Сайт о телевидении

Сайт о телевидении

» » Лингвистические переменные. Нечеткие и лингвистические переменные

Лингвистические переменные. Нечеткие и лингвистические переменные

2.9.1. Определение. Методами теории нечетких множеств описывают смысловые понятия, например, для понятия «надежность работы узла» можно определить такие составляющие, как «небольшая величина надежности узла», «средняя величина надежности узла», «большая величина надежности узла», которые задаются как нечеткие множества на базовом множестве, определяемом всеми возможными значениями величин надежности.

Обобщением описания лингвистических переменных с формальной точки зрения является введение нечетких и лингвистических переменных .

Нечеткой переменной называется тройка множеств , где a - наименование нечеткой переменной, X - область определения, - нечеткое подмножество в множестве X, описывающее ограничения на возможные значения переменной a .

Лингвистической переменной называется набор множеств , где b - название лингвистической переменной, T(b) – множество лингвистических (вербальных) значений переменной b , называемое еще терм-множеством лингвистической переменной, X - область определения, G - синтаксическое правило, имеющее форму грамматики, порождающее наименования aÎT(b) вербальных значений лингвистических переменных b , М - семантическре правило, которое ставит в соответствие каждой нечеткой переменной a нечеткое множество, - смысл нечеткой переменной a .

Из определения следует, что лингвистической переменной называется переменная, заданная на количественной (измеряемой) шкале и принимающая значения, являющиеся словами или словосочетаниями естественного языка общения. Нечеткие переменные описывают значения лингвистической переменной. На рис. 2.20 показана взаимосвязь основных понятий.

Таким образом, лингвистическими переменными можно описать трудноформализуемые понятия в виде качественного, словесного описания. Лингвистическая переменная и все ее значения связываются при описании с конкретной количественной шкалой, которая по аналогии с базовым множеством иногда называется базовой шкалой.



Применяя лингвистические переменные, можно формализовать качественную информацию в системах управления, которая специалистами (экспертами) формулируется в словесной форме. Это позволяет строить нечеткие модели систем управления (нечеткие регуляторы).

2.9.2. Вид функций принадлежности. Рассмотрим требования, которые выдвигаются к виду функций принадлежности нечетких множеств, описывающих термы лингвистических переменных.

Пусть лингвистическая переменная содержит базовое терм-множество T={T i }, . Нечеткая переменная, соответствующая терму T i , задана множеством , где нечеткое множество . Определим множество С i как носитель нечеткого множества . Будем считать, что XÍR 1 , где R 1 - упорядоченное множество действительных чисел. Обозначим нижнюю границу множества X через infX=x 1 , а верхнюю границу - supX=x 2 .

Множество T упорядочим согласно выражению

"T i ,T j ÎT i>j«($xÎC i)("yÎC j)(x>y). (2.5)

Выражение (2.5) требует, чтобы терм, который имеет носитель, расположенный левее, получил меньший номер. Тогда терм-множество всякой лингвистической переменной должно удовлетворять условиям:

("T i ÎT)($xÎX)( ); (2.8)

("b)($x 1 ÎR 1)($x 2 ÎR 2)("xÎX)(x 1 . (2.9)

Условие (2.6) требует, чтобы значения функций принадлежности крайних термов (T 1 и T 2) в точках x 1 и x 2 соответственно равнялись единице и чтобы не допускался вид колоколобразных кривых, как это показано на рис. 2.21.

Рис.2.21

Условие (2.7) запрещает в базовом множестве X пар термов типа T 1 и T 2 , T 2 и T 3 . Для пары T 1 и T 2 отсутствует естественная разграниченность понятий. Для пары T 2 и T 3 отрезку не соответствует никакое понятие. Условие (2.7) запрещает существование термов типа T 4 , поскольку каждое понятие имеет по крайней мере один типичный объект. Условие (2.8) определяет физическое ограничение (в рамках задачи) на числовые значения параметров.

На рис. 2.22 приведен пример задания функций принадлежности термов «малое значение цены», «небольшое значение цены», «среднее значение цены», «достаточно большое значение цены», «большое значение цены» лингвистической переменной «цена товара».

2.9.3. Универсальные шкалы . Функции принадлежности строятся по результатам опросов экспертов. Однако порядок использования нечетких множеств, построенных по результатам опроса экспертов, имеет недостаток, который заключается в том, что изменение условий функционирования модели (объекта) требует корректировки нечетких множеств. Корректировка может быть осуществлена по результатам повторного опроса экспертов.

Одним из путей преодоления данного недостатка является переход к универсальным шкалам измерения значений оцениваемых параметров. Известная методика построения универсальных шкал предполагает описание частоты явлений и процессов, которая на качественном уровне в естественном языке определяется следующими словами и словосочетаниями: «никогда», «чрезвычайно редко», «редко», «ни редко ни часто», «часто», «очень часто», «почти всегда» (или им подобными). Человек этими понятиями пользуется для оценки субъективных частостей событий (отношение числа событий, характеризованных понятием, к общему числу событий).

Универсальная шкала строится на отрезке и представляет собой ряд пересекающихся колоколообразных кривых, соответствующих шкалируемым частотным оценкам. Универсальную шкалу лингвистической переменной для заданного оцениваемого параметра объекта управления строят по следующей процедуре.

1. По данным экспертного опроса определяется минимальное x min и максимальное x max значения переменной шкалы X .

2. Строятся по результатам экспертного опроса функции принадлежности нечетких множеств, описывающих значения лингвистической переменной, определенной на шкале X . На рис. 2.23 показан пример построения функций принадлежности , где a 1 , a 2 , a 3 - некоторые названия нечетких переменных.

3. Точки (x min ,0) и (x max ,1) соединяются прямой линией p 0 , которая является функцией отображения p 0:X® .

4. Переход от шкалы относительных частот появления событий к частотным оценкам, называемым квантификаторами, происходит следующим образом.

Для произвольной точки z на универсальной шкале строится ее прообраз на шкале X . Затем по функциям принадлежности нечетких множеств, соответствующих термам a 1 , a 2 , a 3 , определяются значения , которые принимаются в качестве значений соответствующих функций принадлежности в точке z на универсальной шкале . Функция p (p=p 0 в рассмотренном примере) определяется экспертным опросом, т.к. ее выбор влияет на адекватность модели исследуемому объекту.

2.9.4. Множественные функции отображения . Однозначное определение функции отображения p ограничивают возможности одновременного учета разных критериев в системе управления, которые могут даже находиться в антогонизме по отношению друг к другу, а также возможность одновременного учета различных условий управления, определяемых свойствами управляемого объекта.

Учет различных условий и критериев определяется субъективным подходом к решению задачи. Если же принять функцию отображения однозначного вида, то тем самым различные точки зрения будут сведены к «общему знаменателю» или фактически отвергнуты. Практика показывает, что при управлении трудноформализуемыми процессами учет всех вариантов субъективного воззрения повышает качество управления, увеличивая устойчивость к различного рода возмущениям. Однако следует заметить, что почти никогда не удается учесть в людях все условия, влияющие на выбор управления, и все характеристики объекта. Рассмотрим, как осуществляется формализованный учет условий управления при опросе экспертов в виде множественных функций отображения.

Пусть по опросам экспертов количественно и качественно определен состав состояний исследуемого объекта. Оценка состояний объекта производится по значениям признаков y i ÎY={y 1 ,y 2 ,…,y p } .

Все учесть невозможно, поэтому при оценке состояний лучше использовать нечеткие категории, а нечеткие определения значений параметров следует производить с известной степенью неуверенности в правильности определений. Действительно, всегда можно предположить, что есть некоторое множество признаков , не указанных экспертами по разным причинам: про них забыли; эксперты считают, что эти признаки не влияют на точность; эти параметры нельзя оценить, следствие сложностей технического характера.

Функциям отображения p i ÎP={p 1 ,p 2 ,…,p b } сопоставляются степени уверенности b(p i)Î , которые задаются экспертами. Также каждой функции отображения p i сопоставляется вес a(p i) , который соответствует уровню компетентности эксперта. Значения весов a(p i) определяются числами отрезка . Таким образом, множественная функция отображения P={p 1 ,p 2 ,…,p b } состоит из набора функций отображений p i , каждой из которых ставится в соответствие степень g(p i) , определяемая как конъюнкция степеней компетентности и уверенности в правильном определении функций отображения p i , т.е. g(p i) =a(p i)&b(p i) .

Практическое использование множественных функций показало, что в пределах определенной компетентности экспертов построенная множественная функция отображения хорошо согласуется с их индивидуальными мнениями о наиболее правдоподобном соответствии нечетких понятий точкам предметной шкалы X .


НЕЧЕТКАЯ ЛОГИКА

Нечеткая операция «И»

Задание нечетких множеств позволяет обобщить четкие логические операции в их нечеткие аналоги. Нечетким расширением операции «И» является триангулярная норма Т , Другим название T –нормы яляется S –конорма. На рис. 3.1 приведено схемотехническое предствление T –нормы.

Нечеткая операция «И» в общей форме определяется как отображение:

для которых выполняются аксиомы:

Аксиомы граничных условий T –нормы:

Аксиома упорядоченности:

В теории нечетких множеств существует бесчисленное количество нечетких операций «И», которые определяются способами задания операции (Т) при выполнении условий (3.1) - (3.2). В теории нечеткого управления применимы следующие способы задания операции (Т), перечисленные ниже.

Логическое произведение [Заде, 1973 г.]:

, "xÎR . (3.6)

Алгебраическое произведение [Бандлер, Кохоут, 1980 г.]:

, "xÎR , (3.7)

где «.» - произведение, принятое в классической алгебре.

Граничное произведение [Лукашевич, Гилес, 1976 г.]:

, (3.8)

где - символ граничного произведения.

Сильное, или драстическое (drastic), произведение [Вебер, 1983 г.]:

(3.9)

где D - символ сильного произведения.

На рис. 3.2 показана функция принадлежности при логическом, алгебраическом, граничном и сильном произведении нечетких множеств.

Нечеткая операция «ИЛИ»

Нечетким расширением операции «ИЛИ» является S –норма. Иногда применяют название T –конорма. На рис. 3.3 приведено схемотехническое предствление S –нормы.

Нечеткая операция «ИЛИ» определяется как отображение

для которого выполняются отображения:

Аксиомы граничных условий T –нормы:

, ; (3.10)

Аксиомы объединения (перечечения):

Аксиома упорядоченности:

Из бесконечного числа нечетких операций, удовлетворяющих аксиомам (3.10) – (3.14), в теории управления нашли применением следующие операции, перечисленные ниже.

Логическая сумма [Заде, 1973 г.]:

, "xÎR . (3.15)

Алгебраическая сумма [Бандлер и Кохоут, 1980 г.]:

, "xÎR , (3.16)

Граничная сумма [Лукашевич, Гилес, 1976 г.]:

, (3.17)

Сильная, или драстическое (drastic), сумма [Вебер, 1983 г.]:

(3.18)

Сравнение аксиом T –нормы с аксиомами S –нормы показывает, что различие в них состоит только в аксиомах граничных условий.

На рис. 3.4 показана функция принадлежности при логической, алгебраической, граничной и сильной сумме нечетких множеств.

Нечеткая операция «НЕ»

Операция нечеткого «НЕ» определяется как отображение , для которого выполняются аксиомы:

Множество отображений, удовлетворяющих аксиомам (3.19) – (3.21), являются нечетким отрицанием. Операция нечеткого отрицания в виде схемы показана на рис. 3.5.

Из бесконечного числа нечетких операций «НЕ», удовлетворяющих аксиомам (3.19) – (3.21), в теории управления нашли применение следующие операции, перечисленные ниже.

Нечеткое «НЕ» по Заде (1973) определяется как вычитание из единицы:

. (3.22)

Нечеткое «НЕ» по Сугено (1977) или l-дополнение определяется в виде формулы

. (3.23)

При l=0 уравнение (3.23) совпадает с уравнением (3.22).

Нечеткое «НЕ» по Ягеру (1980) определяется в виде формулы:

, (3.24)

где p>0 – параметр. При p=1 уравнение (3.24) совпадает с уравнением (3.22).

Для Т- норм и S- норм могут существовать различные варианты отрицаний из-за бесконечного числа возможных нечетких операций «НЕ». Однако, желательно выбирать такие варианты отрицаний, которые удовлетворяют условиям:

Эти условия по аналогии с четкой логикой называют нечеткими законами де Моргана. Операции (3.25) и (3.26) называют взаимно дуальными, т.к. в теории нечетких множеств доказывается, что из (3.25) следует (3.26) и, наоборот, из (3.26) следует (3.25).

Взаимно дуальными являются также следующие нечеткие операции:

; (3.29)

Алгебра нечетких выводов

3.4.1. База нечетких правил. В нечеткой логике существует понятие нечеткого предложения (fuzzy proposition). Нечеткое предложение определяется в виде высказывания « ». Символ «x » обозначает физическую величину (ток, напряжение, давление, скорость и прочее), символ « » обозначает лингвистическую переменную (ЛП), а символ «p » - аббревиатура proposition – предложение. Например, в высказывании «величина тока есть большая» физической переменной x является «величина тока», которая может быть измерена датчиком тока. Нечеткое множество определено ЛП «большая» и формализовано функцией принадлежности m А (х) . Связке «есть» соответствует операция упорядоченности в виде равенства, которая обозначается символом «=». Получает формализованный вид предложение « » .

Нечеткое предложение может состоять из нескольких отдельных нечетких предложений, соединенных между собой связками «И», «ИЛИ». Выбор логических связок «И», «ИЛИ» от смысла и контекста предложений, от взаимосвязи между ними. Отметим, что операции нечеткого «И» и «ИЛИ» по Заде (формулы (3.6) и (3.15)) в теории управления предпочтительны по отношению к остальным, т.к. они не имеют избыточности. Когда нечеткие предложения не являются эквивалентными, но коррелированны и взаимосвязаны, то возможно применение Т- норм и S- норм по Лукашевичу (формулы (3.8) и (3.17)).

Предложение p может быть представлено как нечеткое отношение Р с функцией принадлежности: . Для составления нечеткого предложения, состоящего из нескольких отдельных нечетких предложений, соединенных между собой связками «И», используют индикатор «если». В результате получаем систему условных нечетких высказываний:

.

Нечеткие предложения называютусловиями или предпосылками .

Множество условий позволяет построить множество выводов или заключений . В этом случае применяют индикатор «тогда».

Продукционное нечеткое правило (fuzzy rule) – это совокупность условий и выводов:

R 1: если x 1 = и x 2 = и …, тогда y 1 = и y 2 = и …

……………………………………………………………,

где символ R 1 – аббревиатура «rule» - правило.

Например , правило при управлении температурой воды сформулировано в следующем виде: «R 1 : если температура воды есть холодная и температура воздуха есть холодная, тогда проверни вентиль горячей воды влево на большой угол и вентиль холодной воды вправо на большой угол».

Нечеткие условия для решения задачи:

-x 1 - температура воды (измеряется датчиком); - холодная;

-x 2 - температура воздуха (измеряется датчиком); - холодная;

Нечеткие условия вывода:

-y 1 - угол поворота вентиля влево, - большой;

-y 2 - угол поворота вентиля вправо, – большой.

Данному лингвистическому нечеткому правилу соответствует формализованная запись:

R 1: если x 1 = и x 2 = , тогда y 1 = и y 2 = , (3.31)

где , , и – нечеткие множества, заданные функциями принадлежности.

Совокупность нечетких продукционных правил образует базу нечетких правил , где R i: если …, тогда …; . Для базы нечетких правил справедливы следующие свойства: непрерывность, непротиворечивость, полнота.

Непрерывность определена понятиями: упорядоченная совокупность нечетких множеств; прилегающие нечеткие множества.

Совокупность нечетких множеств {A i } называется упорядоченной , если для них задано отношение порядка: «<»:A 1 <…

Если совокупность нечетких множеств { } упорядочена, то множества и , и называются прилегающими при условии, что эти нечеткие множества являются перекрывающимися.

База нечетких правил называется непрерывной , если для правил

R k: если x 1 = и x 2 = , тогда y= и k’¹k

выполнены условия:

Ù и являются прилегающими;

Ù и являются прилегающими;

‑ и являются прилегающими.

Непротиворечивость базы нечетких правил рассмотрим на примере . База нечетких правил для управления роботом задана в виде:

………………………………….

R i: если препятствие впереди, то двигайся влево,

R i +1: если препятствие впереди, то двигайся вправо,

……………………………………

База правил противоречива.

Пример непротиворечивой базы нечетких правил следующий:

R 1: если x 1 = или x 2 = , тогда y= ;

R 2: если x 1 = или x 2 = , тогда y= ;

R 3: если x 1 = или x 2 = , тогда y= .

Если правила содержат два условия и один вывод, то эти правила представляют собой систему с двумя входами x 1 и x 2 и одним выходом y . Данная система может быть представлена в матричной форме:

x 2 x 1
y=
y=
y=

База нечетких правил непротиворечива.

Напомним, что лингвистической называется переменная, принимающая значения из множества слов или словосочетаний некоторого естественного или искусственного языка. Множество допустимых значений лингвистической переменной называется терм-множеством. Задание значения переменной словами, без использования чисел, для человека более естественно. Ежедневно мы принимаем решения на основе лингвистической информации типа: "очень высокая температура"; "длительная поездка"; "быстрый ответ"; "красивый букет"; "гармоничный вкус" и т.п. Психологи установили, что в человеческом мозге почти вся числовая информация вербально перекодируется и хранится в виде лингвистических термов. Понятие лингвистической переменной играет важную роль в нечетком логическом выводе и в принятии решений на основе приближенных рассуждений. Формально, лингвистическая переменная определяется следующим образом.

Определение 44. Лингвистическая переменная задается пятеркой , где - ; имя переменной; - ; терм-множество, каждый элемент которого (терм) представляется как нечеткое множество на универсальном множестве ; - ; синтаксические правила, часто в виде грамматики, порождающие название термов; - ; семантические правила, задающие функции принадлежности нечетких термов, порожденных синтаксическими правилами .

Пример 9. Рассмотрим лингвистическую переменную с именем "температура в комнате". Тогда оставшуюся четверку можно определить так:

Таблица 4 - Правила расчета функций принадлежности

Графики функций принадлежности термов "холодно", "не очень холодно", "комфортно", "более-менее комфортно", "жарко" и "очень жарко" лингвистической переменной "температура в комнате" показаны на рис. 13.

Рисунок 13 - Лингвистическая переменная "температура в комнате"

Нечеткая истинность

Особое место в нечеткой логике занимает лингвистическая переменная "истинность". В классической логике истинность может принимать только два значения: истинно и ложно. В нечеткой логике истинность "размытая". Нечеткая истинность определяется аксиоматически, причем разные авторы делают это по-разному. Интервал используется как универсальное множество для задания лингвистической переменной "истинность". Обычная, четкая истинность может быть представлена нечеткими множествами-синглтонами. В этом случае четкому понятию истинно будет соответствовать функция принадлежности , а четкому понятию ложно - ; , .

Для задания нечеткой истинности Заде предложил такие функции принадлежности термов "истинно" и "ложно":

;

где - ; параметр, определяющий носители нечетких множеств "истинно" и "ложно". Для нечеткого множества "истинно" носителем будет интервал , а для нечеткого множества ложно" - ; .

Функции принадлежности нечетких термов "истинно" и "ложно" изображены на рис. 14. Они построены при значении параметра . Как видно, графики функций принадлежности термов "истинно" и "ложно" представляют собой зеркальные отображения.

Рисунок 14 - Лингвистическая переменная "истинность" по Заде

Для задания нечеткой истинности Балдвин предложил такие функции принадлежности нечетких "истинно" и "ложно":

Квантификаторы "более-менее" и "очень" часто применяют к нечеткими множествами "истинно" и "ложно", получая таким образом термы "очень ложно", "более-менее ложно", "более-менее истинно", "очень истинно", "очень, очень истинно", "очень, очень ложно" и т.п. Функции принадлежности новых термов получают, выполняя операции концентрации и растяжения нечетких множеств "истинно" и "ложно". Операция концентрации соответствует возведению функции принадлежности в квадрат, а операция растяжения - возведению в степень ½. Следовательно, функции принадлежности термов "очень, очень ложно", "очень ложно", "более-менее ложно", "более-менее истинно", "истинно", "очень истинно" и "очень, очень истинно" задаются так.

Лингвистические переменные (ЛП) являются способом описания сложных систем, параметры которых рассматриваются не с количественных позиций, а как качественные. При этом лингвистические переменные позволяют поставить в соответствие качественным характеристикам некоторую количественную интерпретацию с заданной долей уверенности, что обеспечивает возможность обработки качественных данных на ЭВМ. Другой сферой применения лингвистических переменных является нечеткий логический вывод, отличие которого от обычного заключается в том, что истинность логических высказываний определяется не двумя значениями 0 и 1, а множеством значений в интервале .

В основе понятия лингвистической переменной лежит понятие нечетной переменной.

Нечеткой переменной называется совокупность трех элементов:

< X , U , µ A (u ) >,

где Х – название нечеткой переменной; U – универсальное множество; µ A (u ) – нечеткое подмножество А универсального множества U . Другими словами, нечеткая переменная представляет собой именованное нечеткое множество.

Лингвистической переменной называется совокупность пяти элементов:

< L , T (X ), U , G , M >,

где L – название лингвистической переменной;

Т (X ) –множество базовых термов лингвистической переменной, состоящее из множества названий значений лингвистических переменных {T 1 , T 2 , …, T n }, каждому из которых соответствует нечеткая переменная Х универсального множества U;

U – универсальное множество, на котором определена лингвистическая переменная;

G – синтаксическое правило, порождающее названия X значений переменной;

М – семантическое правило, которое ставит в соответствие каждой нечеткой переменной X ее смысл М (X ), т.е. нечеткое подмножество универсального множества U .



К термам лингвистической переменной предъявляется требование упорядоченности: T 1 < T 2 < … < T n .

Функции принадлежности нечетких множеств, составляющих количественный смысл базовых термов лингвистической переменной, должны удовлетворять следующим условиям:

2. : ;

4. : .

Здесь n – количество базовых термов лингвистической переменной; u min , u max – границы универсального множества U , на котором определяется лингвистическая переменная. Если U R (R – множество действительных чисел, то U = [u min , u max ].

Синтаксическое правило G представляет собой совокупность четырех элементов: G = < V T , V N , T , P >,

где V T – совокупность терминальных символов или слов; V N – совокупность нетерминальных символов или фраз; Т – совокупность базовых термов; Р – совокупность правил подстановки, определяющих эквивалентность фраз.

Семантическое правило М ставит в соответствие каждой фразе новое не-

четкое множество, определенное на основе функций принадлежности базовых термов и совокупности операций с нечеткими множествами.

В качестве примера рассмотрим числовую лингвистическую переменную «рост человека». Пусть значения переменной задаются с помощью трех базовых термов: «низкий», «средний», «высокий». Термы упорядочены. Универсальным числовым множеством U в данном случае является интервал U = .

Функции принадлежности термов приведены на рис. 7.6 и удовлетворяют рассмотренным выше требованиям.

Рис. 7.6 Лингвистическая переменная «Рост человека»

В качестве синтаксического правила определим, что в множество нетерминальных символов включены слова «и», «или», «более или менее», «не», «очень», которые могут сочетаться с базовыми термами «низкий», «средний», «высокий», причем должны выполняться следующие правила:

Символы «и» и «или» могут соединять только две фразы или базовых терма, а остальные нетерминальные символы являются унарными, т.е. могут предварять фразу или базовый терм; например, «не высокий», «очень низкий», «низкий или средний»;

Одновременное отрицание двух базовых термов, например, «не низкий и не высокий», эквивалентно оставшемуся базовому терму, т.е. «средний».

Применяя эти правила, можно построить множество фраз и правил подстановки. В случае, если синтаксическое правило нельзя задать алгоритмически, то просто перечисляются все возможные фразы.

В качестве семантического правила определим соответствие между нетерминальными символами и операциями над нечеткими множествами:

«не» – дополнение;

«и» - пересечение;

«или» - объединение;

«очень» - концентрирование;

«более или менее» - расширение.

Используя рассмотренную лингвистическую переменную, можно оцени-

вать рост людей, не прибегая к точным измерениям.

Таким образом, с помощью лингвистических переменных можно описывать объекты, точное измерение характеристик которых либо крайне трудоемко, либо вообще невозможно.

Формирование лингвистической переменной, как правило, реализуется на основе опроса экспертов – специалистов в той области, для которой строится ЛП. При этом особое внимание уделяется формированию функций принадлежности нечетких множеств, являющихся базовыми термами лингвистической переменной, так как определение синтаксического и семантического правил для большинства лингвистических переменных стандартно и на практике сводится к перечислению всех возможных фраз и интерпретации нетерминальных символов, как показано выше.

Процесс формирования лингвистической переменной включает следующие этапы:

1. Определение множества термов ЛП и его упорядочение.

2. Построение числовой области определения ЛП.

3. Выяснение схемы опроса экспертов и проведение опроса.

4. Построение функций принадлежности для каждого терма ЛП.

Этап 1 предполагает задание экспертом количества термов ЛП и названий соответствующих им нечетких переменных. Количество термов выбирается из диапазона n = 7±2.

На этапе 2 описывается универсальное множество U , которое может быть числовым и нечисловым. Вид универсального множества зависит от описываемых объектов и определяет способ формирования функций принадлежности термов ЛП.

Этап 3 является ключевым при формировании ЛП. Существует два вида

опроса экспертов: прямой и косвенный. Каждый из этих способов может быть индивидуальным или групповым. Наиболее простым с точки зрения организации и

программной реализации является индивидуальный способ опроса экспертов.

При прямом опросе экспертов непосредственно указывают все параметры функций принадлежности. Недостатком здесь является проявление субъективизма в суждениях, а также необходимость знания экспертом основ нечеткой логики. При косвенном опросе функции принадлежности формируются на основе ответа эксперта на «наводящие» вопросы. При этом повышается объективность оценки и не требуется знания нечеткой логики, однако усиливается риск несогласованности суждений эксперта.

При групповых методах опроса результат формируется на основе объединения мнений нескольких экспертов. На практике наиболее часто используется индивидуальный косвенный опрос.

Лекция. Нечеткие вычисления

Понятие нечеткого числа

Одной из областей применение нечеткой логики является выполнение арифметических операций с нечеткими множествами. Для снижения трудоемкости таких операций используется специальный тип нечетких множеств – нечеткие числа.

Нечетким числом (НЧ) называется нечеткая переменная, имеющая следующие свойства: ; .

Другими словами, нечеткое число– именованное нечеткое множество, для которого универсальное множество U представляет собой интервал действительной оси R .

В реальных задачах используются кусочно-линейные нечеткие числа.Для упрощения арифметических операций кусочно-линейные функции принадлежности дополнительно аппроксимируют, чтобы получить специальный вид нечетких чисел – параметрические нечеткие числа или нечеткие числа

(L R )–типа, которые характеризуются компактностью представления и просто-

той реализации арифметических операций.

Нечеткое число А называется нечетким числом (L R )–типа , если его функция принадлежности имеет следующий вид (рис. 7.8):

0,

1, ,

где – параметры нечеткого числа; L (x ), R (x ) – некоторые функции.

Нечеткое параметрическое число обозначается (a , b , c , d ) LR .

Таким образом, нечеткое число (L R )–типа описывается шестью параметрами: четырьмя числами, обозначающими его границы, и двумя функциями, определяющими форму его функции принадлежности.



Рис.7.8 Параметрические нечеткие числа

Нечеткое числоназывается унимодальным , если оно имеет только одну точку, в которой функция принадлежности равна единице, т.е. его параметры b и c равны, в противном случае нечеткое число называется толерантным (см. рис. 7.8). Унимодальные нечеткие числа обозначаются пятью параметрами (a , b , d ) LR .

В качестве LR –функций наиболее часто используют линейные зависимости, задаваемые следующими соотношениями:

LR – функции также могут задаваться квадратичными, экспоненциальными и другими зависимостями.

В случае использования линейных функций унимодальные и толерантные нечеткие числа называют соответственно треугольными и трапециевидными и обозначают (a , b , d ) и (a , b , c , d ).

Для нечетких чисел особым образом определяется понятие знака и нулевого значения.

Нечеткое число А называется положительным , если его основание лежит в положительной действительной полуоси или

Нечеткое число А называется отрицательным , если его основание лежит в отрицательной действительной полуоси или

Для параметрических нечетких чисел знак определяется значениями параметров: положительное нечеткое число, если a > 0; отрицательное, если d < 0; нечеткий ноль, если .

Нечеткие множества. Лингвистическая переменная. Нечеткая логика. Нечеткий вывод. Композиционное правило вывода.

(Конспект)

В основе понятия нечеткого множества (НИ) лежит представление о том, что обладающие общим свойством элементы некоторого множества могут иметь различные степени вырожденности этого свойства и, следовательно, различную степень принадлежности этому свойству.

Пусть U некоторое множество. Нечетким множеством Ã в U называется совокупность пар вида {(µ Ã (u), u)}, где u U, µ Ã .

Значение µ Ã называется степенью принадлежности объекта к нечеткому множеству U.

µ Ã : U 

µ Ã – называется функцией принадлежности.

Пример нечетких множеств – возраст людей (рис. 19.1).

По аналогии с традиционной теорией множеств в Теории НМ определяются следующие операции:

Объединение:

, где

Перечисление:

,

Дополнение:

Алгебраическое произведение:

, где

n-арным нечетким отношением определенным на множествах называется нечеткое подмножество декартовых произведений

Так как нечеткое отношение является множеством для него справедливы все операции определенные для нечетких множеств. В практических приложениях теории нечетких множеств важную роль играет операция композиции нечетких отношений.

Композиция нечетких отношений

Пусть заданы 2 двухместных нечетких отношения:

Композиция нечетких отношений определяется следующим выражением:

Степени принадлежности конкретных выражений

Лингвистическая переменная - - это пятерка Х – имя переменной (возраст), U – базовое множество (0…150), Т(х) – терм множества. Множества лингвистических значений(молодой, средних лет, пожилой, старый). Каждое лингвистическое значение является меткой нечеткого множества определенного на U. G – синтаксическое правило, порождающее лингвистическое значение переменной Х (очень молодой, очень старый). М – семантическое правило ставящее в соответствие каждому лингвистическому значению нечеткое подмножество базового множества, то есть функция принадлежности.

Нечетким высказыванием называется утверждение относительно которого в данный момент времени можно судить о степени его истинности или ложности. Истинность принимает значение в интервале . Нечеткое высказывание не допускающее разделения на более простые называется элементарным.

Нечеткое высказывание построенное на элементарных с использованием логических связок называется составным нечетким высказыванием. Логическим связкам соответствуют операции над истинностью нечетких высказываний. - степени истинности конкретных высказываний.

1)

2)

Таким образом алгебра нечетких множеств изоморфна алгебре нечетких высказываний.

4) операция импликации

Для операции импликации в нечеткой логике предложено несколько определений. Основные:

1)

2)

3)

5) Эквивалентность

n-местным нечетким предикатом, определенным на множествах U 1 , U 2 ,…,U n называется выражение содержащее предметные переменные данных множеств и превращающиеся в нечеткие высказывания при замене предметных переменных элементами множеств U 1 , U 2 ,…,U n .

Пусть U 1 , U 2 ,…,U n базовые множества лингвистических переменных, а в качестве символов предметных переменных выступают иена лингвистических переменных. Тогда примерами нечетких предикатов являются:

    «давление в цилиндре низкое» - одноместный предикат

    «температура в котле значительно выше температуры в теплообменнике» - двуместных предикат.

Если U k =1,5 следовательно «давление в котле низкое» = 0,7

При построении и реализации нечетких алгоритмов важную роль играет композиционное правило вывода.

Пусть - нечеткое отображение

Нечеткое подмножество универсума U, тогда порождает в V нечеткое подмножество

композиционное правило вывода является основой при построении логического вывода в нечеткой логике.

Пусть задано нечеткое высказывание  , где и – нечеткие множества. Пусть также того задано некоторое высказывание (близкое к А, но не тождественное ему).

В классической логике широко используется правило вывода Modus Ponens

Это правило обобщается на случай нечеткой логики следующим образом:

Пусть множество и определены на базовом множестве Х, а и на базовом множестве Y. Естественно считать, что высказывание если задает некоторое нечеткое отображение из множества Х в Y

Тогда в соответствии с композиционным правилом вывода имеем:

Отношение строится на основе определения операции импликации в нечеткой логики.

1)

Если температура в котле низкая (), то подогрев повышенный ()

Реальные нечеткие логические алгоритмы содержат не одно, а множество продукционных правил

Если S 1 , то R 1 , иначе

Если S n , то R n , иначе

Поэтому нечеткие отношения должны быть построены для каждого отдельного правила, а затем агрегированы путем наложения друг на друга

В качестве агрегирующей операции выбирается или min или max в зависимости от типа импликации.

Когда нечеткий вывод используется в контуре управления реальным объектом, на объект должно выдаваться четкое управляющее воздействие. Поэтому необходимо преобразовать нечеткое множество, формируемое на основе композиционного правила вывода, в четкое значение. Эта процедура называется процедурой дефаззификации. Чаще используется 2 способа дефаззификации:

1) Середина «плато»

2) Центр тяжести, определяется точка которая делит площадь нечеткого множества пополам.

Лингвистическая переменная отличается от числовой переменной тем, что ее значениями являются не числа, а слова или предложения в естественном или формальном языке. Поскольку слова в общем менее точны, чем числа, понятие лингвистической переменной дает возможность приближенно описывать явления, которые настолько сложны, что не поддаются описанию в общепринятых количественных терминах. В частности, нечеткое множество , которое представляет собой ограничение, связанное со значениями лингвистической переменной , можно рассматривать как совокупную характеристику различных подклассов элементов универсального множества . В этом смысле роль нечетких множеств аналогична той роли, которую играют слова и предложения в естественном языке. Например, прилагательное "КРАСИВЫЙ" отражает комплекс характеристик внешности индивидуума. Это прилагательное можно также рассматривать как название нечеткого множества , которое является ограничением, обусловленным нечеткой переменной "КРАСИВЫЙ". С этой точки зрения термины "ОЧЕНЬ КРАСИВЫЙ", "НЕКРАСИВЫЙ", "ЧЕРЕЗВЫЧАЙНО КРАСИВЫЙ", "ВПОЛНЕ КРАСИВЫЙ" и т.п. - названия нечетких множеств, образованных путем действия модификаторов "ОЧЕНЬ, НЕ, ЧЕРЕЗВЫЧАЙНО, ВПОЛНЕ" и т.п. на нечеткое множество "КРАСИВЫЙ". В сущности, эти нечеткие множества вместе с нечетким множеством "КРАСИВЫЙ" играют роль значений лингвистической переменной "ВНЕШНОСТЬ".

Важный аспект понятия лингвистической переменной состоит в том, что эта переменная более высокого порядка, чем нечеткая переменная , в том смысле, что значениями лингвистической переменной являются нечеткие переменные. Например, значениями лингвистической переменной "ВОЗРАСТ" могут быть: "МОЛОДОЙ, НЕМОЛОДОЙ, СТАРЫЙ, ОЧЕНЬ СТАРЫЙ, НЕ МОЛОДОЙ И НЕ СТАРЫЙ" и т.п. Каждое из этих значений является названием нечеткой переменной . Если - название нечеткой переменной, то ограничение, обусловленное этим названием, можно интерпретировать как смысл нечеткой переменной .

Другой важный аспект понятия лингвистической переменной состоит в том, что лингвистической переменной присущи два правила:

  1. Cинтаксическое, которое может быть задано в форме грамматики, порождающей название значений переменной;
  2. Cемантическое, которое определяет алгоритмическую процедуру для вычисления смысла каждого значения.

Определение . Лингвистическая переменная характеризуется набором свойств , в котором:

Название переменной;

Обозначает терм-множество переменной , т.е. множество названий лингвистических значений переменной , причем каждое из таких значений является нечеткой переменной со значениями из универсального множества с базовой переменной ;

Синтаксическое правило, порождающее названия значений переменной ;

Семантическое правило, которое ставит в соответствие каждой нечеткой переменной ее смысл , т.е. нечеткое подмножество универсального множества .

Конкретное название , порожденное синтаксическим правилом , называется термом. Терм , который состоит из одного слова или из нескольких слов, всегда фигурирующих вместе друг с другом, называется атомарным термом. Терм , который состоит из более чем одного атомарного терма, называется составным термом .

Пример . Рассмотрим лингвистическую переменную с именем "ТЕМПЕРАТУРА В КОМНАТЕ". Тогда оставшуюся четверку , можно определить так: