Сайт о телевидении

Сайт о телевидении

» » Модуляция - чем отличаются виды модуляции AM, ЧМ (FM) и SSB: просто о сложном. Что такое модуляция и разновидности модулированных сигналов

Модуляция - чем отличаются виды модуляции AM, ЧМ (FM) и SSB: просто о сложном. Что такое модуляция и разновидности модулированных сигналов

Предупреждаю сразу: сильно просто не получится. Слишком уж сложная штука модуляция.

Что бы понять, что такое модуляция, нужно знать, что такое частота, с этого и начнём.
Для примера возьмём качели: частота качания качелей, это число полных колебаний, качелей в секунду.
Полных, это значит что одно колебание, это движение качели от самого крайнего левого положения, вниз, через центр до самого максимального уровня справа и потом опять через центр до того же уровня слева.
Обычные дворовые качели имеют частоту порядка 0,5 герца, значит что полное колебание они совершают за 2 секунды.
Динамик звуковой колонки качается гораздо быстрее, воспроизводя ноту "Ля" первой октавы (440 герц), он совершает 440 колебаний в секунду.
В электрических цепях колебания, это качание напряжения, от максимального положительного значения, вниз, через ноль напряжения до максимального отрицательного значения, вверх, через ноль опять до максимального положительного. Или от максимального напряжения, через некое среднее до минимального, потом опять через среднее, опять до максимального.
На графике (или экране осциллографа) это выглядит так:

Частота колебаний напряжения на выходе радиостанции излучающей несущую на 18 канале сетки C в "европпе" будет 27175000 колебаний в секунду или 27 мегагерц и 175 килогерц (мега - миллион; кило - тысяча).

Что бы сделать модуляцию наглядной, выдумаем два неких сигнала, один частотой 1000Гц, второй 3000Гц, графически они выглядят так:

Заметим, как отображены эти сигналы на графиках слева. Это графики частоты и уровня. Чем больше частота сигнала, тем правее будет изображён на таком графике сигнал, чем больше его уровень (мощность), тем выше линия этого сигнала на графике.

Теперь представим, что оба эти сигнала мы сложили, то есть в готовом виде наш вымышленный тестовый сигнал есть сумма двух сигналов. Как сложили? Очень просто - поставили микрофон и посадили двух людей перед ним: мужика, который кричал на частоте 1000Гц и бабу, которая верещала на 3000Гц, на выходе микрофона мы получили наш тестовый сигнал, который выглядит так:

И вот именно этот тестовый сигнал мы и будем "подавать" на микрофонный вход нашего вымышленного передатчика, изучая что получается на выходе (на антенне) и как всё это влияет на разборчивость и дальность связи.

О модуляции вообще

Модулированный сигнал несущей на выходе любого передатчика в любом случае (при любой модуляции) получается методом сложения или умножения сигнала несущей на сигнал, который нужно передать, например сигнал с выхода микрофона. Разница между модуляциями лишь в том, что умножается, с чем складывается и в какой части схемы передатчика это происходит.
В плане приёма, тут всё сводится к тому, что бы из принятого сигнала выделить то, чем был модулирован сигнал, усилить это и сделать понятным (слышимым, видимым).

Амплитудная модуляция - AM (АМ, амплитудная модуляция)

Как можно видеть, при амплитудной модуляции уровень напряжения колебаний высокой частоты (несущей) напрямую зависит от величины напряжения поступающего с микрофона.
Напряжение на выходе микрофона увеличивается, увеличивается и напряжение несущей на выходе передатчика, то есть больше мощности на выходе, меньше напряжение с микрофона, меньше напряжение на выходе. Когда напряжение на выходе микрофона в некой центральной позиции, то передатчик излучает некую центральную мощность (при АМ модуляции в 100% при тишине перед микрофоном 50% мощности).
Глубиной АМ модуляции называется уровень влияния сигнала с микрофона на уровень выходной мощности передатчика. Если виляние 30% то значит самый сильный отрицательный импульс напряжения с микрофона уменьшит уровень несущей на выходе на 30% от максимальной мощности.
А вот так выглядит спектр сигнала с AM модуляцией (распределение его компонентов по частотам):

По центру, на частоте 27175000 Гц у нас несущая, а ниже и выше по частоте "боковые полосы", то есть суммы сигнала несущей и звуковых частот нашего тестового сигнала:
27175000+1000Гц и 27175000-1000Гц
27175000+3000Гц и 27175000-3000Гц
Сигналы "несущая минус звук" - нижняя боковая полоса, а "несущая плюс звук" - верхняя боковая полоса.
Не трудно заметить, что для передачи информации достаточно только одной боковой полосы, вторая лишь повторяет ту же самую информацию, но только с противоположным знаком попусту расходуя мощность передатчика на излучение этой дублирующей информации в эфир.
Если убрать несущую, которая полезной информации вообще не содержит и одну из боковых полос, то получиться SSB модуляция (по-русски: ОБП) - модуляция с одной боковой полосой и отсутствующей несущей (однополосная модуляция).

SSB модуляция (ОБП, однополосная модуляция)

Вот так выглядит SSB на выходе передатчика:

Видно, что этот сигнал мало чем отличается от АМ модуляции. Оно и понятно, SSB это продолжение AM, то есть SSB создаётся из АМ модуляции, из сигнала которой удаляется не нужная боковая полоса и несущая.
Если же взглянуть на спектр сигнала, то разница очевидна:

Здесь нет ни несущей ни дублирующей боковой полосы (на этом графике показана USB, т.е. однополосная модуляция, где оставлена верхняя боковая полоса, есть ещё и LSB, это когда оставлена нижняя боковая полоса).
Нет несущей, нет дублирующей боковой - вся мощность передатчика уходит только на передачу полезной информации.
Только принять такую модуляцию на обычный АМ приёмник невозможно. Для приёма нужно восстановить "отправную точку" - несущую. Сделать это просто - частота на которой работает передатчик известна, значит нужно лишь добавить несущую такой же частоты и отправная точка появиться. Любопытный читатель наверно уже заметил, что если не известна частота передатчика, то отправная точка будет не правильная, мы добавим не ту несущую, что же мы при этом услышим? А услышим мы при этом голос или "быка" или "гномика". Произойдёт это потому, что приёмник в данном виде модуляции не знает, какие частоты были у нас изначально, то ли это были 1000Гц и 3000Гц, то ли 2000Гц и 4000Гц, то ли 500Гц и 2500Гц - "расстояния" то между частотами верные, а вот начало сместиться, как результат или "пи-пи-пи" или "бу-бу-бу".

CW модуляция (телеграф)

С телеграфом всё просто - это сигнал 100% АМ модуляция, только резкая: или сигнал есть на выходе передатчика или сигнала нет. Нажат телеграфный ключ - есть сигнал, отпущен - нет ничего.
Выглядит на графиках телеграф вот так:

Соответственно спектр телеграфного сигнала:

То есть частота несущей 100% промодулирована нажатиями на телеграфный ключ.
Почему на спектре 2 палочки немного отступая от сигнала "центральной частоты" а не одна единственная - несущей?
Здесь всё просто: как бы то ни было, телеграф это АМ, а АМ это сумма сигналов несущей и модуляции, так как телеграф (морзянка), это серия нажатий на ключик то это тоже колебания с некоторой но частотой, пусть и низкой по сравнению со звуком. Именно на частоту нажатия на ключик и отступают боковые полосы телеграфного сигнала от несущей.
Как передавать такие сигналы?
В простейшем случае - нажимая на кнопку передачи во время молчания перед микрофоном.
Как принимать такие сигналы?
Для приёма нужно несущую, появляющуюся в эфире в такт нажатиям на ключ, превратить в звук. Методов много, самый простой - подключить к выходу детектора АМ приёмника схему, которая пикает каждый раз как на детекторе появляется напряжение (т.е. на детектор поступает несущая). Более сложный и разумный способ - смешать сигнал поступающий из эфира с сигналом генератора (гетеродина) встроенного в приёмник, а разность сигналов подать на усилитель звука. Так если частота сигнала в эфире 27175000Гц, частота генератора приёмника 27174000, то на вход усилителя звуковой частоты поступит сигнал 27175000+27174000=54349000Гц и 27175000-27174000=1000Гц, естественно первый из них не звуковой а радиосигнал, его усилитель звука не усилит, а вот второй, 1000Гц, это уже слышимый звук и его он усилит и мы услышим "пииии", пока есть в эфире несущая и тишину (шумы эфира) когда нет.
Кстати, когда включаются двое на передачу одновременно, эффект "пииии" возникающий от сложения и вычитания несущих в приёмнике, думаю, замечали многие. То что слышно - разница между сигналами несущих возникающая в нашем приёмнике.

FM модуляция (ЧМ, частотная модуляция)

Собственно суть частотной модуляции проста: частота несущей в такт напряжению на выходе микрофона немного меняется. Когда напряжение на микрофоне увеличивается, увеличивается и частота, когда уменьшается напряжение на выходе микрофона, то уменьшается и частота несущей.
Уменьшение и увеличение частоты несущей происходит в небольших пределах, например для Си-Би радиостанций это плюс/минус 3000Гц при частоте несущей порядка 27000000Гц, для радиовещательных станций FM диапазона, это плюс/минус 100000Гц.
Параметр ЧМ модуляции - индекс модуляции. Соотношение звука максимальной частоты которую пропустит микрофонный усилитель передатчика к максимальному изменению частоты несущей при самом громком звуке. Не трудно заметить, что для Си-Би это 1 (или 3000/3000), а для вещательных станций FM это примерно 6 ... 7 (100000/15000).
При ЧМ модуляции несущая по уровню (мощность сигнала передатчика) всегда постоянна, она не меняется от громкости звуков перед микрофоном.
В графическом виде, на выходе передатчика ЧМ модуляция выглядит так:

При ЧМ модуляции, как и при АМ на выходе передатчика есть и несущая и две боковые полосы, так как частота несущей болтается в такт модулирующему сигналу, отступая от центра:

DSB, ДЧТ, фазовая и другие виды модуляции

Справедливости ради, нужно отметить, что существуют и другие виды модуляции несущей:
DSB - две боковые полосы и отсутствующая несущая. DSB, по сути АМ модуляция у которой удалена (вырезана, подавлена) несущая.
ДЧТ - двухчастотный телеграф, по сути, есть не что иное, как частотная модуляция, но нажатиями телеграфного ключа. Например, точке соответствует сдвиг несущей на 1000Гц, а тире на 1500Гц.
Фазовая модуляция - модуляция фазы несущей. Частотная модуляция при малых индексах 1-2 по сути есть фазовая модуляция.

В некоторых системах (телевидение, FM стерео радиовещание) модуляция несущей осуществляется ещё одной промодулированной несущей, а она уже и несёт полезную информацию.
Например, упрощённо, FM стерео вещательный сигнал, это несущая промодулированная частотной модуляцией, сигналом который сам есть несущая промодулированная DSB модуляций, где одна боковая - это сигнал левого канала, а другая боковая полоса это сигнал правого канала звука.

Важные аспекты приёма и передачи сигналов АМ, ЧМ и SSB

Так как АМ и SSB это модуляции, у которых выходной сигнал передатчика пропорционален напряжению, поступающему с микрофона, то важно, что бы он линейно усиливался, как на приёмной, так и на передающей стороне. То есть если усилитель усиливает в 10 раз, то при напряжении на его входе 1 вольт на выходе должно быть 10 вольт, а при 17 вольтах на входе на выходе должно быть точно 170 вольт. Если усилитель будет не линеен, то есть при напряжении на входе 1 вольт усиление 10 и на выходе 10 вольт, а при 17 вольтах на входе усиление окажется лишь 5 и на выходе будет 85 вольт, то появятся искажения - хрипы и хрюки при громких звуках перед микрофоном. Если усиление будет наоборот меньше для малых входных сигналах, то будут хрипы при тихих звуках и неприятные призвуки даже при громких (потому что в начале своего колебания любой звук проходит зону близкую к нулю).
Особенна важна линейность усилителей для SSB модуляции.

Для выравнивания уровней сигналов в приёмниках АМ и SSB используются специальные узлы схемы - автоматические регуляторы усиления (схемы АРУ). Задача АРУ выбирать такое усиление узлов приёмника, что бы и сильный сигнал (от близкого корреспондента) и слабый (от удалённого), в конце концов, оказались примерно одинаковыми. Если АРУ не использовать, то слабые сигналы будут слышны тихо-тихо, а сильные разорвут излучатель звука приёмника в клочки, как капля никотина разрывает хомяка. Если же АРУ будет слишком быстро реагировать на изменение уровня, то она начнёт не просто выравнивать уровни сигналов от близких и далёких корреспондентов, но и внутри сигнала "душить" модуляцию - уменьшая усиление при повышении напряжения и повышая при понижении, сводя всю модуляцию к немодулированному сигналу.

Для ЧМ модуляции не требуется особой линейности усилителей, при ЧМ модуляции информацию несёт изменение частоты и никакое искажение или ограничение уровня сигнала не может изменить частоту сигнала. Собственно в приёмнике ЧМ вообще обязательно установлен ограничитель уровня сигнала, так как уровень не важен, важна частота, а изменение уровня будет только мешать выделить изменения частоты и превратить ЧМ несущую в звук сигнала, которым она промодулирована.
К слову сказать, именно из-за того, что в ЧМ приёмнике все сигналы ограничиваются, то есть слабые шумы имеют почти тот же уровень, что и сильный полезный сигнал, в отсутствии сигнала ЧМ детектор (демодулятор) так сильно шумит - он пытается выделить изменение частоты шумов на входе приёмника и шумов самого приёмника, а в шумах изменение частоты сильно велико и случайно, вот и слышны случайные сильные звуки: громкий шум.
В АМ и SSB приёмнике шума при отсутствии сигнала меньше, так как сам шум приёмника по уровню всё же мал и шумы на входе по сравнению с полезным сигналом по уровню малы, а для AM и SSB важен именно уровень.

Для телеграфа тоже не очень важна линейность, там информацию несёт само наличие или отсутствие несущей, а её уровень лишь побочный параметр.

ЧМ, АМ и SSB на слух

В сигналах АМ и SSB гораздо заметнее импульсные помехи, такие как треск неисправного зажигания автомобилей, щелчки грозовых разрядов или рокот от импульсных преобразователей напряжения.
Чем слабее сигнал, чем меньше его мощность, тем тише звук на выходе приёмника, а чем сильнее, тем громче. Хотя АРУ и делает своё дело, выравнивая уровни сигналов, но её возможности не бесконечны.
Для SSB модуляции практически невозможно пользоваться шумоподавителем и вообще понять, когда другой корреспондент отпустил передачу, так как при молчании перед микрофоном в SSB передатчик в эфир ничего не излучает - нет несущей, а если перед микрофоном тишина, то нет и боковых полос.

ЧМ сигналы меньше подвержены влиянию импульсных помех, но из-за сильного шума ЧМ детектора в отсутствии сигнала просто невыносимо сидеть без шумоподавителя. Каждое выключение передачи корреспондента в приёмнике сопровождается характерным "пшык" - детектор уже начал переводить шумы в звук, а шумоподавитель ещё не закрылся.

Если слушать АМ на ЧМ приёмник или наоборот, то будет слышно хрюканье, но разобрать о чём речь всё же можно. Если на ЧМ или АМ приёмник послушать SSB, то будет только дикая аудио-каша из "хрю-жу-жу-бжу" и совершенно никакой разборчивости.
На SSB приёмник можно прекрасно послушать CW (телеграф), АМ, а с некоторыми искажениями и ЧМ с малыми индексами модуляции.

Если включаются одновременно две или больше АМ или ЧМ радиостанций на одной частоте, то получается каша из несущих, этакий писк и визг среди которого ничего не разобрать.
Если же включатся два или больше SSB передатчика на одной частоте, то в приёмнике будет слышно всех, кто говорил, так как несущей у SSB нет и биться (смешиваться до свиста) нечему. Слышно всех, так, словно все сидят в одной комнате и разом заговорили.

Если у АМ или ЧМ частота приёмника не точно совпадает с частотой передатчика, то появляются искажения на громких звуках, "подхрипывания".
Если у SSB передатчика частота меняется в такт уровню сигнала (например, аппаратура не тянет по питанию), то в голосе слышно бульканье. Если плавает частота приёмника или передатчика, то звук плавает по частоте, то "бубнит", то "чирикает".

Эффективность видов модуляции - АМ, ЧМ и SSB

Теоретически, подчёркиваю - теоретически, при равной мощности передатчика, дальность связи от вида модуляции будет зависеть так:
АМ = Расстояние * 1
ЧМ = Расстояние * 1
SSB = Расстояние * 2
В той самой теории, энергетически, SSB выигрывает у АМ в 4 раза по мощности, или в 2 раза по напряжению. Выигрыш появляется за счёт того, что мощность передатчика не расходуется на излучение бесполезной несущей и попусту дублирующей информацию второй боковой полосы.
На практике выигрыш меньше, так как мозг человека не привык слышать шумы эфира в паузах между громкими звуками и несколько страдает разборчивость.
ЧМ тоже модуляция "с сюрпризом" - одни умные книги говорят, что АМ и ЧМ одна другой не лучше, а то и вовсе ЧМ хуже, другие утверждают, что при малых индексах модуляции (а это Си-Би и радиолюбительские радиостанции) ЧМ выигрывает у АМ в 1,5 раза. На деле, по субъективному мнению автора ЧМ "пробивнее", чем АМ примерно в 1,5 раза, прежде всего, потому что ЧМ менее подвержена импульсным помехам и качаниям уровня сигнала.

Аппаратура АМ, ЧМ и SSB в плане сложности и переделки одного в другое

Самая сложная аппаратура это SSB.
По сути SSB аппарат с лёгкостью может работать в AM или ЧМ после ничтожно малой переделки.
Переделать АМ или ЧМ приёмопередатчик в SSB почти невозможно (потребуется ввести в схему очень, очень много дополнительных узлов и полностью переделать блок передатчика).
От автора: переделка АМ или ЧМ аппарата в SSB лично мне кажется полным безумием.
SSB аппарат "с нуля" - собирал, но что бы переделать АМ или ЧМ в SSB - нет.

Второй по сложности, это ЧМ аппарат.
По сути ЧМ аппарат уже содержит в приёмнике всё, что нужно для детектирования АМ сигналов, так как у него тоже есть АРУ (автоматическая регулировка усиления) и следовательно детектор уровня принимаемой несущей, то есть по сути полноценный АМ приёмник, только работающий где-то там, внутри (от этой части схемы работает и пороговый шумоподавитель).
С передатчиком будет сложнее, так как почти все его каскады работают в не линейном режиме.
От автора: переделать можно, но никогда в этом не было нужды.

АМ аппаратура самая простая.
Что бы переделать АМ приёмник в ЧМ, потребуется ввести новые узлы - ограничитель и ЧМ детектор. По факту ограничитель и ЧМ детектор, это 1 микросхема и чуть-чуть деталей.
Переделка АМ передатчика в ЧМ значительно проще, так как нужно лишь ввести цепочку, которая будет "болтать" частоту несущей в такт напряжению, поступающему с микрофона.
От автора: пару раз переделывал АМ трансивер в АМ/ЧМ, в частности Си-Би радиостанции "Cobra 23 plus" и "Cobra 19 plus".

Рассмотренные выше методы анализа первичных сигналов позволяют определить их спектральные и энергетические характеристики. Первичные сигналы являются основными носителями информации. Вместе с тем их спектральные характеристики не соответствуют частотным характеристикам каналов передачи радиотехнических информационных систем. Как правило, энергия первичных сигналов сосредоточена в области низких частот. Так, например, при передаче речи или музыки энергия первичного сигнала сосредоточена примерно в диапазоне частот от 20 Гц до 15 кГц. В то же время диапазон дециметровых волн, который широко используются для передачи информационных и музыкальных программ, занимает частоты от 300 до 3000 мегагерц. Возникает задача переноса спектров первичных сигналов в соответствующие диапазоны радиочастот для передачи их по радиоканалам. Эта задача решается посредствам операции модуляции.

Модуляцией называется процедура преобразования низкочастотных первичных сигналов в сигналы радиочастотного диапазона .

В процедуре модуляции участвуют первичный сигнал и некоторое вспомогательное колебание , называемое несущим колебанием или просто несущей. В общем виде процедуру модуляции можно представить следующим образом

где – правило преобразования (оператор) первичного сигнала в модулированного колебание .

Это правило указывает, какой параметр (или несколько параметров) несущего колебания изменяются по закону изменения . Поскольку управляет изменением параметров , то, как было отмечено в первом разделе, сигнал , является управляющим (модулирующим), а – модулированным сигналами. Очевидно, соответствует оператору обобщенной структурной схемы РТИС.

Выражение (4.1) позволяет провести классификацию видов модуляции, которая представлена на рис. 4.1.

Рис. 4.1

В качестве классификационных признаков выберем вид (форму) управляющего сигнала , форму несущего колебания и вид управляемого параметра несущего колебания.

В первом разделе была проведена классификация первичных сигналов. В радиотехнических информационных системах наиболее широкое распространение в качестве первичных (управляющих) сигналов получили непрерывные и цифровые сигналы. В соответствии с этим по виду управляющего сигнала можно выделить непрерывную и дискретную модуляцию.

В качестве несущего колебания в практической радиотехнике используются гармонические колебания и импульсные последовательности. В соответствии с формой несущего колебания различают модуляцию гармонической несущей и импульсную модуляцию .

И наконец, по виду управляемого параметра несущего колебания в случае гармонической несущей различают амплитудную , частотную и фазовую модуляцию . Очевидно, в этом случае в качестве управляемого параметра выступают соответственно амплитуда, частота или начальная фаза гармонического колебания. Если в качестве несущего колебания используется импульсная последовательность, то аналогом частотной модуляции является широтная импульсная модуляция , где управляемым параметром выступает длительность импульса, а аналогом фазовой модуляции – временная импульсная модуляция , где управляемым параметром выступает положение импульса на временной оси.

В современных радиотехнических системах наиболее широко в качестве несущего колебания используется гармоническое колебание. Учитывая это обстоятельство в дальнейшем, основное внимание будет уделено сигналам с непрерывной и дискретной модуляцией гармонической несущей.

4.2. Сигналы с непрерывной амплитудной модуляцией

Рассмотрение модулированных сигналов начнем с сигналов, у которых в качестве изменяемого параметра выступает амплитуда несущего колебания. Модулированный сигнал в этом случае является амплитудно-модулированным или сигналом с амплитудной модуляцией (АМ-сигналом ).

Как уже было отмечено выше, основное внимание будет уделено сигналам, несущее колебание которых представляет собой гармоническое колебание вида

где – амплитуда несущего колебания,

– частота несущего колебания.

В качестве модулирующих сигналов сначала рассмотрим непрерывные сигналы . Тогда модулированные сигналы будут являться сигналами с непрерывной амплитудной модуляцией . Такой сигнал описывается выражением

где – огибающая АМ-сигнала,

– коэффициент амплитудной модуляции.

Из выражения (4.2) следует, что АМ-сигнал представляет собой произведение огибающей на гармоническую функцию . Коэффициент амплитудной модуляции характеризует глубину модуляции и в общем случае описывается выражением

. (4.3)

Очевидно, при сигнал представляет собой просто несущее колебание.

Для более детального анализа характеристик АМ-сигналов рассмотрим простейший АМ-сигнал, в котором в качестве модулирующего сигнала выступает гармоническое колебание

, (4.4)

где , – соответственно амплитуда и частота модулирующего (управляющего) сигнала, причем . В этом случае сигнал описывается выражением

, (4.5)

и называется сигналом однотональной амплитудной модуляции.

На рис. 4.2 изображены модулирующий сигнал , колебание несущей частоты и сигнал .

Для такого сигнала коэффициент глубины амплитудной модуляции равен

Воспользовавшись известным тригонометрическим соот-ношением

после несложных преобразований получим

Выражение (4.6) устанавливает спектральный состав однотонального АМ-сигнала. Первое слагаемое представляет собой немодулированное колебание (несущее колебание). Второе и третье слагаемые соответствуют новым гармоническим составляющим, появившимся в результате модуляции амплитуды несущего колебания; частоты этих колебаний и называются нижней и верхней боковыми частотами, а сами составляющие – нижней и верхней боковыми составляющими.

Амплитуды этих двух колебаний одинаковы и составляют величину

, (4.7)

На рис. 4.3 изображен амплитудный спектр однотонального АМ-сигнала. Из этого рисунка следует, что амплитуды боковых составляющих располагаются симметрично относительно амплитуды и начальной фазы несущего колебания. Очевидно, ширина спектра однотонального АМ-сигнала равна удвоенной частоте управляющего сигнала

В общем случае, когда управляющий сигнал характеризуется произвольным спектром, сосредоточенным в полосе частот от до , спектральный характер АМ-сигнала принципиально не отличается от однотонального.

На рис. 4.4 изображены спектры управляющего сигнала и сигнала с амплитудной модуляцией. В отличие от однотонального АМ-сигнала в спектре произвольного АМ-сигнала фигурируют нижняя и верхняя боковые полосы. При этом верхняя боковая полоса является копией спектра управляющего сигнала, сдвинутой по оси частот на

величину , а нижняя боковая полоса представляет собой зекаль-ное отображение верхней. Очевидно, ширина спектра произвольного АМ-сигнала

т.е. равна удвоенной верхней граничной частоте управляющего сигнала.

Возвратимся к сигналу однотональной амплитудной модуляции и найдем его энергетические характеристики. Средняя мощность АМ-сигнала за период управляющего сигнала определяется по формуле:

. (4.9)

Так как , а , положим , где . Подставляя выражение (4.6) в (4.9), после несложных, но достаточно громоздких преобразований с учетом того, что и с использованием тригонометрических соотношений

Здесь первое слагаемое характеризует среднюю мощность несущего колебания, а второе – суммарную среднюю мощность боковых составляющих, т.е.

Так как суммарная средняя мощность боковых составляющих делится поровну между нижней и верхней, что вытекает из (4.7), то отсюда следует

Таким образом, на передачу несущего колебания в АМ-сигнале тратится более половины мощности (с учетом того, что ), чем на передачу боковых составляющих. Так как информация заложена именно в боковых составляющих, передача составляющей несущего колебания нецелесообразна с энергетической точки зрения. Поиск более эффективных методов использования принципа амплитудной модуляции приводит к сигналам балансной и однополосной амплитудной модуляции.

4.3. Сигналы балансной и однополосной амплитудной модуляции

Сигналы балансной амплитудной модуляции (БАМ) характеризуются отсутствием в спектре составляющей несущего колебания. Перейдем сразу к рассмотрению сигналов однотональной балансной модуляции, когда в качестве управляющего колебания выступает гармонический сигнал вида (4.4). Исключение из (4.6) составляющей несущего колебания

приводит к результату

Рассчитаем среднюю мощность сигнала балансной модуляции. Подстановка (4.12) в (4.9) после преобразований дает выражение

.

Очевидно, что энергетический выигрыш при использовании сигналов балансной модуляции по сравнению с классической амплитудной модуляцией будет равен

При этот выигрыш составляет величину .

На рис. 4.5 представлен один из вариантов структурной схемы формирователя сигналов балансной амплитудной модуляции. Формирователь содержит:

  • Инв1, Инв2 – инверторы сигналов (устройства, изменяющие полярность напряжений на противоположную);
  • АМ1, АМ2 – амплитудные модуляторы;
  • SM – сумматор.

Колебание несущей частоты поступает на входы модуляторов АМ1 и АМ2 непосредственно. Что касается управляющего сигнала , то на второй вход АМ1 он поступает непосредственно, а на второй вход АМ2 – через инвертор Инв1. В результате на выходах модуляторов формируются колебания вида

На входы сумматора поступают соответственно колебания и . Результирующий сигнал на выходе сумматора составит

В случае однотональной амплитудной модуляции выражение (4.13) принимает вид

Используя формулу произведения косинусов, после преобразований получим

что с точностью до постоянного множителя совпадает с (4.12). Очевидно, ширина спектра сигналов БАМ равна ширине спектра сигналов АМ.

Балансная амплитудная модуляция позволяет исключить передачу несущего колебания, что приводит к энергетическому выигрышу. Вместе с тем, обе боковые полосы (боковые составляющие в случае однотональной АМ) несут одну и ту же информацию. Напрашивается вывод о целесообразности формирования и передачи сигналов с подавленной одной из боковых полос. В этом случае мы приходим к однополосной амплитудной модуляции (ОАМ).

Если из спектра сигнала БАМ исключить одну из боковых составляющих (скажем верхнюю боковую составляющую), то в случае гармонического управляющего сигнала получим

Так как средняя мощность сигнала БАМ делится поровну между боковыми составляющими, то очевидно, что средняя мощность сигнала ОАМ составит

Энергетический выигрыш по сравнению с амплитудной модуляцией составит

а при он будет равен .

Формирование однополосного АМ-сигнала может быть осуществлено на базе формирователей сигналов балансной модуляции. Структурная схема формирователя однополосного АМ-сигнала представлена на рис. 4.6.

В состав формирователя сигнала однополосной амплитудной модуляции входят:

На входы БАМ1 поступают сигналы:

Тогда на его выходе в соответствии с (4.15) формируется сигнал

На входы БАМ2 поступают сигналы

и .

С выхода БАМ2 снимается колебание, описываемое в соответствии с (4.14) с заменой косинусов на синусы

С учетом известного тригонометрического соотношения

выходной сигнал БАМ2 преобразуется к виду

Сложение сигналов (4.17) и (4.18) в сумматоре SM дает

что с точностью до постоянного множителя совпадает с (4.16). Что касается спектральных характеристик, то ширина спектра сигналов ОАМ вдвое меньше спектра АМ или БАМ сигналов.

Таким образом, при одинаковых и однополосная АМ обеспечивает существенный энергетический выигрыш по сравнению с классической АМ и балансной модуляцией. Вместе с тем, реализация сигналов балансной амплитудной и однополосной амплитудной модуляции сопряжена с некоторыми трудностями, касающимися необходимости восстановления несущего колебания при обработке сигналов на приемной стороне. Эта задача решается устройствами синхронизации передающей и приемной сторон, что в общем плане приводит к усложнению аппаратуры.

4.4. Сигналы с непрерывной угловой модуляцией

4.4.1. Обобщенное представление сигналов с угловой модуляцией

В предыдущем разделе была рассмотрена процедура модуляции, когда информационным параметром, изменяемым в соответствии с законом управляющего (модулирующего) сигнала являлась амплитуда несущего колебания. Однако помимо амплитуды несущее колебание характеризуется также частотой и начальной фазой

где – полная фаза несущего колебания, которая определяет текущее значение фазового угла.

Изменение либо , либо в соответствии с управляющим сигналом соответствует угловой модуляции . Таким образом, понятие угловой модуляции включает в себя как частотную (ЧМ), так и фазовую (ФМ) модуляцию.

Рассмотрим обобщенные аналитические соотношения для сигналов с угловой модуляцией. При частотной модуляции в соответствии с управляющим сигналом изменяется мгновенная частота несущего колебания в пределах от нижней до граничных частот

Наибольшее значение частотного отклонения от называется девиацией частоты

.

Если граничные частоты расположены симметрично относительно , то девиация частоты

. (4.22)

Именно такой случай частотной модуляции будет рассматриваться в дальнейшем.

Закон изменения полной фазы определяется как интеграл от мгновенной частоты. Тогда, с учетом (4.21) и (4.22), можно записать

Подставляя (4.23) в (4.20), получим обобщенное аналитическое выражение сигнала с частотной модуляцией

Слагаемое представляет собой составляющую полной фазы, обусловленную наличием частотной модуляции. Нетрудно убедится в том, что полная фаза сигнала с частотной модуляцией изменяется по закону интеграла от .

При фазовой модуляции , в соответствии с модулирующем сигналом , изменяется начальная фаза несущего колебания в пределах от нижнего до верхнего граничных значений фазы

Наибольшее отклонение фазового сдвига от называется девиацией фазы . Если и расположены симметрично относительно , то . В этом случае полная фаза сигнала с фазовой модуляцией

Тогда, подставляя (4.26) в (4.20), получим обобщенное аналитическое выражение сигнала с фазовой модуляцией

Рассмотрим, как изменяется мгновенная частота сигнала при фазовой модуляции. Известно, что мгновенная частота и текущая пол-

ная фаза связаны соотношением

.

Подставляя в это выражение формулу (4.26) и проведя операцию дифференцирования, получим

где – составляющая частоты, обусловленная наличием фазовой модуляции несущего колебания (4.20).

Таким образом, изменение начальной фазы несущего колебания приводит к изменению мгновенных значений частоты по закону производной от по времени.

Практическая реализация устройств формирования сигналов угловой модуляции может осуществляться одним из двух методов: прямым или косвенным. При прямом методе в соответствии с законом изменения управляющего сигнала изменяются параметры колебательного контура генератора несущего колебания. Выходной сигнал при этом оказывается промодулированным по частоте. Для получения сигнала фазовой модуляции на входе частотного модулятора включается дифференцирующая цепь.

Сигналы фазовой модуляции при прямом методе формируются путём изменения параметров колебательного контура усилителя, подключённого к выходу генератора несущего колебания. Для преобразования сигналов фазовой модуляции в сигнал частотной модуляции управляющее колебание подаётся на вход фазового модулятора через интегрирующую цепь.

Косвенные методы не предполагают непосредственного воздействия управляющего сигнала на параметры колебательного контура. Один из косвенных методов базируется на преобразовании амплитудно-модулированных сигналов в сигналы фазовой модуляции, а те, в свою очередь, - в сигналы частотной модуляции. Более подробно, вопросы формирования сигналов частотной и фазовой модуляции будут рассмотрены ниже.

4.4.2. Сигналы с частотной модуляцией

Анализ характеристик сигналов с угловой модуляцией мы начнём с рассмотрения однотональной частотной модуляции. Управляющий сигнал в этом случае представляет собой колебание единичной амплитуды (к этому виду всегда можно привести )

, (4.29)

а модулируемым параметром несущего колебания является мгновенная частота. Тогда, подставляя (4.29) в (4.24), получим:

Выполнив операцию интегрирования, приходим к следующему выражению сигнала однотональной частотной модуляции

Отношение

называется индексом частотной модуляции и имеет физический смысл части девиации частоты , приходящуюся на единицу частоты модулирующего сигнала. Так например, если девиация частоты несущего колебания МГц составляет , а частота управляющего сигнала кГц, то индекс частотной модуляции составит . В выражении (4.30) начальная фаза не учитывается как не имеющая принципиального значения.

Временная диаграмма сигнала при однотональной ЧМ представлена на рис. 4.7

Рассмотрение спектральных характеристик ЧМ-сигнала начнём с частного случая малого индекса частотной модуляции . Воспользовавшись соотношением

представим (4.30) в виде

Поскольку , то можно воспользоваться приближёнными представлениями

и выражение (4.31) приобретает вид

Воспользовавшись известным тригонометрическим соотношением

и полагая и , получим:

Это выражение напоминает выражение (4.6) для однотонального АМ – сигнала. Отличие состоит в том, что, если в однотональном АМ – сигнале начальные фазы боковых составляющих одинаковы , то в однотональном ЧМ сигнале при малых индексах частотной модуляции они отличаются на угол , т.е. находятся в противофазе.

Спектральная диаграмма такого сигнала показана на рис. 4.8

В скобках указаны значения начальной фазы боковых составляющих. Очевидно, ширина спектра ЧМ – сигнала при малых индексах частотной модуляции равна

.

Сигналы с частотной модуляцией с малым в практической радиотехнике применяются достаточно редко.

В реальных радиотехнических системах индекс частотной модуляции существенно превышает единицу.

Так например, в современных аналоговых системах мобильной связи, использующих для передачи речевых сообщений сигналы частотной модуляции при верхней частоте речевого сигнала кГц и девиации частоты кГц, индекс , как нетрудно убедиться, достигает значения ~3-4. В системах же радиовещания метрового диапазона индекс частотной модуляции может превышать значения, равного 10. Поэтому рассмотрим спектральные характеристики ЧМ сигналов при произвольных значениях величины .

Возвратимся к выражению (4.32). Известны следующие виды разложения

где – фунция Бесселя первого рода -го порядка.

Подставляя эти выражения в (4.32), после несложных, но довольно громоздких преобразований с использованием уже неоднократно упомянутых выше соотношений произведений косинусов и синусов, получим

(4.36)

где .

Полученное выражение представляет собой разложение однотонального ЧМ – сигнала на гармонические составляющие, т.е. амплитудный спектр. Первое слагаемое этого выражения является спектральной составляющей колебания несущей частоты с амплитудой . Первая сумма выражения (4.35) характеризует боковые составляющие с амплитудами и частотами , т.е. нижнюю боковую полосу, а вторая сумма – боковые составляющие с амплитудами и частотами , т.е. верхнюю боковую полосу спектра.

Спектральная диаграмма ЧМ – сигнала при произвольном представлена на рис. 4.9.

Проанализируем характер амплитудного спектра ЧМ – сигнала. В первую очередь отметим, что спектр является симметричным относительно частоты несущего колебания и теоретически является бесконечным.

Составляющие боковых боковых полос расположены на расстоянии Ω друг от друга, а их амплитуды зависят от индекса частотной модуляции. И наконец, у спектральных составляющих нижней и верхней боковых частот с чётными индексами начальные фазы совпадают, а у спектральных составляющих с нечётными индексами отличаются на угол .

В таблице 4.1 приведены значения функции Бесселя для различных i и . Обратим внимание на составляющую несущего колебания . Амплитуда этой составляющей равна . Из таблицы 4.1 следует, что при амплитуда , т.е. спектральная составляющая несущего колебания в спектре ЧМ – сигнала отсутствует. Но это не означает отсутствия несущего колебания в ЧМ – сигнале (4.30). Просто энергия несущего колебания перераспределяется между составляющими боковых полос.

Таблица 4.1

Как уже подчёркивалось выше спектр ЧМ – сигнала теоретически является бесконечным. На практике же полоса пропускания радиотехнических устройств всегда ограничена. Оценим практическую ширину спектра, при котором воспроизведение ЧМ – сигнала можно считать неискажённым.

Средняя мощность ЧМ – сигнала определяется как сумма средних мощностей спектральных составляющих

Проведённые расчёты показали, что около 99% энергии ЧМ – сигнала сосредоточено в частотных составляющих с номерами . А это означает, что частотными составляющими с номерами можно пренебречь. Тогда практическая ширина спектра при однотональной ЧМ с учётом его симметрии относительно

а при больших значения

Т.е. равна удвоенной девиации частоты.

Таким образом, ширина спектра ЧМ – сигнала приблизительно в раз больше ширины спектра АМ – сигнала. Вместе с тем, для передачи информации используется вся энергия сигнала. В этом состоит преимущества сигналов частотной модуляции над сигналами амплитудной модуляции.

4.5. Сигналы с дискретной модуляцией

Рассмотренные выше сигналы с непрерывной модуляцией, в основном используются в системах радиовещания, радиотелефонии, телевидения и других. Вместе с тем, переход на цифровые технологии в радиотехнике, в том числе и в перечисленных областях, обусловил широкое использование сигналов с дискретной модуляцией или манипуляцией. Так как исторически сигналы дискретной модуляции впервые были использованы для передачи телеграфных сообщений, такие сигналы ещё называют сигналами амплитудной (АТ), частотной (ЧТ), и фазовой (ФТ) телеграфии. Ниже при описании соответствующих сигналов будет использована эта аббревиатура, что позволит отличать их от сигналов с непрерывной модуляцией.

4.5.1. Сигналы с дискретной амплитудной модуляцией

Сигналы дискретной амплитудной модуляции характеризуются тем, что амплитуда несущего колебания изменяется в соответствии с управляющим сигналом, который представляет собой последовательности импульсов, обычно прямоугольной формы. При исследовании характеристик сигналов с непрерывной модуляцией в качестве управляющего сигнала рассматривался гармонический сигнал. По аналогии с этим для сигналов с дискретной модуляцией в качестве управляющего сигнала используем периодическую последовательность прямоугольных импульсов

Очевидно, как следует из (4.39), длительность импульса составляет , а скважность .

На рис. 4.10 представлены эпюры управляющего сигнала , несущего колебания и амплитудно-манипулированного сигнала . Здесь и далее будем полагать амплитуду импульсов управляющего сигнала равной , а начальную фазу несущего колебания . Тогда сигнал с дискретной амплитудной модуляцией можно записать следующим образом

Ранее было получено разложение последовательности прямоугольных импульсов в ряд Фурье (2.13). Для рассматриваемого случая и выражение (2.13) принимает вид

Подставляя (4.41) в (4.40) и используя формулу произведения косинусов, получим:

На рис. 4.11 изображён амплитудный спектр сигнала, модулированного по амплитуде последовательностью прямоугольных импульсов. Спектр содержит составляющую несущей частоты с амплитудой и две боковые полосы каждая из которых состоит из бесконечного числа гармонических составляющих, располагающихся на частотах , амплитуды которых изменяются по закону . Боковые полосы, так же как и при непрерывной АМ, расположены зеркально по отношению к спектральной составляющей несущей частоты. Нули амплитудного спектра сигнала АТ соответствуют нулям амплитудного спектра сигнала , но сдвинуты влево и вправо на величину .

Ввиду того, что основная часть энергии управляющего сигнала сосредоточена в пределах первого лепестка спектра, практическую ширину спектра в рассматриваемом случае, исходя из рис. 4.11, можно определить как

. (4.43)

Этот результат согласуется с расчётами спектра, приведёнными в [Л.4], где показано, что большая часть мощности сосредоточена в боковых составляющих с частотами и .

4.5.2. Сигналы с дискретной частотной модуляцией

При анализе сигналов с дискретной угловой модуляцией удобно в качестве модулирующего сигнала использовать периодическую последовательность прямоугольных импульсов вида “меандр”. Тогда управляющий сигнал на интервале времени принимает значение , а на интервале времени - значение . Снова, как и при анализе сигналов АТ будем полагать .

Как следует из подраздела 4.3.1 сигнал с частотной модуляцией описывается выражением (4.24). Тогда с учётом того, что на интервале управляющий сигнал , а на интервале управляющий сигнал , проведя операцию интегрирования, получим выражение сигнала ЧТ

На рис 4.12 приведены временные диаграммы управляющего сигнала , несущего колебания и сигнала дискретной частотной модуляции .

С другой стороны сигнал ЧТ, как это следует из рис. 4.12, может быть представлен суммой двух сигналов дискретной амплитудной модуляции и , частоты несущих колебаний которых соответственно равны

,

Другим распространенным типом модуляции, применяемым в радиосвя­зи, является частотная модуляция (ЧМ), при которой частота несущей изменяется в соответствии с модулирующим сигналом (рис. 15.1).


Рис. 15.1. Частотная модуляция.

Обратите внимание, что амплитуда несущей остается постоянной, а частота изменяется.

Девиация частоты

Девиация частоты есть степень изменения частоты несущей при измене­нии уровня сигнала на 1 В. Девиация частоты измеряется в килогер­цах на вольт (кГц/В). Предположим, например, что несущая с частотой 1000 кГц должна быть промодулирована сигналом в виде меандра с ам­плитудой 5 В (рис. 15.2). Предположим также, что девиация частоты равна 10 кГц/В. Тогда во временном интервале от А до В частота не­сущей увеличится на 5 · 10 = 50 кГц (произведение амплитуды сигнала на девиацию частоты) и станет равной 1000 кГц + 50 кГц = 1050 кГц. Во временном интервале от В до С частота несущей изменится на ту же величину, а именно на 5 · 10 = 50 кГц, но на этот раз в отрицательную сторону с уменьшением частоты несущей до 1000 – 50 = 950 кГц.


Рис. 15.2.

Максимальная девиация

Изменение частоты несущей при изменении уровня сигнала должно быть ограничено некоторой максимальной величиной, превышение которой не­допустимо. Эта величина называется максимальной девиацией. Напри­мер, при ЧМ-передачах радиостанции Би-би-си используется девиация частоты 15 кГц/В и максимальная девиация 75 кГц. Максимальная ве­личина модулирующего сигнала определяется максимальной допустимой девиацией.

Максимальная девиация ±75

Максимальный сигнал = -------------- = -- = ±5 В

Девиация частоты 15

или, другими словами, 5 В в положительную или отрицательную область.

Боковые частоты и ширина полосы

Если несущая промодулирована по частоте гармоническим сигналом, образуется неограниченное число боковых частот. Амплитуды боковых Компонент постепенно уменьшаются по мере отдаления частоты этих ком­понент от частоты несущей.

Таким образом, для размещения всех боковых частот ширина полосы частот ЧМ-системы должна быть бесконечной. На практике малые по амплитуде боковые компоненты ЧМ-сигнала могут быть отброшены без внесения каких-либо заметных искажений. Например, ЧМ-передачи ра­диостанции Би-би-си ведутся с использованием полосы частот шириной 250 кГц.

Сравнение AM - и ЧМ-систем модуляции

Амплитудная Частотная

модуляция модуляция

1. Амплитуда несущей Изменяется вместе Остается

С сигналом постоянной

2. Боковые частоты Две для каждой Бесконечное

Частоты в спектре число

Сигнала

3. Ширина занимаемой 9 кГц 250 кГц полосы частот

4. Диапазон частот ДВ, СВ. KB УКВ

Преимущества частотной модуляции

Радиовещание с использованием ЧМ имеет следующие преимущества по сравнению с АМ-передачей программ.

1. В системе с ЧМ обеспечивается лучшее качество звучания. Это свя­зано с большой шириной полосы частот ЧМ-сигнала, охватывающей гораздо большее число гармоник.

2. При ЧМ-передаче достигается очень низкий уровень шума. Шум - это нежелательные сигналы, которые появляются на выходе обычно в форме изменения амплитуды несущей. В ЧМ-системе эти сигналы легко устраняются путем двустороннего ограничения амплитуды не­сущей. Информация, которую несет изменяющаяся частота, при этом полностью сохраняется.

В этом видео рассказывается о частотной модуляции:

Общие сведения о модуляции. Для передачи сигналов на большие расстояния необходимо, чтобы они обладали большой энергией. Известно, что энергия сигнала пропорциональна четвертой степени его частоты, то есть сигналы с большей частотой обладают большей энергией. В практике часто сигналы, несущие в себе информацию, например, речевые сигналы, имеют низкую частоту колебаний и поэтому, чтобы передать их на большое расстояние необходимо частоту информационных сигналов повышать. Добиваются этого путем “накладывания” информационного сигнала на другой сигнал, который имеет высокую частоту колебаний.

Рассмотрим гармоническое колебание, которое имеет частоту ω достаточную для распространения на большие расстояния и изменяется по закону:

Наложить информацию на это колебание можно путем медленного, по сравнению с периодом, изменения его амплитуды Um, частоты ω или фазы φ. Такой процесс называется модуляцией.

В зависимости от того, какой параметр изменяют, различают амплитудную, частотную и фазовую модуляцию.

Амплитудно-модулированный сигнал получается путем перемножения двух сигналов. Один содержит информацию, а другой является несущим. Пусть сигнал информации, (рис.2.14) и несущее колебание (рис. 2.15) изменяются в соответствии со следующими выражениями:

U1(t) = U0 + U1m cosΩt,

U2(t) = U2m cost,

где U0 - постоянная составляющая сигнала, U1mи U2m - амплитуды информационного сигнала и несущего колебания, Ω, ω – частота информационного сигнала и несущего колебания.

Рис. 2.14. Информационный сигнал.

Рис. 2.15. Несущее колебание.

Перемножим эти сигналы:

Введем обозначения:

где Um – амплитуда промодулированного сигнала, М - коэффициент модуляции.

С учетом введенных обозначений, получим выражение для амплитудно - модулированного сигнала в следующем виде:

Вид амплитудно-модулированного сигнала показан на рис. 2.16, а его спектр на рис. 2.17.

Рис. 2.16. Амплитудно-модулированный сигнал.

Таким образом, спектр радиочастотного колебания при амплитудной модуляции гармоническим колебанием состоит из трех составляющих: нижней боковой, несущей и верхней боковой гармоник. Видно, что амплитуды боковых составляющих зависят от коэффициента модуляцииМ.

Рис.2.17. Спектр амплитудно - модулированного сигнала.

На практике бывает случай, когда модулирующий низкочастотный сигнал имеет сложный спектральный состав:

. (2.55)

Здесь частоты Ωi образуют упорядоченную возрастающую последовательность Ω1 < Ω2 <…< ΩN, в то время, как амплитуды Ui и начальные фазы ϕi произвольны. Вид сигнала показан на рис. 2.18. В этом случае амплитудно - модулированный сигнал будет иметь вид:

Введем обозначение:

Тогда выражение (2.56) примет вид:

Выполним преобразования будем иметь:

(2.57)

Рис. 2.18. Спектр низкочастотного модулирующего сигнала.

Спектральная диаграмма многотонального АМ - сигнала приведена на рис. 2.19.

Рис. 2.19. Спектр многотонального АМ - сигнала.

Видно, что в спектре сложномодулированного АМ - сигнала, помимо несущего колебания, содержатся группы верхних и нижних боковых колебаний. Спектр верхних боковых колебаний является масштабной копией спектра модулирующего сигнала, сдвинутой в область высоких частот на величинуω0. Спектр нижних боковых колебаний располагается зеркально относительно несущей частоты ω0 и также повторяет спектральную диаграмму модулирующего сигнала. Ширина спектра АМ - сигнала равна удвоенному значению наивысшей частоты в спектре модулирующего низкочастотного сигнала.

Частотно- и фазомодулированные сигналы. Частотно-модулированный сигнал – это колебание, у которого мгновенная частота изменяется по закону модулирующего сигнала. Пусть модулирующий сигнал и несущее колебание изменяется, как показано на рис. 2.20, 2.21.

Рис.2.20. Модулирующий сигнал.

Рис.2.21. Несущий сигнал.

Тогда мгновенная частота при частотной модуляции равна:

здесь Δω – девиация (отклонение) частоты под действием модулирующего сигнала, это отклонение в принципе пропорционально амплитуде модулирующего колебания. Мгновенную фазу частотно-модулированного сигнала найдем, проинтегрировавω (t) по времени:

(2.59)

В соответствии с рис. 2.21 и выражением (2.59) частотно-модулированное колебание запишется в следующем виде:

где – есть индекс частотной модуляции. Вид частотно - модулированного сигнала показан на рис. 2.22.

Рис. 2.22. Частотно - модулированный сигнал.

Преобразуем выражение (2.60) по формуле косинуса суммы двух аргументов, получим:

Применим для выражений cos(m sin Ωt) и sin(m sin Ωt) преобразования по функциям Бесселя:

Тогда выражение (2.61) для частотно-модулированного сигнала будет иметь вид:

. (2.62)

Из (2.62) видно, что частотно - модулированный сигнал имеет дискретный спектр рис. 2.23. с гармониками на частотах (ω0± nΩ), где n=1, 2, 3, 4, 5…

Рис. 2.23. Спектр частотно - модулированного сигнала.

Вид спектра модулированного колебания зависит от индекса частотной модуляции m, теоретически спектр бесконечен, но на практике он ограничивается двумя – тремя составляющими, так как функции Бесселя высших порядков интенсивно убывают.

Фазомодулированным колебанием называется колебание, у которого фаза изменяется по закону модулирующего сигнала. Выражение, описывающее такое колебание, имеет вид:

Частотно-модулированное колебание является в то же время и фазомодулированным. Иногда оба вида модуляции называют угловой модуляцией. Однако при частотной модуляции изменение частоты, а не фазы совпадает с законом изменения модулирующего сигнала. Кроме того, при частотной модуляции индекс модуляции обратно пропорционален модулирующей частоте, тогда как при фазовой модуляции такой зависимости нет.

Когда колебание промодулировано гармоническим сигналом, отличить частотную модуляцию от фазовой можно, только сравнив изменения мгновенной фазы модулированного колебания с законом изменения модулирующего напряжения.

В данной статье речь пойдет о спектре сигнала с угловой модуляцией. Сначала рассмотрим однотональную угловую модуляцию, после чего рассмотрим более общий случай при произвольном модулирующем сигнале. Необходимо отметить, что в аналитическом виде можно получить выражение для спектра только в случае однотональной угловой модуляции.

Предварительно приведем некоторые математические соотношения из теории функций Бесселя и комплексных чисел, которые будут нам необходимы при анализе.

В математике доказывается, что функция раскладывается в бесконечный ряд:

(1)

Где - функция Бесселя первого рода целого порядка аргумента , - мнимая единица. Аналогично функция представляется рядом:

Вспомним из теории комплексных функций что:

Где - модулирующий сигнал, - индекс фазовой модуляции, - несущая частота, - случайная начальная фаза несущего колебания. Рассмотрим случай однотональной фазовой модуляции, когда где - частота модулирующего сигнала, - начальная фаза модулирующего сигнала. Тогда

Разложим на три суммы:

Возьмем теперь реальную часть:

(12)

Анализ спектра сигнала с однотональной угловой модуляцией

Теперь разбираемся. Спектр бесконечен и состоит из гармоник кратных частоте модулирующего сигнала вправо и влево от центральной частоты. Амплитуды гармоник зависят от индекса модуляции . При этом пять слагаемых показывают поведение спектра.

Первое слагаемое показывает, что амплитуды четных гармоник ниже центральной частоты равны , при этом фаза этих гармоник равна , при этом каждая четвертая гармоника, начиная со второй (2,6,10,14,18... гармоники) приобретает сдвиг на из-за множителя . Амплитудный и фазовый спектры для первого слагаемого сигнала представлены на рисунке 1 малиновым цветом.

Второе слагаемое показывает амплитуды и фазы нечетных гармоник ниже центральной частоты. Амплитуды нечетных гармоник ниже центральной частоты равны , а фазы . Сдвиг фазы на из-за того, что во вторую сумму входят синусы, а не косинусы. Как и в первом слагаемом каждая четвертая гармоника, начиная с первой (1,5,9,13,17...) приобретает сдвиг на из-за множителя . Амплитудный и фазовый спектры для второго слагаемого сигнала представлены на рисунке 1 синим цветом.

Третье слагаемое показывает гармонику несущей частоты. Ее амплитуда , фаза . На рисунке 1 гармоника центральной частоты — черная.

Четвертое слагаемое показывает амплитуды и фазы четных гармоник выше центральной частоты. Амплитуды такие же как и у четных гармоник ниже центральной частоты, а фазы равны , причем уже известный множитель сдвигает каждую четвертую фазу на , начиная со второй. На рисунке 1 гармоники четвертого слагаемого показаны красным цветом.

И наконец последнее пятое слагаемое соответствует нечетным гармоникам выше центральной. Амплитуды те же что и у нечетных гармоник ниже центральной частоты, фазы равны . Сдвиг фазы на из-за того, что в сумму входят синусы, а не косинусы, ну и конечно же каждая четвертая гармоника сдвинута на начиная с первой. На рисунке 1 гармоники пятого слагаемого показаны зеленым.


Рисунок 1: Амплитудный и фазовый спектры сигнала с фазовой модуляцией при m = 10

Несколько комментариев к рисунку 1. Полоса сигнала с угловой модуляцией по уровню 0,5 (-3 дБ) зависит от индекса модуляции и частоты модулирующего сигнала:

(13)

Где - девиация частоты. Чем выше частота модулирующего сигнала и чем выше индекс модуляции, тем полоса сигнала шире. Из рисунка 1 хорошо видно, что при ровно 10 гармоник справа и слева имеют амплитуду выше половины максимума. На фазовом спектре показаны параллельные прямые проведенные через фазовый спектр касающиеся каждую четвертую гармонику и показывающие сдвиг фаз при изменении номера гармоники. При этом необходимо отметить, что приведенный на рисунке 1 фазовый спектр не учитывается периодичность фазы. Фазовый спектр с учетом периодичности фазы представлен на рисунке 2.


Рисунок 2: Фазовый спектр с учетом периодичности фазы

При этом полученный спектр с однотональной фазовой модуляцией при частоте модулирующего сигнала и индексе модуляции соответствует спектру сигнала с однотональной частотной модуляцией при девиации частоты Таким образом, однотональная фазовая и частотная модуляции неотличимы. Различия будут наблюдаться если частота модулирующего сигнала будет меняться. Рассмотрим это на конкретном примере.

Пусть имеется модулирующий сигнал с частотой 10 кГц.

(14)

Рассмотрим два сигнала - PM сигнал и - FM сигнал. Девиацию фазы при PM зададим , девиацию частоты при FM зададим . Несущую частоту обоих сигналов зададим равной

Амплитудные спектры FM и PM сигналов при данных параметрах приведены на рисунке 3.


Рисунок 3: Спектры FM и PM сигналов при частоте модулирующего сигнала 10 кГц

Амплитудные спектры получились одинаковые, так как при заданных параметрах FM сигнала получаем девиацию фазы FM сигнала как у PM . Таким образом, получили сигналы в полосе 200 кГц с одинаковым количеством гармоник справа и слева от несущей .

Теперь уменьшим частоту модулирующего сигнала в 2 раза, то есть Несущую частоту, а также девиацию частоты и фазы не меняем. Амплитудные спектры в этом случае приведены на рисунке 4.


Рисунок 4: Спектры FM и PM сигналов при частоте модулирующего сигнала 5 кГц

Спектры изменились. Давайте разберемся. Шаг между гармониками уменьшился в 2 раза (по сравнению с рисунком 3), так как шаг между гармониками равен частоте модулирующего сигнала, а она уменьшилась в 2 раза.

Поскольку при FM задается девиация частоты, то полоса FM сигнала не изменилась по сравнению с полосой FM сигнала на рисунке 3. Поскольку девиация частоты и девиация фазы связаны соотношением то девиация фазы при FM выросла в 2 раза за счет уменьшения частоты модулирующего сигнала (девиация частоты при FM не может изменятся).

Действительно, количество гармоник в полосе сигнала FM увеличилось в 2 раза. В PM, наоборот, задается девиация фазы, то есть количество гармоник в спектре, поэтому при уменьшении расстояния между гармониками девиация частоты PM сигнала уменьшается, в данном случае в 2 раза по сравнению с рисунком 3. Спектр PM как бы сжался по оси частот, не изменив формы, а спектр FM наоборот приобретает больше гармоник. Если же еще уменьшить частоту модулирующего колебания например до 2 кГц, то спектр FM останется таким же широким, так как девиация частоты не изменилась, но будет еще более насыщен гармониками, так как девиация фазы будет равна спектр PM же еще более «сожмется» оставив тоже количество гармоник. Девиация частоты при PM будет всего В этом можно убедится рассмотрев рисунок 5.


Рисунок 5: Спектры FM и PM сигналов при частоте модулирующего сигнала 2 кГц

Общий случай спектра сигнала с угловой модуляцией

В случае однотональной угловой модуляции спектр сигнала симметричен, однако в общем случае спектр сигнала с угловой модуляцией не является симметричным. Симметричность спектра возникает в том случае, когда форма модулирующего сигнала сверху и снизу будет одинакова на рисунке приведен пример модулирующего сигнала, угловая модуляция которого приведет к несимметричному относительно центральной частоты спектру. В обоих случаях центральная частота равна 200кГц.



Рисунок 6: Несимметричный спектр FM и PM сигнала


Из рисунка явно видно, что спектры FM и PM сигналов несимметричны относительно 200 кГц, также формы спектров явно различаются. Несимметричность спектров сигналов с угловой модуляцией приводит к тому, что невозможно осуществить однополосную угловую модуляцию.

Выводы

Таким образом, мы получили аналитическое выражение для спектра сигнала с угловой модуляцией рассмотрели разницу FM и PM сигналов при изменении частоты модулирующего сигнала, а также показали несимметричность спектра сигнала с угловой модуляции при произвольном модулирующим сигнале.