Сайт о телевидении

Сайт о телевидении

» » Матрицы n го порядка. Перестановки и подстановки. Методы вычисления определителей n-го порядка

Матрицы n го порядка. Перестановки и подстановки. Методы вычисления определителей n-го порядка

Пусть дана матрица

Определение: Определителем n-го порядка называется алгебраическая сумма n! слагаемых, каждое из которых является произведением n сомножителей, взятых по одному из каждой строки и каждого столбца матрицы А. Знак перед слагаемым определяется по правилу знаков:

Определение: Пусть – произвольная перестановка чисел 1,2,3...n. Говорят, что элементы и образуют инверсию (нарушение порядка), если, а. Перестановка чисел 1,2,3...n называется четной, если число инверсий, образованных ее элементами, четно, в противном случае она называется нечетной.

Чтобы определить знак перед слагаемым, нужно расположить сомножители, в него входящие, в порядке возрастания первых индексов и рассмотреть перестановку, образованную вторыми индексами. Если эта перестановка четная, то ставим ²+², если нечетная, то ²–².

Определение: Рассмотрим перестановку:

Поменяем местами и, получим перестановку:

Говорят, что перестановка В получается из А транспозицией элементов и.

Утверждение: Всякая транспозиция меняет четность перестановки на противоположную.

Доказательство: Частный случай: транспозиция соседних элементов меняет четность перестановки.

Все элементы перестановок А и В, кроме и, образуют одни и те же инверсии. Элемент с элементами и в перестановках А и В образует одни и те же инверсии. Элемент с элементами и в перестановках А и В образует одни и те же инверсии. Если элементы и в перестановке А не образовывали инверсии, то в В – образуют, если в А – образовывали, то в В уже не будут образовывать. Таким образом, в результате транспозиции соседних элементов число инверсий либо увеличилось, либо уменьшилось на единицу. Четность поменялась.

Общий случай. Чтобы совершить транспозицию двух произвольных элементов перестановки, будем последовательно переставлять соседние элементы. Для того, чтобы поменять местами элементы и, сначала k раз меняем элемент с, ..., затем раз меняем до. Таким образом, перестановка совершается раз. Четность меняется на противоположную.

Утверждение: Рассмотрим все перестановки n символов 1,2,3,...,n. Число четных перестановок равно числу нечетных перестановок и равно .

Доказательство: Выпишем все четные перестановки и зададим отображение с нечетными по правилу:

Все перестановки являются нечетными согласно предыдущей теореме.

Указанное нами отображение является биекцией множества всех четных перестановок на множество всех нечетных перестановок, в самом деле, по указанному правилу каждой четной перестановке ставится в соответствие единственная нечетная, т.е. это отображение, очевидно, инъективно: . Указанное отображение сюрьективно, в самом деле, каждая нечетная перестановка В является образом той четной перестановки А, которая получается из В заменой в В местами первого и второго символов, следовательно, отображение биективно, следовательно, число четных перестановок равно числу нечетных равно.



Определение: Всякое биективное отображение множества на себя называется подстановкой.

Подстановку, заданную на множестве 1,2,3,...,n удобно записывать виде: или, где первая и вторая строчки – подстановки.

Подстановка определяется с точностью до расположения столбцов: если в подстановке поменять местами любые два столбца, то получится та же подстановка.

Определение: Подстановка называется четной, если перестановки, записанные в первой и второй строчках либо обе четные, либо обе нечетные. В противном случае подстановка называется нечетной. Четность подстановки не изменится, если поменять в ней любые два столбца, следовательно, число четных подстановок равно числу нечетных, равно.

Теперь правило знаков в определении определителя можно сформулировать так: – произведение n сомножителей, взятых по одному из различных строчек и различных столбцов. Рассмотрим подстановку. Если она четная, то перед слагаемым ставится знак ²+², если нечетная, то ²–².

Пример:

1) Пусть дана матрица, тогда через обозначим транспонированную матрицу:

Докажем, что определитель равен определителю А. ().

Доказательство: Рассмотрим слагаемое входящее в det A. Элемент а является произведением сомножителей, принадлежащих разным строкам и столбцам матрицы А, и, следовательно, разным строкам и столбцам матрицы, следовательно, каждый элемент является слагаемым и в и наоборот. Знак элемента а в определителе определяется четностью подстановки, а в – четностью подстановки. Но эти две подстановки одновременно либо четные либо нечетные.

2) Если в определителе все элементы какой-либо, скажем i-ой строки равны 0, то этот определитель равен 0.

Доказательство: В самом деле, по определению определителя все элементы нулевой строки будут входить в каждое слагаемое, из которых состоит определитель, следовательно, определитель есть сумма n! нулей.

3) Если в определителе поменять местами i и j строчки, то его значение изменится на противоположный.

В самом деле, пусть получена из матрицы а заменой двух строк: i и j. Все слагаемые вида входят и в определитель матрицы А и в определитель матрицы, знак перед этим слагаемым определяется с помощью подстановки: , а знак перед этим же слагаемым в определяется с помощью подстановки

Эти подстановки различной четности.

Библиография:

1. Воеводин В.В. Линейная алгебра. СПБ.: Лань, 2008, 416 с.

2. Беклемишев Д. В. Курс аналитической геометрии и линейной алгебры. М.: Физматлит, 2006, 304 с.

3.Кострикин А.И. Введение в алгебру. часть II. Основы алгебры: учебник для вузов, -М. : Физико-математическая литература, 2000, 368 с

Лекция №8 (2 семестр)

Тема: Ранг матрицы. Базисные строки – база векторов – строк. Определитель Грамма и линейная зависимость.

Определение: Дана матрица

Пусть в А выделены строчки с номерами и столбцы. Элементы, стоящие на пересечении выбранных столбцов и строк образуют матрицу k-того порядка. Определитель М этой матрицы называется минором k-того порядка. Если в матрице А вычеркнуты выбранные строки и столбцы, то оставшиеся элементы образуют матрицу n-k-того порядка. Определитель этой матрицы называется дополнительным минором к минору М.

Определение: Пусть выбраны строки с номерами и столбцы с номерами. Выражение называется алгебраическим дополнением минора М.

Теорема Лапласа: Пусть в квадратной матрице А выбраны k строк с номерами , где . Сумма произведений всевозможных миноров k-того порядка, расположенных в выбранных строках на их алгебраические дополнения равны определителю матрицы А.

ОПРЕДЕЛИТЕЛИ. МАТРИЦЫ

1. Понятие определителя n-го порядка.

2. Методы вычисления определителей 2-го и 3-го порядков.

3. Теорема Лапласа.

4. Матрицы и их виды. Действия над матрицами.

5. Обратная матрица.

6. Ранг матрицы.

1. Понятие определителя n-го порядка.

Определитель n-го порядка записывается в виде квадратной таблицы, содержащей n строк и n столбцов:

Числа а ij - элементы определителя, i – номер строки, j –номер столбца, n - порядок определителя.

Диагональ определителя, состоящая из элементов с одинаковыми индексами, называется главной , а другая называется побочной .

Определителем n-го порядка называется число, являющееся алгебраической суммой n! членов, каждый из которых есть произведение n элементов, взятых по одному из каждой строки и из каждого столбца, причем знак всякого члена определяется входящими в его состав элементами.

Основные свойства определителей n - го порядка.

1. При замене строк столбцами значение определителя не меняется.

2. При перестановке двух строк (столбцов) определитель меняет знак.

3. Если все элементы какой-нибудь строки (столбца) определителя равны нулю, то определитель равен нулю.

4. Если определитель имеет две одинаковые или пропорциональные строки (столбца), то такой определитель равен нулю.

5. Общий множитель всех элементов строки (столбца) можно выносить за знак определителя.

6. Значение определителя не изменится, если к элементам какой-нибудь строки (столбца) добавить элементы другой строки (столбца), умноженные на одно и то же число.

7. Если элементы какой-нибудь строки (столбца) являются линейной комбинацией соответствующих элементов двух (или нескольких) других строк (столбцов), то такой определитель равен нулю.

2. Методы вычисления определителей 2-го и 3-го порядков.

Величину называют определителем (детерминантом) второго порядка и обозначают .

Таким образом,

Определителем третьего порядка называют величину

Эта формула называется правилом Сарруса (правило «треугольников») для вычисления определителей 3-го порядка. Для лучшего запоминания формулы можно составить таблицу Сарруса, добавив к определителю первый и второй столбцы. Тогда все члены будут представлять собой произведение элементов по диагоналям.

Примеры: Вычислить определители:

а)

3. Теорема Лапласа.

Вычисление определителей более высоких порядков непосредственно весьма сложно, поэтому для их вычисления используют свойства определителей, а также теорему Лапласа, позволяющую понижать порядок данного определителя.

Пусть дан определитель:

Вычеркнем в этом определителе i-ую строку и j-ый столбец, на пересечении которых находится элемент а ij . Тогда получим определитель M ij

(n-1) – го порядка, который называют минором элемента а ij .

Алгебраическим дополнением А ij элемента а ij называют минор этого элемента, взятый со знаком (+), если сумма индексов i+j – четное число, и со знаком (-), если эта сумма – число нечетное, т.е.

А ij = (-1) i + j M ij

Пример. Дан определитель третьего порядка

Найти минор и алгебраическое дополнение элемента а 32 .

Решение. ,

Теорема Лапласа: Сумма произведений элементов какой-нибудь строки (столбца) на их соответствующие алгебраические дополнения равна определителю, т.е.

Эта теорема дает возможность разложить определитель по элементам какой-нибудь строки или столбца и свести его вычисление к вычислению определителей более низкого порядка. При этом вычисление определителя значительно упрощается, если среди элементов некоторой строки (столбца) имеются нули.

4. Матрицы и их виды. Действия над матрицами.

Матрицей размерности kxn называется прямоугольная таблица чисел:

.

Числа а ij называются ее элементами. В компактном виде матрицу можно записать:, i=1, …, k, j=1, …, n. Матрицы обозначаются заглавными буквами А,В,С, …, элементы матрицы – строчными буквами с двойной индексацией.

Виды матриц.

Матрица называется квадратной n -го порядка , если число строк равно числу столбцов и равно n.

Матрица, состоящая из одной строки, называется матрицей-строкой .

Матрица, состоящая из одного столбца, называется матрицей-столбцом.

Если в матрице А переставить строки и столбцы местами, то получим новую матрицу А Т транспонированную к матрице А:

Матрица, у которой все элементы равны 0, называется нулевой.

Квадратная матрица, у которой элементы вдоль главной диагонали равны 1, а остальные – нули, называется единичной матрицей. Она обозначается буквой Е.

Квадратная матрица n-го порядка называется вырожденной (особенной) , если определитель n-го порядка, составленный из ее элементов, равен нулю. Если же этот определитель отличен от нуля, то матрица называется невырожденной (неособенной).

Две матрицы называются равными , если соответствующие элементы их тождественно равны.

Действия над матрицами.

1. Сложение (вычитание) матриц .

Две матрицы одинаковой размерности, т.е. матрицы, имеющие одно и то же число строк и одно и то же число столбцов, можно сложить (вычесть). При этом под суммой (разностью) двух матриц понимают новую матрицу, элементы которой равны сумме (разности) соответствующих элементов данных матриц.

2. Умножение матрицы на число.

Чтобы умножить матрицу на число, нужно каждый элемент данной матрицы умножить на это число.

3. Умножение матриц.

Две матрицы можно перемножить только тогда, когда число столбцов первой матрицы совпадает с числом строк второй матрицы .

Произведением матрицы А на матрицу В называется новая матрица С, у которой элемент с ijj , стоящий на пересечении i-ой строки и j-го столбца, равен сумме произведений элементов i-ой строки матрицы А на элементы j-го столбца матрицы В. Матрица С имеет столько строк, сколько матрица А, и столько столбцов, сколько матрица В. Правило умножения матриц называют « строка на столбец ».

Замечание : операция умножения матриц в общем случае не перестановочна , т.е. АВ ≠ ВА.

Пример. Найти произведение матриц А и В: С=АВ,

где, .

Рассмотрим квадратную таблицу А.

Определение. Определителем n-го порядка называется число, полученное из элементов данной таблицы по следующему правилу:

1 .Определитель n-го порядка равен алгебраической сумме n! членов.

Каждый член представляет собой произведение n-элементов взятых по одному из каждой строки и каждого столбца таблицы.

2 .Член берется со знаком плюс, если перестановки образованные первыми и вторыми индексами элементов , входящие в произведения одинаковой четности (либо обе четные, либо нечетные) и со знаком минус в противоположном случае.

Определитель обозначается символом:

или краткоdet A=.(детерминант А)

Согласно определению = -.

Правило вычисления определителя 3ого порядка:

=

Миноры и алгебраические дополнения

Пусть дан определитель n-го порядка (n>1)

Определение 1. Минором элементаопределителяn-го порядка называется определитель (n-1)-ого порядка полученный из А вычеркиванием i-й строки и j-го столбца, на пересечении которых стоит данный элемент .

Например:

=

Определение 2 . Алгебраическим дополнением элемента называется число

Основные свойства определителей n-го порядка

1.О равносильности строк и столбцов.

Величина определителя n-го порядка не меняется, если у него заменить строки соответствующими столбцами.

2.Если у определителей поменять местами две строки (столбца), то определитель изменит знак на противоположный.

= k

Если все элементы какой-либо строки (или столбца) определителя имеют общий множитель, то этот общий множитель можно вынести за знак определителя.

4.Величина определителя равна нулю, если все элементы какой-либо его строки нули (или столбца).

5.Определитель с двумя пропорциональными строками равен 0.

Например:

6.Величина определителя не изменится, если к его элементам какой-либо строки прибавить соответствующие элементы другой строки, умноженные на одно и то же число.

7.Если элементы какой-либо строки i определителя представлены в виде суммы двух слагаемых, то определитель равен сумме двух определителей, в которых все строки кроме i-й такие же, как в заданном определителе, а i-я строка одного определителя состоит из первых слагаемых, а второго из вторых.

8.Определитель равен сумме произведений всех элементов какой-либо его строки на их алгебраические дополнения.

=

9.Сумма произведений всех элементов какой-либо строки определителя на алгебраические дополнения соответствующих элементов другой строки равна нулю.

Например:

=

Теорема Лапласа

Теорема. Пусть в определителе d порядка n произвольно выбраны k строк (или k столбцов), 1.Тогда сумма произведений всех миноровk-го порядка, содержащихся в выбранных строках, на их алгебраические дополнения равна определителю d.

Следствие . Частный случай теоремы Лапласа - разложение определителя по строке или столбцу. Он позволяет представить определитель квадратной матрицы в виде суммы произведений элементов любой её строки или столбца на их алгебраические дополнения.

Пусть - квадратная матрица размера . Пусть также задан некоторый номер строки i либо номер столбца j матрицы A. Тогда определитель A может быть вычислен по следующим формулам:

Разложение по i-й строке:

Разложение по j-й строке:

где - алгебраическое дополнение к минору, расположенному в строке с номером i и столбце с номером j.

Утверждение является частным случаем теоремы Лапласа. Достаточно в ней положить k равным 1 и выбрать -ую строку, тогда минорами, расположенными в этой строке будут сами элементы.

Примеры для самостоятельного решения .

1.Найти х из уравнений и проверить подстановкой корень в определитель.

а); б)

Рассмотрим квадратную матрицу второго порядка

Определение . Определителем квадратной матрицы второго порядка называют число, равное a 11 a 22 -a 12 a 21 и обозначают символом , то есть

Определитель матрицы называется также детерминантом . Обозначения определителя матрицы A : |A |, Δ, det A , det(a ij) .

Теперь рассмотрим квадратную матрицу третьего порядка

При вычислении определителя третьего порядка полезно знать правило треугольника: со знаком плюс идут произведения троек чисел, расположенных на главной диагонали матрицы, и в вершинах треугольников с основанием параллельным этой диагонали и вершиной в противоположого угла матрицы. Со знаком минус идут тройки из второй диагонали и из треугольноков, построенных относительно этой диагонали. Следующая схема демонстрирует это правило. В схеме синим (слева) отмечены элементы, чьи произведения идут со знаком плюс, а красным (справа) - со знаком минус.

Теперь дадим определение.

Определение . Определителем квадратной матрицы третьего порядка называют число

Определение . Минором какого-либо элемента определителя называется определитель, полученный из данного вычеркиванием той строки и того столбца, к которым принадлежит данный элемент. Минор элемента a ik обозначим M ik .

Определение . Минор элемента a 21 определителя третьего порядка матрицы является определитель второго порядка

Определение a ik определителя называется его минор, взятый со знаком (-1) i+k .

Алгебраическое дополнение элемента a ik обозначим A ik . По определению

Правило для определения знака алгебраического дополнения (на примере определителя третьего порядка):

Пример . Алгебраическим дополнением элемента a 21 является

Теорема разложения . Определитель равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения.

Свойства определителей

  • Определитель не изменится при замене всех его строк соответствующими столбцами.
  • При перестановке двух столбцов (строк) определитель меняет знак.
  • Определитель с двумя одинаковыми столбцами (строками) равен нулю.
  • Множитель, общий для элементов некоторого столбца (строки), можно выносить за знак определителя.
  • Определитель с двумя пропорциональными столбцами (строками) равен нулю.
  • Определитель равен нулю, если все элементы некоторого столбца (строки) равны нулю.
  • Определитель не изменится, если к элементам некоторого столбца (строки) прибавить соответствующие элементы другого столбца (строки), предварительно умножив их на один и тот же множитель.

Замечание . Если в определителе все элементы некоторого столбца (строки) равны суммам двух слагаемых, то такой определитель равен сумме двух соответствующих определителей.

Например,

Определители n -го порядка

Рассмотрим квадратную матрицу n -го порядка

Понятие определителя этой матрицы или определителя n -го порядка вводится индуктивно, считая, что уже введено понятие определителя порядка n-1 , соответствующего квадратной матрице (n-1) -го порядка.

Определение минора элемента матрицы и его алгебраического дополнения верны для определителей любого порядка.

Определение . Определителем порядка n , соответствующим матрице A n -го порядка, называют число, равное (M 1k - минор элемента a 1k ) и обозначаемое одним из символов

Итак, по определению

Эта формула выражает правило составления определителя порядка n по элементам первой строки соответствующей ему матрицы и по алгебраическим дополнениям этих элементов, являющимся определителем порядка n-1 , взятыми с надлежащими знаками.

Для определителя любого порядка верны все свойства и теоремы, полученные и доказанные для определителя третьего порядка.

Сформулируем основную теорему:

Теорема [Теорема замещения] . Каков бы ни был номер строки i (i=1,2,…,n ), для определителя n -го порядка справедлива формула

называемая разложением этого определителя по i -й строке.

Поскольку верно свойство 1 определителей, то определитель также можем разложить и по столбцу:

Примеры

Вычислим следующий определитель:

Вычтем вторую строку из первой и третьей. После прибавим к третей первую и из третей вынесем общий множитель:

Теперь ко второй строке прибавим третью, умноженную на 7, и к четвертой прибавим третью, умноженную на 2. После вынесем общий множитель из четвертой строки:

Разложим определитель по второму столбцу (знаки указывают значение (-1) i+j при миноре). Заметим, что в столбце только один ненулевой элемент, следовательно, в разложении останется только один определитель третьего порядка. Окончательно пулучаем ответ использую формулу для определителя третьего порядка.

Приведем еще несколько примеров для определителей различных порядков.

ортогональный унитарный матрица полилинейный

Вычисление определителей 2-го и 3-го порядка.

Получим формулы вычисления определителей второго и третьего порядков. По определению при

При вычеркивании первой строки и одного столбца получаем матрицу, содержащую один элемент, поэтому

Подставляя эти значения в правую часть, получаем формулу вычисления определителя второго порядка

Определитель второго порядка равен разности произведения элементов, стоящих на главной диагонали, и произведения элементов, стоящих на побочной диагонали (рис.2.1).

Для определителя третьего порядка имеем

При вычеркивании первой строки и одного столбца получаем определители квадратных матриц второго порядка:

Эти определители второго порядка записываем по формуле (2.2) и получаем формулу вычисления определителя третьего порядка


Определитель (2.3) представляет собой сумму шести слагаемых, каждое из которых есть произведение трех элементов определителя, стоящих в разных строках и разных столбцах. Причем три слагаемых берутся со знаком плюс, а три других -- со знаком минус.

Для запоминания формулы (2.3) используется правило треугольников: надо сложить три произведения трех элементов, стоящих на главной диагонали и в вершинах двух треугольников, имеющих сторону, параллельную главной диагонали (рис. 2.2,а), и вычесть три произведения элементов, стоящих на побочной диагонали и в вершинах двух треугольников, имеющих сторону, параллельную побочной диагонали (рис. 2.2,6).

Можно также пользоваться схемой вычисления, изображенной на рис. 2.3 (правило Саррюса): к матрице приписать справа первый и второй столбцы, вычислить произведения элементов, стоящих на каждой из указанных шести прямых, а затем найти алгебраическую сумму этих произведений, при этом произведение элементов на прямых, параллельных главной диагонали, берутся со знаком плюс, а произведение элементов на прямых, параллельных побочной диагонали, -- со знаком минус (согласно обозначениям на рис. 2.3).

Вычисление определителей порядка N>3.

Итак, получены формулы для вычисления определителей второго и третьего порядков. Можно продолжить вычисления по формуле (2.1) для и получить формулы для вычисления определителей четвертого, пятого и т.д. порядков. Следовательно, индуктивное определение позволяет вычислить определитель любого порядка. Другое дело, что формулы будут громоздкими и неудобными при практических вычислениях. Поэтому определители высокого порядка (четвертого и более), как правило, вычисляют на основании свойств определителей.

Пример 2.1. Вычислить определители

Решение. По формулам (2.2) и (2.3) находим;

Формула разложения определителя по элементам строки (столбца)

Пусть дана квадратная матрица порядка.

Дополнительным минором элемента называется определитель матрицы порядка, полученной из матрицы вычеркиванием i-й строки и j-го столбца.

Алгебраическим дополнением элемента матрицы называется дополнительный минор этого элемента, умноженный на

Теорема 2.1 формула разложения определителя по элементам строки (столбца). Определитель матрицы равен сумме произведений элементов произвольной строки (столбца) на их алгебраические дополнения:

(разложение по i-й строке);

(разложение по j-му столбцу).

Замечания 2.1.

1. Доказательство формулы проводится методом математической индукции.

2. При индуктивном определении (2.1) фактически использована формула разложения определителя по элементам первой строки.

Пример 2.2. Найти определитель матрицы

Решение. Разложим определитель по 3-й строке:

Теперь разложим определитель третьего порядка по последнему столбцу:

Определитель второго порядка вычисляем по формуле (2.2):

Определитель матрицы треугольного вида

Применим формулу разложения для нахождения определителя верхней треугольной матрицы

Разложим определитель по последней строке (по n-й строке):

где -- дополнительный минор элемента. Обозначим. Тогда. Заметим, что при вычеркивании последней строки и последнего столбца определителя, получаем определитель верхней треугольной матрицы такого же вида, как, но (n-1)-го порядка. Раскладывая определитель, по последней строке ((n-1)-й строке), получаем. Продолжая аналогичным образом и учитывая, что, приходим к формулет.е. определитель верхней треугольной матрицы равен произведению элементов, стоящих на главной диагонали.

Замечания 2.2

1. Определитель нижней треугольной матрицы равен произведению элементов, стоящих на главной диагонали.

2. Определитель единичной матрицы равен 1.

3. Определитель матрицы треугольного вида будем называть определителем треугольного вида. Как показано выше, определитель треугольного вида (определитель верхней или нижней треугольной матрицы, в частности, диагональной) равен произведению элементов, стоящих на главной диагонали.

Основные свойства определителей (детерминантов)

1. Для любой квадратной матрицы, т.е. при транспонировании определитель не изменяется. Из этого свойства следует, что столбцы и строки определителя "равноправны": любое свойство, верное для столбцов, будет верным для строк.

2. Если в определителе один из столбцов нулевой (все элементы столбца равны нулю), то определитель равен нулю:.

3. При перестановке двух столбцов определитель меняет знак на противоположный (свойство антисимметричности):

4. Если в определителе имеется два одинаковых столбца, то он равен нулю:

5. Если определитель имеет два пропорциональных столбца, то он равен нулю:

6. При умножении всех элементов одного столбца определителя на число определитель умножается на это число:

7. Если j-й столбец определителя представляется в виде суммы двух столбцов, то определитель равен сумме двух определителей, у которых j-ми столбцами являются и соответственно, а остальные столбцы одинаковы:

8. Определитель линеен по любому столбцу:

9. Определитель не изменится, если к элементам одного столбца прибавить соответствующие элементы другого столбца, умноженные на одно и тоже число:

10. Сумма произведений элементов какого-либо столбца определителя на алгебраические дополнения соответствующих элементов другого столбца равна нулю:

Замечания 2.3

1. Первое свойство определителя доказывается по индукции. Доказательства остальных свойств проводятся с использованием формулы разложения определителя по элементам столбца. Например, для доказательства второго свойства достаточно разложить определитель по элементам нулевого столбца (предположим, что j-й столбец нулевой, т.е.):

Для доказательства свойства 10 нужно прочитать формулу разложения определителя справа налево, а именно, сумму произведений элементов i-го столбца на алгебраические дополнения элементов j-го столбца представить как разложение по j-му столбцу определителя


у которого на месте элементов j-ro столбца стоят соответствующие элементы i-го столбца. Согласно четвертому свойству такой определитель равен нулю.

2. Из первого свойства следует, что все свойства 2-10, сформулированные для столбцов определителя, будут справедливы и для его строк.

3. По формулам разложения определителя по элементам строки (столбца) и свойству 10 заключаем, что

4. Пусть -- квадратная матрица. Квадратная матрица того же порядка, что и, называется присоединенной по отношению к, если каждый ее элемент равен алгебраическому дополнению элемента матрицы. Иными словами, для нахождения присоединенной матрицы следует:

а) заменить каждый элемент матрицы его алгебраическим дополнением, при этом получим матрицу;

б) найти присоединенную матрицу, транспонируя матрицу.

Из формул (2.4) следует, что, где -- единичная матрица того же порядка, что и.

Пример 2.5. Найти определитель блочно-диагональной матрицы, где -- произвольная квадратная матрица, -- единичная, а -- нулевая матрица соответствующего порядка, -- транспонированная.

Решение. Разложим определитель по последнему столбцу. Так как в этом столбце все элементы нулевые, за исключением последнего, равного 1, получим определитель такого же вида, что и исходный, но меньшего порядка. Раскладывая полученный определитель по последнему столбцу, уменьшаем его порядок. Продолжая таким же образом, получаем определитель матрицы. Следовательно,