в свою очередь устанавливает низкий уровень на выходе таймера (вывод №3). Транзистор Т1 открывается и через резистор R2 начинает разряжаться конденсатор С. Как только напряжение на конденсаторе достигнет 1/3 напряжения питания, компаратор №2 снова переключит триггер и на выходе таймера (вывод №3) снова появится высокий уровень. Транзистор Т1 закроется и конденсатор С снова начнет заряжаться.