Сайт о телевидении

Сайт о телевидении

» » Коммуникационный процесс и каналы передачи информации. Способы передачи и приема информации

Коммуникационный процесс и каналы передачи информации. Способы передачи и приема информации

Способы передачи данных по коммуникационным сетям.

В настоящее время существует большое количество способов передачи данных. Но во всех способах передача данных происходит по принципу электрических сигналов. Электрические сигналы – это, переводя на компьютерный язык, биты , которые представляют собой цифровые, либо аналоговые сигналы, переходящие в электрические импульсы.

Совокупность всех видов передачи данных называется канал передачи данных . В него входят такие средства передачи данных, как: интернет сети, стационарные линии, точки приёма и передачи данных. Каналы передачи данных разделяют на два вида: аналоговые и дискретные.
Основное различие заключается в том, что аналоговый тип представляет собой непрерывный сигнал, а дискретный , в свою очередь, представляет собой прерывистый поток данных.

Для обеспечения наилучшей производительности все устройства производят работу с устройствами в дискретном виде. В дискретном виде применяются цифровые коды, которые преобразовываются в электрические сигналы. А для передачи дискретных данных с помощью аналогового сигнала требуется модуляция дискретного сигнала.

При использовании информации на устройстве происходит обратное преобразование сигнала. Обратное преобразование сигнала называется демодуляцией . Таким образом, существует два процесса преобразования сигнала: модуляция и демодуляция. В процессе модуляции информация представляет собой синусоидальный сигнал с определённой частотой.

Для преобразования данных используются такие способы модуляции :
1. Амплитудная модуляция данных;
2. Частотная модуляция данных;
3. Фазовая модуляция данных.

Для передачи данных дискретного типа по цифровому каналу используется система кодирования . В основном, различают два типа кодирования.
1. Потенциальное кодирование;
2. Импульсное кодирование.

Стоит отметить то, что, представленные выше, методы кодирования используются на каналах высокого качества передачи информации. А к модуляции разумнее прибегать только тогда, когда при передачи данных возникает искажение сигнала.

В большинстве случаев, модуляцию используют в работе с крупными информационными сетями. Так как основная часть информации передаётся по аналоговой линии . Это связанно с тем, что данные линии были разработаны задолго до появления цифровых сигналов.

Также каждый вид канала имеет свой способ синхронизации данных . Выделяют два главных вида синхронизации данных: асинхронный и синхронный . Синхронизация используется для того, чтобы произвести точную передачу данных от источника к потребителю.

Синхронизация требует дополнительное оборудование. Например, для выполнения процесса синхронизации необходима дополнительная линия для передачи синхронизирующих импульсов в канал связи. С помощью синхронизации производиться беспрерывная и четкая передача данных. Процесс передачи данных начинается с появления синхронизирующих импульсов.

Главной особенностью асинхронной передачи данных является то, что дополнительный канал связи не требуется. В данном типе при передаче используются байты, которые сопровождают передаваемый байт информации.

×

Для обмена данными между вычислительными сетями используют три основных метода передачи информации :

1. Симплексная (однонаправленная);
2. Полудуплексная;
3. Дуплексная (двунаправленная).

Перед тем, как отправить информацию в вычислительную сеть, отправитель разделяет информацию на маленькие блоки, которые чаще всего называют пакетами данных . На конечном пункте отправки все пакеты собираются в единый последовательный список. Затем происходит процесс преобразования всех частей в единый исходный материал.

Для правильной работы, с пакетом данных должна быть указана такая информация, как:

Дополнительные операции по увеличению эффективности коммуникационного канала.
Существуют три типа коммутации вычислительной системы :
1. Коммутация каналов;
2. Коммутация пакетов;
3. Коммутация сообщений.
Коммутация каналов служит для создания непрерывного канала из последовательно соединённых линий. После того как данный канал образовался, вся информация и файлы могут передаваться на высокой скорости.
Коммутация сообщений служит для работы с почтовыми файлами и серверами. Эта операция включает в себя ряд возможностей таких как: передача, приём, хранение. Большое количество сообщений, как правило, передаётся блоками. При отправке группы сообщений блок переходит от одного коммуникационного узла к другому и в конечном итоге доходит до адресата. Если произошла ошибка передачи блока (сбой связи, технические неполадки и т.д.), то весь блок сообщений начнёт передаваться заново. До того момента пока весь блок сообщений не достигнет получателя, будет невозможно совершить новую передачу.

Чтобы лучше понимать процесс обмена информацией и условия его эффективности, следует иметь представление об элементах и этапах коммуникационного процесса.

Коммуникационный процесс

В процессе обмена информацией можно выделить четыре базовых элемента (рис. 1.4):

  • отправитель – лицо, генерирующее идеи или собирающее и передающее информацию;
  • сообщение – собственно информация, закодированная с помощью символов;
  • канал – средство передачи информации;
  • получатель – лицо, которому предназначена информация и которое интерпретирует ее.

Рис. 1.4.

При обмене информацией отправитель и получатель проходят несколько взаимосвязанных этапов. Основная задача отправителя – составить сообщение и использовать канал для его передачи таким образом, чтобы обе стороны поняли и разделили исходную идею. Это сложно, так как на каждом этапе смысл сообщения может быть искажен или полностью утрачен .

В процессе движения информации происходит ее продвижение но следующим этапам :

  • зарождение идеи;
  • кодирование и выбор канала;
  • передача;
  • декодирование;
  • обратная связь.

Рассмотрим этапы коммуникационного процесса более подробно для того, чтобы показать, какие проблемы могут возникать в его разных точках (рис. 1.5).

1. Зарождение идеи. Обмен информацией начинается с формулирования идеи или отбора информации. При этом отправитель решает, какую именно идею или сообщение следует сделать предметом обмена. Его роль заключается в провотировании и кодировании информации с последующей передачей другим участникам процесса.

Очень важно правильно и тщательно сформулировать свою идею, с тем, чтобы она стала интересной и привлекательной для получателя. Важно помнить, что идея еще не трансформирована в слова и не приобрела другой формы, в которой она послужит обмену информацией. Отправитель решил только, что именно он хочет передать.

2. Кодирование и выбор канала. Прежде чем передать идею, отправитель должен закодировать ее с помощью символов. Например, он может использовать в качестве символов слова, интонации и жесты (язык тела). Такое кодирование превращает идею в сообщение.

Отправитель должен также выбрать канал, совместимый с типом символов, использованных для кодирования. К некоторым общеизвестным каналам относятся: передача речи, письменных материалов, электронные средства связи, включая компьютерные сети и электронную почту, видеоленты и видеоконференции. Если канал непригоден для физического воплощения символов, передача невозможна. Если канал не слишком соответствует идее, обмен информацией будет неэффективен.

Следует помнить, что выбор средства сообщения не должен ограничиваться единственным каналом. Часто желательно использовать два или более средства коммуникации в определенном сочетании. В связи с этим процесс усложняется, поскольку отправителю приходится устанавливать последовательность использования этих средств и определять временные интервалы для передачи информации. Тем не менее считается, что одновременное использование средств обмена устной и письменной информацией обычно эффективнее, чем обмен только письменной. Например, если на собрании начальников отделов, у начальника финансового отдела есть предложения по упрощению взаиморасчетов, эффективнее будет их представить письменно в виде раздаточного материала, на экране или флип-чарте в виде графиков, схем, или видеороликов, сопровождая их демонстрацию устными комментариями. При этом больше вероятность, что информация будет воспринята, во-первых, положительно, во-вторых, полностью (или в максимальном объеме), в-третьих, будут оперативно учтены пожелания и предложения заинтересованных коллег.

  • 3. Передача. На третьем этапе отправитель использует канал для доставки сообщения (закодированной идеи или совокупности идей) получателю. Здесь речь идет о физической передаче сообщения, которую многие люди по ошибке и принимают за сам процесс коммуникации. В то же время передача является лишь одним из важнейших этапов, через которые необходимо пройти, чтобы донести идею до другого лица.
  • 4. Декодирование. После передачи сообщения отправителем получатель декодирует его. Декодирование – это перевод символов отправителя в мысли получателя. Если символы, выбранные отправителем, имеют точно такое же значение для получателя, последний будет знать, что именно имел в виду отправитель, когда формулировалась его идея. Если реакции на идею не требуется, процесс обмена информацией на этом завершается.
  • 5. Обратная связь. Обмен информацией можно считать эффективным, если получатель продемонстрировал понимание идеи через обратную евязь. Например, произвел действия, которых ждал от него отправитель.

Несмотря на внешнюю простоту коммуникационного процесса, он редко протекает без помех. Существует множество потенциальных препятствий, которые мешают эффективным коммуникациям. Факторы, нарушающие чистоту передачи сообщений, принято называть "шумом" в процессе коммуникаций.

"Шум" – это любой фактор, способный нарушить четкость передачи послания в любой момент процесса коммуникации.

Источники шума варьируются от сложности или неточности языка послания до различий в восприятии людей его получающих, из-за которых может изменяться смысл в процессах кодирования и декодирования. Например, говорят о шуме, когда сообщения плохо закодированы (написаны неясно) или плохо декодированы (не поняты), или когда каналы коммуникации не эффективны (внимание получателя отвлечено от сообщения). Помехой может служить также различие в организационном статусе между руководителем и подчиненным, что также затрудняет точную передачу информации.

Таким образом, шум но своей сути является барьером в процессе коммуникации.

Определенный шум в процессе коммуникации есть всегда, поэтому на каждом этапе процесса обмена информацией происходит некоторое искажение смысла. Если уровень шума достаточно высок, то может происходить заметная потеря смысла послания или даже полная блокировка информационного обмена.

Рис. 1.5.

Таким образом, коммуникационный процесс – это последовательность действий при общении людей. Цель коммуникационного процесса – обеспечение понимания информации, являющейся предметом обмена. Коммуникационный процесс имеет определенные элементы и происходит поэтапно. На каждом из этапов может возникать "шум" (помехи в коммуникациях), который способен существенно понижать их эффективность.

Как было отмечено выше, главная цель коммуникации – обмен различного рода информацией. Каждое предприятие пронизано сетью информационных каналов, которые предназначены для ее сбора, анализа и систематизации. При этом руководитель во многих случаях может выбирать и использовать наиболее удобные для него каналы общения с другими руководителями и подчиненными. Например, обсуждать проблему можно в личной беседе или по телефону; допускается передать работникам информацию, написав записку или письмо, или повесить сообщение на доску объявлений. Конкретный канал во многом определяется природой сообщения (рис. 1.6).

Коммуникативные каналы классифицируют по их пропускной способности.

Пропускная способность канала – это объем информации, который может быть передан через него за один коммуникативный эпизод.

В целом коммуникация становится более эффективной при использовании всего множества каналов как письменных, так и устных.

На емкость коммуникативных каналов влияют три фактора :

  • способность обрабатывать несколько сигналов одновременно;
  • возможность обеспечения быстрой, двусторонней обратной связи;
  • способность обеспечивать личный подход к коммуникациям.

С точки зрения этих возможностей самым лучшим средством является личное общение. Только оно гарантирует прямое воздействие, передачу множественных информационных сигналов, немедленную обратную связь и личный подход.

Общение по телефону или с помощью других электронных средств ускоряет процесс коммуникации, однако в нем отсутствует "эффект присутствия".

Персональные письменные сообщения – записки, письма, замечания – тоже могут иметь личностную направленность, но они доносят только написанные на бумаге слова и не могут обеспечить быструю обратную связь.

Безличные коммуникативные каналы – бюллетени, стандартные компьютерные отчеты – являются самыми "мелкими", их пропускная способность ограничена в наибольшей степени.

По сути, эффективность способа коммуникации зависит от того, насколько он подходит для той информации, которую нужно передать. В частности, исследования показали, что в тех случаях, когда информация носит неоднозначный характер (т.е. нуждается в разъяснениях), устные средства связи более эффективны, чем письменные. Однако письменная форма передачи сообщений более действенна, когда информация очевидна, проста и прямолинейна. Например, доведение до работников рабочих заданий, информирование их о принятых решениях или закрепление в письменной форме достигнутых ранее договоренностей.

В любом случае важен не только вопрос, какую форму коммуникации выбрать, но и как ее правильно использовать. В табл. 1.1 приведены некоторые полезные советы по использованию традиционных средств коммуникаций .

Средство коммуникации

Наилучшее применение

Правила использования

Электронная почта

Отправка ключевой информации, подтверждение регистрации

  • Придерживайтесь краткости изложения
  • Слова сохраняются навсегда, поэтому избегайте саркастических или оскорбительных замечаний

Отправка готового документа, требующего подписи, проекта для одобрения или сообщения человеку, не имеющему доступа к электронной почте

  • Предварительно позвоните и предупредите об отправке факса
  • Позвоните после отправления факса, чтобы удостовериться

в его получении

Избегайте посылать личную или конфиденциальную информацию, которую могут увидеть другие

Отправка объемного и сложного материала или благодарственных писем

  • Убедитесь в отсутствии ошибок
  • В начале документа выделите ключевые моменты
  • Избегайте длинных абзацев, выделяйте их графически
  • Будьте сосредоточены, избегайте большого количества заданий

Передача информации, несущей эмоциональную нагрузку (если личная встреча невозможна)

  • Заранее договаривайтесь о времени важных звонков
  • Выслушивайте собеседника, не перебивая
  • Проводите беседу кратко, четко выделяя важные моменты
  • Убедитесь, что обсуждение личных вопросов не может быть подслушано

Передача более деликатной и щепетильной информации

Запланируйте встречу и придите подготовленным к обсуждению вопросов

  • См.: Дафт Р. Л. Уроки лидерства.
  • См.: Дафт Р. Л. Уроки лидерства.
  • Гринберг Дж., Бейрон Р. Организационное поведение: от теории к практике. М., 2004. С. 441.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Характеристика локальных компьютерных сетей и рассмотрение основных принципов работы глобальной сети Интернет. Понятие, функционирование и компоненты электронной почты, форматы ее адресов. Телекоммуникационные средства связи: радио, телефон и телевидение.

    курсовая работа , добавлен 25.06.2011

    Изучение радиотехнических систем передачи информации. Назначение и функции элементов модели системы передачи (и хранения) информации. Помехоустойчивое кодирование источника. Физические свойства радиоканала как среды распространения электромагнитных волн.

    реферат , добавлен 10.02.2009

    Технологии построения сетей передачи данных. Обоснование программных и аппаратных средств системы передачи информации. Эргономическая экспертиза программного обеспечения Traffic Inspector. Разработка кабельной системы волоконно-оптических линий связи.

    дипломная работа , добавлен 24.02.2013

    Что такое ТСР? Принцип построения транкинговых сетей. Услуги сетей тракинговой связи. Технология Bluetooth - как способ беспроводной передачи информации. Некоторые аспекты практического применения технологии Bluetooth. Анализ беспроводных технологий.

    курсовая работа , добавлен 24.12.2006

    Классическое шифрование передачи криптографического ключа. Протоколы квантовой криптографии, их сущность и содержание. Анализ возможности передачи конфиденциальной информации по квантовым каналам связи. Способы исправления ошибок при передаче информации.

    курсовая работа , добавлен 08.05.2015

    Состав и технические требования к системе передачи информации с подстанции. Определение объемов телеинформации. Выбор и сопряжение аппаратуры преобразования и передачи телемеханической информации с аппаратурой связи. Расчет высокочастотного тракта по ЛЭП.

    курсовая работа , добавлен 14.09.2011

    Средства связи как технологии передачи информации: история, характеристика. Проводные, кабельные, воздушные, оптоволоконные линии связи. Беспроводные, радиорелейные, спутниковые системы; буквенно-цифровые сообщения. Сотовая связь, Интернет-телефония.

    курсовая работа , добавлен 18.12.2012

Схематично процесс передачи информации показан на рисунке. При этом предполагается, что имеется источник и получатель информации. Сообщение от источника к получателю передается посредством канала связи (информационного канала).

Рис. 3. – Процесс передачи информации

В таком процессе информация представляется и передается в форме некоторой последовательности сигналов, символов, знаков. Например, при непосредственном разговоре между людьми происходит передача звуковых сигналов - речи, при чтении текста человек воспринимает буквы – графические символы. Передаваемая последовательность называется сообщением. От источника к приемнику сообщение передается через некоторую материальную среду (звук - акустические волны в атмосфере, изображение – световые электромагнитные волны). Если в процессе передачи используются технические средства связи, то их называют каналами передачи информации (информационными каналами). К ним относятся телефон, радио, телевидение.

Можно говорить о том, что органы чувств человека выполняют роль биологических информационных каналов. С их помощью информационное воздействие на человека доносится до памяти.

Клодом Шенноном , была предложена схема процесса передачи информации по техническим каналам связи, представленная на рисунке.

Рис. 4. – Процесс передачи информации по Шеннону

Работу такой схемы можно пояснить на процессе разговора по телефону. Источником информации является говорящий человек. Кодирующим устройством – микрофон телефонной трубки, с помощью которого звуковые волны (речь) преобразуются в электрические сигналы. Каналом связи является телефонная сеть (провода, коммутаторы телефонных узлов через которые проходит сигнал)). Декодирующим устройством является телефонная трубка (наушник) слушающего человека – приемник информации. Здесь пришедший электрический сигнал превращается в звук.

Связь, при которой передача производится в форме непрерывного электрического сигнала, называется аналоговой связью.

Под кодированием понимается любое преобразование информации, идущей от источника, в форму, пригодную для ее передачи по каналу связи.

В настоящее время широко используется цифровая связь, когда передаваемая информация кодируется в двоичную форму (0 и 1 - двоичные цифры), а затем декодируется в текст, изображение, звук. Цифровая связь является дискретной.

Термином "шум" называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам: плохое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же каналам. В таких случаях необходима защита от шума.

В первую очередь применяются технические способы защиты каналов связи от воздействия шумов. Например, использование экранного кабеля вместо "голого" провода; применение разного рода фильтров, отделяющих полезный сигнал от шума и пр.

Клодом Шенноном была разработана специальная теория кодирования, дающая методы борьбы с шумом. Одна из важным идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части информации при передаче может быть компенсирована.

Однако, нельзя делать избыточность слишком большой. Это приведет к задержкам и подорожанию связи. Теория кодирования К. Шеннона как раз и позволяет получить такой код, который будет оптимальным. При этом избыточность передаваемой информации будет минимально-возможной, а достоверность принятой информации - максимальной.

В современных системах цифровой связи часто применяется следующий прием борьбы с потерей информации при передаче. Все сообщение разбивается на порции - блоки. Для каждого блока вычисляется контрольная сумма (сумма двоичных цифр), которая передается вместе с данным блоком. В месте приема заново вычисляется контрольная сумма принятого блока, и если она не совпадает с первоначальной, то передача данного блока повторяется. Так будет происходить до тех пор, пока исходная и конечная контрольные суммы не совпадут.

Скорость передачи информации – это информационный объем сообщения, передаваемого в единицу времени. Единицы измерения скорости информационного потока: бит/с, байт/с и др.

Технические линии информационной связи (телефонные линии, радиосвязь, оптико-волоконный кабель) имеют предел скорости передачи данных, называемый пропускной способностью информационного канала . Ограничения на скорость передачи носят физический характер.

Коммуникация, связь, радиоэлектроника и цифровые приборы

В качестве сигнала можно использовать любой физический процесс изменяющийся в соответствии с переносимым сообщением. целесообразно ввести параметры передаваемого сигнала которые являются основными с точки зрения его передачи. Такими параметрами являются длительность сигнала Тс его ширина спектра Fc и динамический диапазон Dc. Длительность сигнала Тс является естественным его параметром определяющим интервал времени в пределах которого данный сигнал существует.

Лекция №1

1.Введение. Предмет и основные понятия радиоэлектроники.

2.Основные принципы передачи и приема информации.

Введение. Предмет и основные понятия радиоэлектроники.

Радиоэлектроника — собирательное название обширного комплекса обл а стей науки и техники, связанного с проблемами передачи, приема и преобр а зования информации с помощью электромагнитных колебаний радиочасто т ного диапазона. Радиоэлектроника охватывает радиотехнику, радиофизику и электронику , а также ряд новых областей, выделившихся в результате их развития и дифференциации. В основном радиоэлектроника «обязана» усп е хам развития радиотехники.

Радиотехника (от лат. radio — испускаю лучи; от греч. techne — искусство, мастерство) является основным фундаментом р а диоэлектроники, и поэтому часто под термином «радиоэлектроника» понимают радиотехнику. В техническом аспекте радиотехника связана с разр а боткой разнообразных систем, предназначенных для передачи и приема информации с помощью электромагнитных колебаний (в том числе и оптич е ских).

К числу радиотехнических систем относятся:

Системы звукового и телевизионного радиовещания;

Глобальные космические (спутниковые) системы радиосвязи, телевизионн о го вещания и радионавигации;

Системы подвижной радиосвязи с помощью наземных средств — сотовая,

профессиональная (транкинговая), пейджинговая и беспроводная связь;

Системы связи с воздушными, подвижными наземными объектами,

морскими надводными и подводными судами и другие виды радиосвязи;

Системы радиоуправления, биотелеметрии и радиотелеметрического

контроля разнообразных объектов;

Радиотехнические системы комплексов радиолокационной, противово з душной и противоракетной обороны;

Метеорологические и информационно-измерительные системы и системы различного мониторинга, в том числе космического;

Мультимедийные и прочие системы.

К радиотехнике относятся также радиоастрономия, радиография, радиовид е ние, радиоразведка и радиопротиводействие, промышленная электроника и

радиотехника, медицинская радиотехника и пр.

Радиофизика — раздел физики, в котором изучаются физические основы радиотехники. Важнейшими проблемами радиофизики являются исследов а ние возбуждения и преобразования электрических сигналов и помех, а также и з лучения и распространения электромагнитных колебаний.

Развитие радиотехники непосредственно связано с созданием элементной б а зы, в частности, с разработкой электронных приборов для систем передачи информации на расстояние с помощью электромагнитных колебаний. Дал ь нейшее развитие радиотехники непрерывно ставило задачи по созданию и внедрению новых электронных элементов и узлов, что привело к появлению самостоятельной отрасли науки — электроники.

Электроника — наука о взаимодействии заряженных частиц (электронов, ионов) с электромагнитными полями и методах создания электронных пр и боров и устройств, используемых в основном для передачи, хранения и обр а ботки информации, возникла в начале XX в. Первоначально развивалась вакуумная электроника; на ее основе были созданы электровакуумные приб о ры. электроника четко разделилась на энергетическую или силовую электр о нику (мощные выпрямители, инверторы и т. д.) и микроэлектронику. Ми к роэлектроника — раздел электроники, связанный с созданием интегральных схем — неделимых изделий, выполняющих определенные функции по пр е образованию и обработке сигналов и имеющих высокую плотность уп а ковки

электрически соединенных элементов.

Основные принципы передачи и приема информации.

В радиоэлектронике и технике связи перенос информации в пространстве осуществляется с помощью электромагнитных колебаний (волн). По опред е лению К. Шеннона: «Информация — послание, которое уменьшает неопр е деленность» Информация — нематериальное свойство материи и подчиняе т ся определенным законам. Важнейший из них закон сохранения информ а ции: «Информация сохраняет свое значение в неизменном виде, пока остается в неизменном виде носитель информации — память». Совоку п ность знаков (символов), отображающая (несущая) информацию, называется сообщением . Сообщение может быть представлено в виде текста телегра м мы, сведений, передаваемых по телефону, радио, телевидению и другим в и дам радиосвязи, совокупности электронных данных, хранящихся на магни т ных носителях — дисках, флэш-памяти (от англ. Flash — «вспышка»; пер е программируемая постоянная энергонезависимая память, допускающая мн о гократную перезапись), используемых в компьютерах. Последний вид и н формации получил название электронной . Передают сообщение с помощью материального носителя. Например, при передаче сообщения по почте нос и телем служит бумага. В радиотехнике и радиосвязи носителями являются различные сигналы. Причем для передачи информации используются спец и фические сигналы — физические процессы, значения параметров которых отражают передаваемые сообщения. В кач е стве сигнала можно использовать любой физический процесс, изменяющийся в соответствии с переносимым сообщением. Сигнал — физический процесс (или явление), несущий инфо р мацию о состоянии какого-либо объекта наблюдения. По своей физической природе радиотехнические сигналы бывают электрическими, электромагни т ными, оптическими, акустическими, магнитостатическими и др. В радиоте х нике, радиоэлектронике и системах связи в основном используют электрич е ские (в последние годы и оптические) сигналы. Физической величиной, х а рактеризующей электрический сигнал, является напряжение, несколько реже ток (иногда мощность).

Электрический сигнал u(t) представляет зависимость напряжения от врем е ни. Сигналы, отражающие информацию, могут воздействовать на преобраз о ватели и усилители сигналов. Преобразователи сигналов делятся на два кла с са. На преобразователи одного класса воздействует физический процесс о д ной природы (например, звуковой сигнал), а на выходе получается сигнал другой природы (в частности, электрический сигнал на выходе микрофона, телевизионной камеры и пр.). В преобразователях (и усилителях) другого класса осуществляется, как правило, преобразование (и усиление) электрич е ских сигналов без изменений их физической природы. Передаваемые (далее часто, полезные ) сигналы формируют путем изменения тех или иных параметров физического носителя в с о ответствии с передаваемым сообщением. Этот процесс изменения параме т ров носителя сообщений в радиотехнике и связи называют модуляцией. целесообразно ввести параметры передаваем о го сигнала, которые являются основными с точки зрения его передачи. Такими п а раметрами являются длительность сигнала Тс , его ширина спектра Fc и д и намический диапазон Dc . Длительность сигнала Тс является естественным его параметром, определяющим интервал времени, в пределах которого да н ный сигнал существует. Ширина спектра передаваемого сигнала Fc дает представление о скорости изменения этого сигнала внутри интервала его с у ществования. Спектр передаваемого сигнала в принципе может быть неогр а ниченным. Однако для любого сигнала можно указать диапазон частот, в пределах которого сосредоточена его основная (до 90 %) энергия. Этим ди а пазоном и определяется ширина спе к тра полезного сигнала.

Источник сообщений (источник информации; information source) может быть аналоговым или дискретным. Выход аналогового источника может иметь любое значение из непрерывного диапазона амплитуд, тогда как выход источника дискретной информации — значения из конечного множества амплитуд.

В обоих случаях для передачи сообщения используется несущее колебание. Несущая необходима для решения двух задач:

а) уменьшения размера антенн (h=λ/4; λ=3*10 8 / f );

б) размещения большого количества станций в эфире.

Процесс, в результате которого один или несколько параметров несущего колебания изменяется по закону передаваемого сообщения, называется модуляцией. Модулированное высокочастотное колебание относят к вторичным сигналам и называют радиосигналом.

Рис. Временные диаграммы к процессу амплитудной модуляции:

а — модулирующий сигнал; б — несущее колебание; в — АМ-сигнал

Для несущей зависимость напряжения от времени определяется выражением

где U H — амплитуда (максимальная высота синусоиды; заметим, что амплитудой сигнала называют модуль наибольшего его отклонения от нуля, следовательно, амплитуда всегда положительна) в отсутствие модуляции (амплитуда несущего колебания); <ω 0 — угловая (круговая) частота; φ 0 — начальная фаза; Ψ= ω 0 t + φ 0 — полная (текущая или мгновенная) фаза.

Круговая частота ω 0 , период колебаний Т 0 и циклическая частота f 0 = 1/T 0

связаны между собой соотношением

При амплитудной модуляции огибающая амплитудно-модулированного сигнала (АМ-сигнала) U H (t) совпадает по форме с модулирующим сигналом, поэтому выражение примет вид:

Здесь k А — безразмерный коэффициент пропорциональности, такой, что всегда U H (t) ≥ 0.

Аналоговые системы радиосвязи. Упрощенная структурная схема канала аналоговой (с непрерывными сигналами) системы радиосвязи (радиоканала) с так называемой амплитудной модуляцией (AM; от англ. — amplitude modulation, AM) несущего колебания представлена на рис.

Рис. Упрощенная структурная схема канала аналоговой системы радиосвязи

В общем случае исходное сообщение s = s(t) не является электрическим, может иметь любую физическую природу (подвижное изображение, звуковое колебание и т. п.), и поэтому его необходимо преобразовать в электрический (первичный) сигнал y(t) с помощью электрофизического преобразователя сигнала (ЭФПС), проще преобразователя сигнала, который часто совмещают с кодирующим устройством — кодером. Источником сообщения при телефонной передаче является говорящий; при телевизионной — передаваемое изображение и т. д. При передаче речи и музыки преобразователем сигнала и кодером служит микрофон; при передаче изображения — передающие телевизионные трубки, или специальные матрицы. В телеграфии при преобразовании сигнала последовательность элементов письменного сообщения (букв) с помощью телеграфного аппарата заменяется последовательностью кодовых символов (0, 1 или точка, тире), которая одновременно преобразуется в последовательность электрических импульсов постоянного тока разной длительности, полярности и т. д.

Цифровые (дискретные) системы радиосвязи (digital communication system — DCS). Это системы, в которых и передаваемый и принимаемый сигналы являются последовательностями дискретных символов. Типичным примером такой системы является телеграфия, в которой и сообщение, и сигнал являются последовательностями точек, тире и промежутков между ними. В цифровых (дискретных, импульсных) системах передачи информации энергия полезного сигнала излучается не непрерывно (как при синусоидальном переносчике — гармонической несущей), а в виде коротких импульсов. Это позволяет при той же общей энергии излучения, что и при непрерывном переносчике, увеличить пиковую (максимальную) мощность в соответствующем импульсе и тем самым повысить помехоустойчивость приема. В цифровых системах связи задачей приемника является не точное воспроизведение переданного сигнала, а определение на основе искаженного шумами сигнала, какой именно сигнал из конечного набора был послан передатчиком. В качестве переносчика первичного сигнала e(t) в цифровых системах радиосвязи используют периодическую последовательность видео- и радиоимпульсов.

Упрощенная структурная схема радиоканала цифровой системы связи

Рис. Траектории распространения волн при разных углах падения

Рис. Скачковое метровые электромагнитные колебания, распространение волн пространственными лучами

Рис. Распространение метровых волн


А также другие работы, которые могут Вас заинтересовать

60589. Диагностика зависания и неисправностей компьютера 2.75 MB
Если контакты погнуты аккуратно разогните их; проверьте правильно ли установлена видеоплата и снова включите дисплей а затем ПК; если дисплей работает нормально в течение процедуры самотестирования POST а при загрузке операционной системы Windows...
60590. Дидактические игры и упражнения на уроке математике для обучающихся с нарушениями интеллекта 78.5 KB
Включенные в урок дидактические игры удовлетворяют требованиям обучения и воспитания сближают новую познавательную деятельность обучающегося с уже привычной для него игровой облегчая переход от игры к серьезной умственной работе.
60591. ВИКОРИСТАННЯ СОЦІАЛЬНИХ МЕРЕЖ У НАВЧАЛЬНО-ВИХОВНОМУ ПРОЦЕСІ В ЗАГАЛЬНО-ОСВІТНІХ НАВЧАЛЬНИХ ЗАЙЛАДАХ 1.68 MB
Соціальні мережі дають можливість безпосередньо підводити вихованців до тих чи інших дій. Корисного аналізу того чи іншого питання у неформальні обстановці. Соціальні мережі в певній мірі дають можливість оцінити особисте життя вихованців. Часто розміщені фото, окремі альбоми дозволяють встановити напрямки розвитку уподобань і схильностей учнів.
60592. Особенности развития речи у детей раннего возраста 316 KB
Овладение речью как средством общения возможно лишь на основе достаточно развитого фонематического слуха, который осуществляет определенный анализ, отделяя высоту звуков от их фонематических особенностей, и тонкое дифференцирование самих фонематических различий.
60593. Игровые моменты и опорные конспекты на уроках истории 1.8 MB
О первостепенном значении игры для естественного развития ребёнка свидетельствует тот факт что ООН провозгласила игру универсальным и неотъемлемым правом ребёнка. Включаясь в процесс игры дети научаются жить в нашем символическом...
60594. Побудова діаграм і графіків в електронних таблицях MS Excel 1.39 MB
Пізнавальна мета уроку: закріпити навички роботи з ЕТ Excel; поглибити знання учнів по темі Діаграми; навчити учнів будувати різноманітні типи діаграм графіків у електронній таблиці...
60597. Освітньо-кваліфікаційна характеристика випускника професійно-технічного навчального закладу 284 KB
Повинен уміти: виконувати операції з базами даних на компютерному устаткуванні введення опрацювання накопичення систематизація та виведення інформації відповідно до затверджених процедур та інструкцій з використанням периферійного обладнання систем передавання приймання даних; готувати до роботи устаткування: магнітні диски стрічки картки папір; працювати в текстовому редакторі з введенням тексту та його редагуванням; оперувати з файлами записувати текст на дискету або переносити на папір за допомогою друкувальних пристроїв;...