Сайт о телевидении

Сайт о телевидении

» » Квантовый компьютер. Просто о сложном: что такое квантовый компьютер и зачем он нужен

Квантовый компьютер. Просто о сложном: что такое квантовый компьютер и зачем он нужен

Для того чтобы более или менее полноценно раскрыть суть квантовых компьютерных технологий, коснемся сперва истории квантовой теории.
Зародилась она благодаря двум ученым, чьи результаты исследования были удостоены Нобелевских премий: открытие М. Планком кванта в 1918 г. и А. Эйнштейном фотона в 1921 г.
Годом зарождения идеи квантового компьютера стал 1980 г., когда Беньофу удалось успешно продемонстрировать на практике правоту квантовой теории.
Ну а первый прототип квантового компьютера был создан Гершенфельдом и Чуангом в 1998 г. в Массачусетском технологическом институте (MTI). Этой же группой исследователей созданы в два последующих года более совершенные модели.

Для неспециалиста квантовый компьютер – это что-то совершенно фантастическое по масштабам, это вычислительная машина, перед которой обычный компьютер все равно что счеты перед компьютером. И, разумеется, это что-то очень далекое от воплощения.
Для человека, который связан с квантовыми компьютерами, – это устройство, общие принципы действия которого более или менее понятны, однако существует масса проблем, которые следует решить, прежде чем можно будет воплотить его «в железе», и сейчас множество лабораторий по всему миру эти препятствия пытаются преодолеть.
В области квантовых технологий в прошлом уже были достигнуты успехи и частными компаниями, в том числе IBM и DWays.
О новейших достижениях в этой области они регулярно сообщают и сегодня. В основном исследования выполняются японскими и американскими учеными. Япония в стремлении к мировому лидерству в области аппаратного и программного обеспечения расходует огромные средства на разработки в данной области. По сообщениям вице-президента Hewlett-Packard, до 70% всех исследований выполнены в стране восходящего солнца. Квантовые компьютеры являются одним из шагов их целенаправленной компании по завладению лидерством на мировом рынке.

Чем объясняется стремление к овладению этими технологиями? Их бесспорными весомыми преимуществами над полупроводниковыми компьютерами!

ЧТО ЖЕ ЭТО ТАКОЕ?


Квантовый компьютер – это устройство для вычислений, которое работает на основе квантовой механики.
На сегодняшний день полномасштабный квантовый компьютер – это гипотетическое устройство, которое невозможно создать с учетом имеющихся данных в квантовой теории.

Квантовый компьютер, для вычисления использует не классические алгоритмы, а более сложные процессы квантовой природы, которые еще называют квантовыми алгоритмами. Эти алгоритмы используют квантовомеханические эффекты:квантовую запутанность и квантовый параллелизм.

Чтобы понять, зачем вообще необходим квантовый компьютер, необходимо представить принцип его действия.
Если обычный компьютер работает за счет проведения последовательных операций с нулями и единицами, то квантовый компьютер использует кольца из сверхпроводящей пленки. Ток может течь по этим кольцам в разных направлениях, поэтому цепочка таких колец может реализовывать одновременно намного больше операций с нулями и единицами.
Именно большая мощность является основным преимуществом квантового компьютера. К сожалению, эти кольца подвержены даже самым малейшим внешним воздействиям, в результате чего направление тока может меняться, и расчеты оказываются в таком случае неверными.

ОТЛИЧИЕ КВАНТОВОГО КОМПЬЮТЕРА ОТ ОБЫЧНОГО

    главным отличием квантовых компьютеров от обычных является то, что сохранение, обработка и передача данных происходит не с помощью «битов», а «кубитов» – попросту говоря «квантовых битов». Как и обычный бит, кубит может находиться в привычных нам состояниях «|0>» и «|1>», а кроме этого – в состоянии суперпозиции A·|0> + B·|1>, где A и B – любые комплексные числа, удовлетворяющие условию | A |2 + | B |2 = 1.

ТИПЫ КВАНТОВЫХ КОМПЬЮТЕРОВ

Можно выделить два типа квантовых компьютеров. И те, и другие основаны на квантовых явлениях, только разного порядка.

    компьютеры, в основе которых лежит квантование магнитного потока на нарушениях сверхпроводимости- Джозефсоновских переходах. На эффекте Джозефсона уже сейчас делают линейные усилители, аналого-цифровые преобразователи, СКВИДы и корреляторы.Эта же элементная база используется в проекте создания петафлопного (1015 оп./с) компьютера. Экспериментально достигнута тактовая частота 370 ГГц, которая в перспективе может быть доведена до 700 ГГц.Однако время расфазировки волновых функций в этих устройствах сопоставимо со временем переключения отдельных вентилей, и фактически на новых, квантовых принципах реализуется уже привычная нам элементная база - триггеры, регистры и другие логические элементы.

    Другой тип квантовых компьютеров, называемых еще квантовыми когерентными компьютерами, требует поддержания когерентности волновых функций используемых кубитов в течение всего времени вычислений - от начала и до конца (кубитом может быть любая квантомеханическая система с двумя выделенными энергетическими уровнями). В результате, для некоторых задач вычислительная мощность когерентных квантовых компьютеров пропорциональна2N, где N - число кубитов в компьютере. Именно последний тип устройств имеется в виду, когда говорят о квантовых компьютерах.

КВАНТОВЫЕ КОМПЬЮТЕРЫ СЕЙЧАС

Но небольшие квантовые компьютеры создаются уже сегодня. Особенно активно в этом направлении работает компания D-Wave Systems, которая еще в 2007 году создала квантовый компьютер из 16 кубитов. Этот компьютер успешно справлялся с задачей рассаживания за столом гостей, исходя из того, что некоторые из них друг друга недолюбливали. Сейчас компания D-Wave Systems продолжает развитие квантовых компьютеров.

Группе физиков из Японии, Китая и США впервые удалось построить на практике квантовый компьютер по архитектуре фон Неймана - то есть с физическим разделением квантового процессора и квантовой памяти. В настоящий момент для практической реализации квантовых компьютеров (вычислительных машин, в основу которых положены необычные свойства объектов квантовой механики) физики используют разного рода экзотические объекты и явления - захваченные в оптическую ловушку ионы, ядерный магнитный резонанс. В рамках новой работы ученые полагались на миниатюрные сверхпроводящие схемы - возможность реализации квантового компьютера с помощью таких схем была описана в Nature в 2008 году.

Собранная учеными вычислительная машина состояла из квантовой памяти, роль которой выполняли два микроволновых резонатора, процессора из двух кубит, соединенных шиной (ее роль тоже играл резонатор, а кубиты представляли собой сверхпроводящие схемы), и устройств для стирания данных. При помощи этого компьютера ученые реализовали два основных алгоритма - так называемое квантовое преобразование Фурье, и конъюнкцию при помощи квантовых логических элементов Тоффоли:

    Первый алгоритм представляет собой квантовый аналог дискретного преобразования Фурье. Его отличительной особенностью является гораздо меньшее (порядка n2) количество функциональных элементов при реализации алгоритма по сравнению с аналогом (порядка n 2n). Дискретное преобразование Фурье применяется в самых разных областях человеческой деятельности - от исследования дифференциальных уравнений в частных производных до сжатия данных.

    В свою очередь квантовые логические элементы Тоффоли представляют собой базовые элементы, из которых, с некоторыми дополнительными требованиями, можно получить любую булеву функцию (программу). Отличительной особенностью этих элементов является обратимость, что, с точки зрения физики, среди прочего позволяет минимизировать тепловыделения устройства.

По словам ученых, созданная ими система обладает одним замечательным плюсом - она легко масштабируется. Таким образом, она может служить своего рода строительным блоком для будущих компьютеров. По словам исследователей, новые результаты наглядно демонстрируют перспективность новой технологии.

Количество информации в мире возрастает ежегодно на 30%. Только за последние пять лет человечеством было произведено больше данных, чем за всю предшествующую историю. Появляются системы Интернета вещей, в которых каждый датчик отправляет и получает огромное количество данных ежесекундно, и, по прогнозам аналитиков, количество подключенных к Интернету вещей скоро превысит количество пользователей-людей. Эти колоссальные объемы информации необходимо где-то хранить и как-то обрабатывать.

Сейчас уже существуют суперкомпьютеры мощностью более 50 петафлопс (1 петафлопс =1 тыс. трлн операций в секунду). Однако рано или поздно мы упремся в физический предел возможной мощности процессоров. Конечно, суперкомпьютеры все еще смогут расти в размерах, но это не решение проблемы, поскольку и размеры когда-нибудь достигнут своих пределов. По мнению ученых, скоро закон Мура перестанет исполняться и человечеству понадобятся новые, значительно более мощные устройства и технологии обработки данных. Поэтому уже сейчас крупные ИТ-компании работают над созданием совершенно нового революционного типа компьютеров, мощности которых будут в сотни раз превосходить те, что мы имеем на сегодняшний день. Это - квантовый компьютер. Эксперты обещают, что благодаря ему, возможно, удастся найти лекарство от рака, моментально находить преступников, анализируя записи с камер, моделировать молекулы ДНК. Сейчас даже представить сложно, какие еще задачи он сможет решать.

Microsoft старается быть на передовой развития этой области, изучая ее уже на протяжении двадцати лет, ведь тот, кто первым создаст квантовый компьютер, получит неоспоримое конкурентное преимущество. Причем компания работает не только над созданием «железа», но также недавно представила язык программирования, который смогут использовать разработчики. На самом деле очень немногие люди могут похвастаться тем, что понимают принципы работы этого революционного устройства, для большинства из нас это нечто из разряда фантастики. Так что же он собой представляет?

Одной из важнейших частей компьютера, от которой напрямую зависит его мощность, является процессор, который, в свою очередь, состоит из огромного числа транзисторов. Транзисторы - это простейшие части системы, они чем-то похожи на переключатели и могут находиться только в двух положениях: либо «включен», либо «выключен». Именно из комбинаций этих положений складывается двоичный код, состоящий из нулей и единиц, на котором базируются все языки программирования.

Соответственно, чем мощнее компьютер, тем больше транзисторов необходимо для его работы. Производители постоянно уменьшают их размеры, стараясь уместить как можно большее число в процессоры. Например, в новом Xbox One X их миллиарды.

Сейчас размер одного транзистора составляет 10 миллимикрон, то есть одну стотысячную миллиметра. Но однажды будет достигнут физический предел, меньше которого транзистор просто невозможно сделать. Для того чтобы избежать кризиса в развитии ИТ, ученые работают над созданием компьютера, который будет работать по совершенно другому принципу, - квантового. Транзисторы, из которых будет состоять квантовый компьютер, могут находиться одновременно в двух положениях: «включен» и «выключен» и, соответственно, сразу быть и единицей, и нулем, это называется «суперпозиция».

Если мы возьмем 4 стандартных транзистора (бита), то они, работая вместе, могут создать 16 различных комбинаций единиц и нулей. По одной за раз.

Если же мы рассматриваем 4 квантовых транзистора (кубита), то они могут быть всеми 16 комбинациями одновременно. Это огромная экономия места и времени!

Но, конечно же, создать кубиты очень и очень сложно. Ученым приходится иметь дело с субатомными частицами, которые подчиняются законам квантовой механики, разрабатывать совершенно новый подход к программированию и языку.

Существуют различные типы кубитов. Эксперты Microsoft, например, работают над созданием топологических кубитов. Они невероятно хрупки и легко разрушаются от малейших звуковых волн или теплового излучения. Для стабильной работы им необходимо постоянно находиться при температуре –273°C. Однако у них есть и ряд преимуществ перед другими типами: информация, хранящаяся в них, практически не подвержена ошибкам, и, соответственно, квантовый компьютер, созданный на основе топологических кубитов, будет являться сверхнадежной системой.

Квантовый компьютер Microsoft состоит из трех основных уровней: первый уровень - собственно, квантовый компьютер, содержащий кубиты и постоянно находящийся при температуре, близкой к абсолютному нулю; следующий уровень - криогенный компьютер - это тоже совершенно новый тип компьютера, который управляет квантовым и работает при температуре –268°C; последний уровень - компьютер, за которым уже может работать человек, и управляющий всей системой. Подобные компьютеры будут в 100–300 раз превосходить по мощности самые продвинутые суперкомпьютеры, существующие сейчас.

Сегодня мир как никогда близко подошел к изобретению настоящего квантового компьютера: есть понимание принципа его работы, прототипы. И в тот момент, когда мощности обычных компьютеров для обработки всей существующей на Земле информации хватать перестанет, появится квантовый компьютер, знаменующий собой совсем новую эру цифровых технологий.

Такие машины просто необходимы сейчас в любой сфере: медицине, авиации, исследованиях космоса. В настоящее время разработкой ЭВМ на основе квантовой физики и вычислительных технологий. Основы работы такого вычислительного аппарата пока не доступны обычным пользователям и принимаются как нечто непостижимое. Ведь далеко не все знакомы с фотонными свойствами элементарных частиц и атомов. Чтобы хотя бы немного понять, как работает этот компьютер, нужно знать и понимать элементарные принципы квантовой механики. По большей мере эту когерентную ЭВМ разрабатывают для NASA.

Обычная машина выполняет операции, используя классические биты, которые могут принимать значения 0 или 1. С другой стороны фотонный вычислительный аппарат использует когерентные биты или кубиты. Они могут принимать значения 1 и 0 одновременно. Именно это отдает такой вычислительной технике их превосходящую вычислительную мощь. Существует несколько типов исчислительных объектов, которые могут быть использованы в роли кубитов.

  1. Ядро атома.
  2. Электрон.

У всех электронов есть магнитное поле, как правило, они похожи на маленькие магниты и это их свойство называется спином (spin). Если их поместить в магнитное поле, они подстроятся под него так же, как это делает компасная стрелка. Это положение самой низкой энергии, так что мы можем назвать его нулем или нижним спином. Но можно перенаправить электрон в состояние «один» или в верхний спин. Но для этого необходима энергия. Если достать стекло из компаса, можно будет перенаправить стрелку в другом направлении, но для этого необходимо приложить силу.

Есть две принадлежности: нижний и верхний спин, которые соответствуют классическим 1 и 0 соответственно. Но дело в том, что фотонные объекты могут находиться в двух положениях одновременно. Когда измеряется спин, он будет либо верхним, либо нижним. Но до измерения электрон будет существовать в, так называемой, квантовой суперпозиции, в которой эти коэффициенты указывают относительную вероятность нахождение электрона в том или ином состоянии.

Довольно сложно представить, как это дает когерентным аппаратам их невероятную исчислительную мощь, не рассматривая взаимодействие двух кубитов. Теперь существует четыре возможных состояния этих электронов. В типичном примере двух бит нужно только два бита информации. Так что два qubit содержит в себе четыре вида информации. А значит, надо знать четыре числа, чтобы знать положение системы. А если взять три спина, то получится восемь разных положений, а в типичном варианте нужны будут три бита. Получается, что количество информации, содержащееся в N qubits, равно 2N типовых бит. Показательная функция говорит, что если, например, будет 300 кубитов, то придется создать сумасшедшее-сложные суперпозиции, где все 300 qubit будут связаны между собой. Тогда получается 2300 классических бит, а это равно количеству частиц во всей вселенной. Отсюда следует, что требуется создать логическую последовательность, которая даст возможность получить такой результат исчислений, который можно будет измерить. То есть состоящий только из стандартных принадлежностей. Получается, что когерентная машина это не замена обычным. Они быстрее только в вычислениях, где есть возможность использовать все доступные суперпозиции. А если Вы хотите просто посмотреть качественное видео, пообщаться в интернете или написать статью для работы, фотонная ЭВМ не даст Вам никаких приоритетов.

В этом видео описан процесс работы квантового компьютера.

Если говорить простыми словами, то когерентная система рассчитана не на скорость исчисления, а на необходимое количество для достижения результатов, которое будет происходить за минимальную единицу времени.

Работа классической ЭВМ основана на обработке информации с помощью кремниевых чипов и транзисторов. Они используют бинарный код, который в свою очередь состоит из единиц и нулей. Когерентная же машина работает на основании суперпозиции. Вместо битов применяются qubit. Это позволяет не только быстро, но и максимально точно вести расчеты.

Какой же будет самая мощная фотонная исчислительная система? К примеру, если фотонная вычислительная машина имеет тридцати кубитную систему, то его мощность составит 10 триллионов вычислительных операций в секунду. В настоящее время самый мощный двух битный компьютер считает один миллиард операций в секунду.

Большая группа ученых из разных стран разработала план, согласно которому размеры фотонного аппарата будут близки к габаритам футбольного поля . Он и будет самым мощным в мире. Это будет некая конструкция из модулей, которая размещается в вакууме. Внутренность каждого модуля это ионизированные электрические поля. Именно с их помощью будут образовываться некие части схемы, которые будут выполнять простые логические действия. Образец такой фотонной исчислительной технике разрабатывается в Университете Сассекса в Англии. Ориентировочная стоимость на данный момент более 130 миллионов долларов.

Десять лет назад компания D-Wave представила первый в мире когерентный компьютер, который состоит из 16 кубитов. Каждый qubit в свою очередь состоит из кристалла ниобия, который помещен в катушку индуктивности. Электрический ток, который подается на катушку, образовывает магнитное поле. Далее оно изменяет принадлежность, в котором находится qubit. С помощью такой машины можно с легкостью выяснить, как синтетические лекарственные средства взаимодействуют с белками крови.
Или появится возможность определить такое заболевание как рак на более раннем этапе.

В этом видео преведены рассуждения на тему "Для чего нужен квантовый компьютер миру". Не забывайте оставлять свои замечания, вопросы и просто

На прошлой неделе появилась новость о том, что Google совершили прорыв в разработке квантового компьютера -
в компании поняли, как такой компьютер будет справляться
с собственными ошибками. О квантовых компьютерах говорят уже несколько лет: его, например, на обложку журнала Time. Если такие компьютеры появятся, это будет прорыв сродни появлению классических компьютеров - а то и серьёзнее. Look At Me объясняет, чем хороши квантовые компьютеры и что именно сделали в Google.

Что такое квантовый компьютер?


Квантовый компьютер - это механизм на стыке компьютерных наук и квантовой физики, самого сложного раздела теоретической физики. Ричард Фейнман, один из крупнейших физиков XX века, как-то сказал: «Если вы думаете, что понимаете квантовую физику, значит, вы её не понимаете». Поэтому учтите, что последующие объяснения - невероятно упрощённые. На то, чтобы разобраться в квантовой физике, люди тратят долгие годы.

Квантовая физика занимается элементарными частицами меньше атома. То, как эти частицы устроены и как они себя ведут, противоречит многим нашим представлениям о Вселенной. Квантовая частица может находиться в нескольких местах одновременно - и в нескольких состояниях одновременно. Представьте, что вы подкинули монету: пока она находится в воздухе, вы не можете сказать, выпадет орёл или решка; эта монета - как бы орёл и решка одновременно. Примерно так ведут себя квантовые частицы. Это называется принципом суперпозиции.

Квантовый компьютер - это пока ещё гипотетическое устройство, которое будет использовать принцип суперпозиции (и другие квантовые свойства)
для вычислений. Обычный компьютер работает с помощью транзисторов,
которые воспринимают любую информацию как нули и единицы. Бинарным кодом можно описать весь мир - и решать любые задачи внутри него. Квантовый аналог классического бита называется кьюбит (qubit, qu - от слова quantum, квантовый) . Используя принцип суперпозиции, кьюбит может одновременно находиться
в состоянии 0 и 1 - и это не только значительно увеличит мощность по сравнению с традиционными компьютерами, но и позволит решать неожиданные задачи,
на которые обычные компьютеры не способны.

Принцип суперпозиции - единственное,
на чём будут основаны квантовые компьютеры?


Нет. Из-за того, что квантовые компьютеры существуют только в теории, учёные пока только предполагают, как именно они будут работать. Например, считается, что в квантовых компьютерах также будут применять квантовую запутанность.
Это феномен, который Альберт Эйнштейн называл «жутким» (он вообще был против квантовой теории, потому что она не сочетается с его теорией относительности) . Смысл феномена в том, что две частицы во Вселенной могут оказаться взаимосвязанными, причём обратно: скажем, если спиральность
(есть такая характеристика состояния элементарных частиц, не будем вдаваться в подробности) первой частицы положительная, то спиральность второй всегда будет отрицательной, и наоборот. «Жутким» этот феномен называют по двум причинам. Во-первых, эта связь работает моментально, быстрее скорости света. Во-вторых, запутанные частицы могут находиться на любом расстоянии друг
от друга: например, на разных концах Млечного Пути.

Как можно использовать квантовый компьютер?


Учёные ищут квантовым компьютерам применение и одновременно разбираются, как их построить. Главное - то, что квантовый компьютер сможет очень быстро оптимизировать информацию и вообще работать с большими данными, которые мы накапливаем, но пока не понимаем, как использовать.

Давайте представим такой вариант (сильно упрощённый, конечно) : вы собираетесь стрелять из лука в мишень и вам нужно высчитать, насколько высоко целиться, чтобы попасть. Скажем, нужно просчитать высоту от 0 до 100 см. Обычный компьютер будет высчитывать каждую траекторию по очереди: сначала 0 см, потом 1 см, потом 2 см и так далее. Квантовый же компьютер просчитает все варианты одновременно - и моментально выдаст тот, который позволит вам попасть ровно в цель. Таким образом можно оптимизировать много процессов:
от медицины (скажем, раньше диагностировать рак) до авиации (например, делать более сложные автопилоты) .

Ещё есть версия, что такой компьютер сможет решать задачи, на которые обычный компьютер просто не способен - или которые заняли бы у него тысячи лет вычислений. Квантовый компьютер сможет работать со сложнейшими симуляциями: например, высчитать, есть ли во Вселенной разумные существа, кроме людей. Не исключено, что создание квантовых компьютеров приведёт
к появлению искусственного интеллекта. Представьте, что с нашим миром сделало появление обычных компьютеров - квантовые компьютеры могут стать примерно таким же прорывом.

Кто занимается разработкой квантовых компьютеров?


Все. Правительства, военные, технологические компании. Создать квантовый компьютер будет выгодно практически кому угодно. Скажем, среди документов, обнародованных Эдвардом Сноуденом, была информация о том, что у АНБ есть проект «Внедрение в сложные цели», куда входит создание квантового компьютера для шифрования информации. Microsoft всерьёз занимаются квантовыми компьютерами - первые исследования в этой области они начали ещё в 2007 году. IBM ведут разработки и несколько лет назад заявили , что создали чип с тремя кьюбитами. Наконец, Google и NASA сотрудничают
с компанией D-Wave, которая заявляет, что уже сейчас выпускает
«первый коммерческий квантовый процессор» (а точнее уже второй, сейчас их модель называется D-Wave Two) , но он пока не работает как квантовый -
их, напомним, не существует.

Насколько мы близки к созданию
квантового компьютера?


Никто не может сказать точно. Новости о прорывах в технологиях (как недавняя новость о Google) появляются постоянно, но мы можем быть как очень далеки
от полноценного квантового компьютера, так и очень близки к нему. Скажем, есть исследования , говорящие о том, что достаточно создать компьютер всего
c несколькими сотнями кьюбитов, чтобы он работал как полноценный квантовый компьютер. D-Wave заявляют, что создали процессор с 84 кьюбитами -
но критики, проанализировавшие их процессор, заявляют, что он работает,
как классический компьютер, а не как квантовый. Google, сотрудничающие
с D-Wave, считают , что их процессор просто находится на самых ранних стадиях развития и в конце концов будет работать, как квантовый. Так или иначе, сейчас
у квантовых компьютеров существует одна главная проблема - ошибки. Любые компьютеры совершают ошибки, но классические умеют с ними легко справляться - а вот квантовые ещё нет. Как только исследователи разберутся с ошибками, до появления квантового компьютера останется всего несколько лет.

Что затрудняет исправление ошибок
в квантовых компьютерах?


Если упрощать, ошибки в квантовых компьютерах можно разделить на два уровня. Первый - это ошибки, которые совершают любые компьютеры, в том числе классические. В памяти компьютера может появиться ошибка, когда 0 непроизвольно меняется на 1 из-за внешнего шума - например, космических лучей или радиации. Эти ошибки решить легко, все данные проверяют на предмет таких перемен. И с этой проблемой в квантовых компьютерах как раз недавно справились в Google: они стабилизировали цепочку из девяти кьюбитов
и избавили её от ошибок. В этом прорыве есть, впрочем, один нюанс: Google справились с классическими ошибками в классических вычислениях. Есть второй уровень ошибок в квантовых компьютерах, и его гораздо сложнее понять и объяснить.

Кьюбиты крайне нестабильны, они подвержены квантовой декогеренции - это нарушение связи внутри квантовой системы под воздействием окружающей среды. Квантовый процессор нужно максимально изолировать от окружающего воздействия (хотя декогеренция происходит иногда и в результате внутренних процессов) , чтобы свести ошибки к минимуму. При этом от квантовых ошибок невозможно избавиться полностью, - но если сделать их достаточно редкими, квантовый компьютер сможет работать. При этом некоторые исследователи считают , что 99% мощности такого компьютера как раз направят
на устранение ошибок, но и оставшегося 1% хватит для решения любых задач.
По мнению физика Скотта Ааронсона, достижение Google можно считать третьим
с половиной шагом из семи, необходимых для создания квантового компьютера, - иначе говоря, мы прошли половину пути.

Очередной привет всем читателям моего блога! Вчера в новостях проскочила в очередной раз пара сюжетов о «квантовом» компьютере. Мы из школьного курса физики знаем, что квант — это некая одинаковая порция энергии, еще есть словосочетание «квантовый скачок», то есть мнгновенный переход с некоего уровня энергии на еще более высокий уровень.. Давайте вместе разбираться, что такое квантовый компьютер, и что нас всех ожидает, когда появится эта чудо машина

Я впервые начал интересоваться этой темой при просмотре фильмов про Эдварда Сноудена. Как известно, этот американский гражданин собрал несколько террабайт конфидециальной информации (компромата) о деятельности спецслужб США, хорошенько зашифровал ее и выложил в Интернет. «Если, сказал он, со мной что-нибудь случиться, информация будет расшифрована и станет таким образом доступна для всех.»

Расчет был на то, что информация эта «горячая», будет актуальна еще лет десять. А расшифровать ее можно современными вычислительными мощностями то же не меньше, чем через десять или больше лет. Квантовый же компьютер по ожиданиям разработчиков справится с этой задачей минут за двадцать пять.. Криптографы в панике. Вот такой «квантовый» скачок нас скоро ожидает, друзья.

Принципы работы квантового компьютера для чайников

Раз мы уж заговорили о квантовой физике, давайте немножко поговорим о ней. Я не буду углубляться в дебри друзья. Я ведь «чайник», а не квантовый физик. Лет сто назад Энштейн опубликовал свою теорию относительности. Все умные люди того времени удивлялись, как много в ней парадоксов и невероятных вещей. Так вот, все пародоксы Энштейна, описывающие законы нашего мира — просто невинный лепет пятилетнего ребенка по сравнению с тем, что твориться на уровне атомов и молекул.

Сами «квантовые физики», описывающие явления происходящие на уровнях электронов и молекул говорят примерно так: » Это невероятно. Этого не может быть. Но это так. Не спрашивайте нас, как это все работает. Мы не знаем, как и почему. Мы просто наблюдаем. Но это работает. Это доказано экспериментально. Вот формулы, зависимости и записи экспериментов.»

Так в чем же разница между обычным и квантовым компьютером? Ведь обычный компьютер тоже работает на электричестве, а электричество — это куча очень маленьких частиц — электронов?


Наши с Вами компьютеры работают по принципу или «Да» или «Нет». Если есть ток в проводе, это «Да»или «Единица». Если тока в проводе «Нет», то это «Ноль». Вариант значения «1 «и «0» есть единица хранения информации под названием «Бит».. Один байт это 8 бит и так далее и так далее…

Теперь представьте ваш процессор, на котором 800 миллионов таких «проводов» на каждом из которых за секунду появляется и исчезает такой вот «ноль» или «единица». И вы мысленно можете вообразить, как он обрабатывает информацию. Вы сейчас читаете текст, но на самом деле это совокупность нулей и единиц.

Путем перебора и вычислений Ваш компьютер обрабатывает Ваши запросы в Яндексе, ищет нужные до тех пор, пока не решит задачу и путем исключения не докопается до нужной Вам. Выводит на монитор шрифты, картинки в читаемом для нас виде… Пока надеюсь ничего сложного? А картинка — это тоже нули и единицы.

Представьте теперь себе друзья на секунду модель нашей солнечной системы. В центре Солнце, вокруг него летит Земля. Мы знаем, что она в определенный момент всегда находится в определенной точке пространства и через секунду она уже улетит на тридцать километров дальше.

Так вот, модель атома то же планетарная, там атом тоже вращается вокруг ядра. Но ДОКАЗАНО, друзья, умными парнями в очках, что атом в отличии от Земли одновременно и всегда находится во всех местах..Везде и нигде одновременно. И назвали они это замечательное явление «суперпозицией». Для того, чтобы познакомится поближе и другими явлениями квантовой физики, предлагаю глянуть научно-популярный фильм, где простым языком рассказывается о сложном и в довольно оригинальной форме.

Продолжим. И вот на смену «нашему» биту приходит квантовый бит. Его еще называют «Кубит». У него то же всего два исходных состояния «ноль» и «единица». Но, так как природа его «квантовая», то он может ОДНОВРЕМЕННО принимать все возможные промежуточные значения. И одновременно находиться в них. Теперь значения не надо последовательно вычислять, перебирать.., долго искать в базе. Они известны уже заранее, сразу. Вычисления идут параллельно.

Первые «квантовые» алгоритмы для математических вычислений были придуманы еще математиком из Англии Питером Шором в 1997 году. Когда он показал их миру, все шифровальщики здорово напряглись, так как существующие шифры «раскалываются» этим алгоритмом за несколько минут.. Вот только компьютеров, работающих по квантовому алгоритму тогда еще не было.

С тех пор с одной стороны идет работа по созданию физической системы, в которой бы работал квантовый бит. То есть «железа». А с другой стороны уже придумывают защиту от квантового взлома и расшифровки данных.

А что сейчас? А вот так выглядит квантовый процессор под микроскопом на 9 кубит от фирмы Google.

Неужели они нас обогнали? 9 кубит или по «старому» 15 бит, это не так много пока еще. Плюс дороговизна, масса технических проблем и короткое время «жизни» квантов. Но вспомните что сначала были 8 битные, потом появились 16 битные процессоры… Так будет и с этими …

Квантовый компьютер в России — миф или реальность?

А мы что же? А мы то же не за печкой родились. Вот нарыл фото первого российского Кубита под микроскопом. Тут правда он один.

Тоже выглядит как некая «петля», в которой происходит нечто для нас пока не познанное. Отрадно думать, если наши при поддержке государства разрабатывают свое. Так что отечественные разработки это уже не миф. Вот оно, наше будущее. Каким оно будет, посмотрим.

Последние новости о квантовом компьютере России мощностью 51 кубит

Вот новости этого лета. Наши дядечки (честь им и хвала!) разработали самый мощный в мире (!) квантовый (!) компьютер 51 кубит(!)т. Самое интересное то, что до этого Google анонсировало свой компьютер на 49 кубит. И по их оценкам они должны были его закончить через месяц или около того. А наши решили показать уже готовый, свой квантовый процессор на 51 кубит.. Браво! Вот какая идет гонка. Нам хотя бы не отставать. Потому что ожидается большой прорыв в науке, когда эти системы заработают. Вот фото человека, который представлял нашу разработку на «квантовом» международном форуме.

Фамилия этого ученого — Михаил Лукин. Сегодня его имя в центре внимания. Невозможно создать такой проект в одиночку, мы это понимаем. Он и его команда создали на сегодня самый мощный в мире(!) квантовый компьютер или процессор. Вот что говорят по этому поводу компетентные лица:

«Квантовый компьютер функционирующий, он гораздо страшнее атомной бомбы, - отмечает сооснователь Российского квантового центра Сергей Белоусов. - Он (Михаил Лукин) сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это более чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49. Потому что Google всё время говорили, что сделают 49».

Впрочем, сам Лукин и руководитель квантовой лаборатории Google Джон Мартинес конкурентами или соперниками себя не считают. Учёные убеждены, что их главным соперником является природа, а основной целью - развитие технологий и их внедрение для продвижения человечества на новый виток развития.

«Неправильно думать об этом, как о гонке, - справедливо считает Джон Мартинес. - Настоящая гонка у нас с природой. Потому что это действительно сложно - создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов. Пока 22 кубита - это максимум, что мы могли сделать. Хоть мы и использовали всё своё волшебство и профессионализм».

Да, все это очень интересно. Если вспомнить аналогии, когда изобрели транзистор, никто не мог знать, что на этой технологии через 70 лет будут работать компьютеры. В одном только современном процессоре количество их достигает 700 миллионов..Первый компьютер весил много тонн и занимал большие площади. Но персональные компьютеры все равно появились — много позже…

Я думаю, что пока нам в ближайшее время не стоит ждать появления в наших магазинах устройств такого класса. Многие их ждут. Особенно добытчики криптовалют много спорят по этому поводу. С надеждой взирают на него ученые, и с пристальным вниманием — военные. Потенциал этой разработки как мы понимаем, до конца не ясен.

Ясно только, что когда это все заработает, оно потащит вперед за собой всю наукоемкую промышленность.Постепенно появятся новые технологии, новые отрасли, новый софт.. Время покажет. Только бы не подвел человеков свой собственный квантовый компьютер, данный нам при рождении — это наша голова. Так что, пока не спешите выкидывать на помойку свои гаджеты. Они долго Вам еще послужат. Пишите, если статья была интересной. Заходите чаще. До свидания!