Сайт о телевидении

Сайт о телевидении

» » Кодеры и декодеры. Кодеры и декодеры с линейной шкалой квантования

Кодеры и декодеры. Кодеры и декодеры с линейной шкалой квантования

Логические устройства разделяют на два класса: комбинационные и последовательностные.

Устройство называют комбинационным , если его выходные сигналы в некоторый момент времени однозначно определяются входными сигналами, имеющими место в этот момент времени.

Иначе устройство называют последовательностным или конечным автоматом (цифровым автоматом, автоматом с памятью). В последовательностных устройствах обязательно имеются элементы памяти. Состояние этих элементов зависит от предыстории поступления входных сигналов. Выходные сигналы последовательностных устройств определяются не только сигналами, имеющимися на входах в данный момент времени, но и состоянием элементов памяти. Таким образом, реакция последовательностного устройства на определенные входные сигналы зависит от предыстории его работы.

Среди как комбинационных, так и последовательностных устройств выделяются типовые, наиболее широко используемые на практике.

Шифраторы

Шифратор - это комбинационное устройство, преобразующее десятичные числа в двоичную систему счисления, причем каждому входу может быть поставлено в соответствие десятичное число, а набор выходных логических сигналов соответствует определенному двоичному коду. Шифратор иногда называют «кодером» (от англ. coder) и используют, например, для перевода десятичных чисел, набранных на клавиатуре кнопочного пульта управления, в двоичные числа.

Если количество входов настолько велико, что в шифраторе используются все возможные комбинации сигналов на выходе, то такой шифратор называется полным, если не все, то неполным. Число входов и выходов в полном шифраторе связано соотношением n= 2 m , где n- число входов, m- число выходов.

Так, для преобразования кода кнопочного пульта в четырехразрядное двоичное число достаточно использовать лишь 10 входов, в то время как полное число возможных входов будет равно 16 (n = 2 4 = 16), поэтому шифратор 10×4 (из 10 в 4) будет неполным.

Рассмотрим пример построения шифратора для преобразования десятиразрядного единичного кода (десятичных чисел от 0 до 9) в двоичный код. При этом предполагается, что сигнал, соответствующий логической единице, в каждый момент времени подается только на один вход. Условное обозначение такого шифратора и таблица соответствия кода приведены на рис. 3.35.

Используя данную таблицу соответствия, запишем логические выражения, включая в логическую сумму те входные переменные, которые соответствуют единице некоторой выходной пере­менной. Так, на выходе у 1 будет логическая «1» тогда, когда логическая «1» будет или на входе Х 1 ,или Х 3 , или Х 5 , или Х 7 , или X 9 , т. е. у 1 = Х 1 + Х 3 + Х 5 + Х 7 +X 9

Аналогично получаем у 2 = Х 2 + Х 3 + Х 6 + X 7 у 3 = Х 4 + Х 5 + Х 6 + Х 7 у 4 = Х 8 + X 9

Представим на рис. 3.36 схему такого шифратора, используя элементы ИЛИ.
На практике часто используют шифратор с приоритетом. В таких шифраторах код двоичного числа соответствует наивысшему номеру входа, на который подан сигнал «1», т. е. на приоритетный шифратор допускается подавать сигналы на несколько входов, а он выставляет на выходе код числа, соответствующего старшему входу.

Рассмотрим в качестве примера (рис. 3.37) шифратор с приоритетом (приоритетный шифратор) К555ИВЗ серии микросхем К555 (ТТЛШ).

Шифратор имеет 9 инверсных входов, обозначенных через PR l , …, PR 9 . Аббревиатура PR обозначает «приоритет». Шифратор имеет четыре инверсных выхода B l , …, B 8 . Аббревиатура B означает «шина» (от англ. bus). Цифры определяют значение активного уровня (нуля) в соответствующем разряде двоичного числа. Например, B 8 обозначает, что ноль на этом выходе соответствует числу 8. Очевидно, что это неполный шифратор.

Если на всех входах - логическая единица, то на всех выходах также логическая единица, что соответствует числу 0 в так называемом инверсном коде (1111). Если хотя бы на одном входе имеется логический ноль, то состояние выходных сигналов определяется наибольшим номером входа, на котором имеется логический ноль, и не зависит от сигналов на входах, имеющих меньший номер.

Например, если на входе PR 1 - логический ноль, а на всех остальных входах - логическая единица, то на выходах имеются следующие сигналы: В 1 − 0, В 2 − 1, В 4 − 1, В 8 − 1, что соответствует числу 1 в инверсном коде (1110).

Если на входе PR 9 логический ноль, то независимо от других входных сигналов на выходах имеются следующие сигналы: В 1 − 0 , В 2 − 1 , В 4 − 1, В 8 − 0, что соответствует числу 9 в инверсном коде (0110).

Основное назначение шифратора - преобразование номера источника сигнала в код (например, номера нажатой кнопки некоторой клавиатуры).


Дешифраторы

Называется комбинационное устройство , преобразующее n-разрядный двоичный код в логический сигнал, появляющийся на том выходе, десятичный номер которого соответствует двоичному коду. Число входов и выходов в так называемом полном дешифраторе связано соотношением m= 2 n , где n- число входов, а m- число выходов. Если в работе дешифратора используется неполное число выходов, то такой дешифратор называется неполным. Так, например, дешифратор, имеющий 4 входа и 16 выходов, будет полным, а если бы выходов было только 10, то он являлся бы неполным.

Обратимся для примера к дешифратору К555ИД6 серии К555 (рис. 3.38).


Дешифратор имеет 4 прямых входа, обозначенных через А 1 , …, А 8 . Аббревиатура A обозначает «адрес» (от англ.address). Указанные входы называют адресными. Цифры определяют значения активного уровня (единицы) в соответствующем разряде двоичного числа. Дешифратор имеет 10 инверсных выходов Y 0 , …, Y 9 . Цифры определяют десятичное число, соответствующее заданному двоичному числу на входах. Очевидно, что этот дешифратор неполный.

Значение активного уровня (нуля) имеет тот выход, номер которого равен десятичному числу, определяемому двоичным числом на входе. Например, если на всех входах - логические нули, то на выходе Y 0 - логический ноль, а на остальных выходах - логическая единица. Если на входе А 2 - логическая единица, а на остальных входах - логический ноль, то на выходе Y 2 - логический ноль, а на остальных выходах - логическая единица. Если на входе - двоичное число, превышающее 9 (например, на всех входах единицы, что соответствует двоичному числу 1111 и десятичному числу 15), то на всех выходах - логическая единица.

Дешифратор - одно из широко используемых логических устройств. Его применяют для построения различных комбинационных устройств.

Рассмотренные шифраторы и дешифраторы являются примерами простейших преобразователей кодов.

Преобразователи кодов

В общем случае, называют устройства, предназначенные для преобразования одного кода в другой, при этом часто они выполняют нестандартные преобразования кодов. Преобразователи кодов обозначают через X/Y.

Рассмотрим особенности реализации преобразователя на примере преобразователя трехэлементного кода в пятиэлементный. Допустим, что необходимо реализовать таблицу соответствия кодов, приведенную на рис. 3.39.



Здесь через N обозначено десятичное число, соответствующее входному двоичному коду. Преобразователи кодов часто создают по схеме дешифратор - шифратор. Дешифратор преобразует входной код в некоторое десятичное число, а затем шифратор формирует выходной код. Схема преобразователя, созданного по такому принципу, приведена на рис. 3.40, где использован матричный диодный шифратор. Принцип работы такого преобразователя довольно прост. Например, когда на всех входах дешифратора логический «О», то на его выходе 0 появляется логическая «1», что приводит к появлению «1» на выходах у 4 и у 5 , т. е. реализуется первая строка таблицы соответствия кодов.


Промышленность выпускает большое число шифраторов, дешифраторов и преобразователей кодов, таких как дешифратор 4×16 со стробированием (К555ИДЗ), преобразователь кода для управления светодиодной матрицей 7×5 (К155ИД8), преобразователь кода для управления шкальным индикатором (К155ИД15) и др.

Кодир. устройство предназначено для преобразования отсчётов напряжения сигнала U в эквивалентную кодовую комбинацию (или число N). В зависимости от вида функции преобразования N=φ(U) кодеры классифицируются по вариантам:

1) кодеры с линейной шкалой квантования, когда N=k*|U/Δ|, k=const,Δ=const (на рис-1);

2) кодеры с нелинейной шкалой квантования N≠k*|U/Δ| (на рис-2).

По принципу действия различают след. Типы кодеров: а) кодеры последовательного счёта; б) кодеры с поразрядным взвешиванием; в) матричные кодеры.

Линейные кодеры последовательного счёта строится по схеме рис 13.9, где 1 - широтно-импульсный модулятор; 2 – схема И; 3 – генератор импульсов; 4 – последовательный счётчик импульсов; 5 – буферная память. Входной АИМ сигнал U 1 преобразуется в ШИМ сигнал U 2 . Длительность импульсов ШИМ сигнала τi пропорциональна амплитуде импульсов входного АИМ сигнала. Модулированные по длительности импульсы подаются на первый вход логической ячейки И, на второй вход которой подаётся последовательность коротких импульсов U 3 от генераторного оборудования. На выходе ячейки И получим пачки импульсов U 4 ; количество импульсов в каждой пачке Ni пропорционально длительности импульсов ШИМ и, следовательно, пропорционально амплитуде отсчётных импульсов АИМ сигнала U 1 . Далее сигнал U 4 поступает на последовательный счётчик. Структ. схема счётчика вместе с буфером памяти на рис 13.11. Ячейки последовательного счётчика на триггерах Т1-Тm производят счёт импульсов, содержащихся в каждой пачке, и после считывания состояний ячеек счётчика формируется двоичная m-разрядная кодовая группа в параллельном коде. По окончании процесса счёта перед поступлением на счётчик следующей пачки импульсов производится сброс ячеек счётчика (опустошение), и он готов для дальнейшего счёта. Такой счётчик рассчитан на максимальное число импульсов Nmax=2 m , где m – число символов в кодовой комбинации. Триггеры Т1’, Т2’,…,Тm’ являются триггерами промежуточной памяти и относится к блоку буферной памяти. Сигнал от этих триггеров подаётся далее на логические ячейки И1-Иm, на другой вход которых поступают соответствующие импульсы y1-ym опроса состояния буферной памяти. Выходы ячеек И подсоединены ко входу многовходовой логической ячейки ИЛИ, на входе которой получаем ИКМ сигнал в последовательном коде.

Среди достоинств кодера линейного счёта можно назвать простоту, надёжность и повышенную точность работы. К недостаткам – необходимы логические элементы с высоким быстродействием, определяемым величиной F0 (частота поступления счётных импульсов).

Линейные декодеры.

Декодирование цифрового сигнала состоит в преобразовании кодовых групп цифрового сигнала (ЦС) в последовательность выборок соответствующей амплитуды. Известны различные варианты построения линейных декодеров. Наиболее часто применяются декодеры взвешивающего типа. Они могут быть построены на основе последовательной или параллельной обработки импульсов кодовых групп. Очевидно, что во втором случае скорость работы функциональных узлов декодера уменьшается в m раз. Поэтому практическое применение находят декодеры параллельного кода. Взвешивающий декодер состоит преобразователя последовательного кода в параллельный – 1, выполненного на триггерах по схеме рис. 13.11 (без схем И, ИЛИ), и блока эталонных напряжений – 2. Суммарное напряжение на выходе декодера с учётом всех символов кодовой группы будет. Для уменьшения ошибки квантования к этому напряжению добавляется напряжение величиной Uэтm/2. Практически это делается с использованием блока эталонов.

Конец работы -

Эта тема принадлежит разделу:

Сигналы электросвязи и методы их описания. Параметры и характеристики первичных сигналов электросвязи

МСП комплекс техн средств обеспечивающих одновременную и независимую передачу инф и от большого числа абонентов.. Первичные каналы e t eN t от абонентов n абонентов поступает на вход.. Структ схема АСП в состав обор я окон станций МСП с ЧРК входят..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Сигналы электросвязи и методы их описания. Параметры и характеристики первичных сигналов электросвязи
Рассмотрим осн параметры сигналов как числовые хар-ки моделированного случайного процесса. Пост составляющая сигнала – среднее значение случ процесса. Переменная сост-ая – центрир

Уровни передачи
Уровенем передачи в нек. точке канала наз. log-ое преоб-е отношения энерг-ого пар-ра S к отсчетному значению этого же пар-р S0. В общем случае правило преобразования опред-ся формулой: р

Параметры и характеристики типовых каналов и трактов
Св-ва каналов и их кач-во опр. след-ми пар-ми и хар-ми: 1)Zвх и Zвых и их допуст. отклонение от номин-х знач-й. Отклонение Zвх и Zвых оценив-ся к-том отражения: , Zн-номин-е, Zр – реальное

Построение каналов двухстороннего действия. Канал ТЧ. Дифференциальная система. Устойчивость двухсторонних каналов
Каналы 2х стороннего действия необходимы для возможности осуществления телефонных разговоров. Поскольку для передачи телефонных сигналов используются каналы ТЧ, то они д.б. двусторонними. Все канал

Группообразование в МСП с ЧРК. Методы формирования спектров групп каналов
Для исп-я типовой преобр-й апп-ры и обеспечения как национальной, так и межд-й связи принято след-е стандартное группообр-е: ПГ – 12 каналов ТЧ (60-108кГц), ВГ 5 ПГ (312-552), ТГ – 5 ВГ (812-2044),

Формирование линейных спектров частот МСП с ЧРК. Построение линейных трактов МСП с ЧРК
При выборе граничных частот линейного спектра необх. учитывать тип направляющей среды. В системах с МСП исп-ся коаксиальный кабель, нижняя граничная частота лин. спектра выбирается из условия обесп

Каналообразующая аппаратура МСП с ЧРК. Структурные сх СИП-60 и СИП-300
КОА явл-ся типовой д/всех МСП с ЧРК, что позволяет упростить и удешевить их произ-во и эксплуатацию. КОА размещается на стойках: индивидуальных преобразователей (СИП), первичных преоб-й (СПП), втор

Принципы построения МСП с ВРК. Преимущества ЦСП перед АСП. Иерархия ЦСП
Основа построения всех м/дов с ВРК явл-ся теорема дискретизации Котельникова, в соответствии с к-ой непрерывный первичный сигнал a(t) с ограниченной шириной спектра мб передан с помощью последовате

Принципы построения систем передачи с ВРК.
Основой построения всех МСП с ВРК явл-ся теорема дискретизации Котельникова, в соотв-вии с к-рой непрерывный первичный сигнал с ограниченной шириной спектра м.б. восстановлен по его отсчётам, взяты

Дискретизация непрерывного сигнала. Спектр АИМ сигнала. Искажения дискретизации. Дискретизация групповых сигналов
В СП с ВРК используется АИМ. Различают АИМ 1ого рода и 2ого рода. При АИМ-I амплитуда отсчётов изменяется в соответствии с изменениями модулирующего сигнала. При АИМ-II амплитуда отсчёта постоянна

Кодирование квантованных сигналов. Типы кодов. Линейное и нелинейное кодирование
Применяют следующие коды: симметрично-двоичный, натуральный двоичный, код Грея. Симметричный используется при кодировании двуполярных сигналов. Для положительных отсчётов знак «1», для отрицательны

Временной спектр ИКМ-30, ИКМ-120
Цикл передачи – интервал времени, в течение к-го передаются кодовые комбинации всех каналов ЦСП, а также символы необх. служебных каналов. 1) ИКМ-30: длительность цикла равна периоду дискр

Генераторное оборудование ЦСП. Устройства тактовой синхронизации ЦСП. Выделители тактовой частоты. Фазовые дрожания
ГО обеспечивает формирование и распределение импульсных последовательностей управляющих процессами дискретизации, кодирования, ДК, ввода служебных сигналов на определённые позиции циклов передачи и

Структура линейного тракта ЦСП по электрическим кабелям.
ЦЛТ содержит передающее и прие-ое обор-ие оконечных пунктов (ОЛТ-ОП),участки направл-щей среды(НС) и линейные регенераторы (РЛ),размещенные в регенерационных пунктах (РП),которые могут быть не обсл

Нормирование параметров качества линейных трактов ЦСП
Нормирование параметров ЦСП осуществляется посредством создания номинальных цепей канала ТЧ и ОЦК.MaXпротяженность НЦ ОЦК ЕСС РФ составляет 13900 км. Номинальная цепь ОЦК имеет структуру,

Оборудование ОГМ-11. Плата ОК-110.
Плата примен. на ТФОП и предназн. для: 1)Транзита сигналов в диапазоне 0,3-3,4кГц м/у аналог. и цифровой АТС, ч/з блок ОГМ-11 по 2м телеф. каналам. 2)Транзита лин. сигналов взаимо

Принципы построения линейных трактов ВОСП.
Структурная схема цифровой волоконно-оптической системы передачи. В состав ВОСП входят следующие устройства: ·Каналообразующее оборудование передачи (КОО), обеспечивающее формирование опре

Методы уплотнения ВОСП.
В основе м/дов уплотнения ВОЛС лежит процесс мультиплексирования. По способу мультиплексирования ВОЛС делятся: - ВОЛС с частотным или гетеродинным упл-ем; - ВОЛС с временным упл-е


Оптич. пер-ки и прием-ки ВОСП выполн. в виде модулей, в сост. к-х входят ист-ки и пр-ки оптич. изл-я, а также эл. схемы обработки эл.сигналов. Структурная схема ПОМ (передающего оптического модуля)

Методы модуляции оптической несущей
Модуляция ОИ, к-ая явл-ся переносчиком данных м.б. осуществлена следующими способами: непосредственной модуляцией оптической несущей цифровым сигналом; модуляцией с исп-ем промежуточной поднесущей,

Типы оптических модуляторов.
Действия ОМ основаны на использовании различных физических эффектов, получаемых при прохождении ОИ в средах, имеющих кристаллическую структуру. Широко используются акусто-оптические и элек

Регенераторы оптического сигнала. Оптические усилители.
По методу восстановления ОС ретрансляторы делятся на повторители (регенераторы) и оптические усилители(ОУ). Повторители – преобразуют ОС в электрический, восстанавливают форму, амплитуду,

Кодер: Кодер программист, специализирующийся на кодировании написании исходного кода по заданным спецификациям. Кодер одна из двух компонент кодека (пары кодер декодер). «Кодер» фантастический фильм режиссёра Винченцо Натали. «Кодеры»… … Википедия

кодер - КОДЕР, а, м. Программист, занимающийся написанием программного кода, а также пренебр. о посредственном, бездарном программисте. Типичный совковый кодер. Из речи программистов … Словарь русского арго

Сущ., кол во синонимов: 6 it шник (6) айтишник (10) информатик (6) … Словарь синонимов

кодер - Устройство, осуществляющее кодирование. [Сборник рекомендуемых терминов. Выпуск 94. Теория передачи информации. Академия наук СССР. Комитет технической терминологии. 1979 г.] Тематики теория передачи информации EN coder …

кодер - kodavimo įtaisas statusas T sritis automatika atitikmenys: angl. code device; coder; coding device; encoder vok. Codierer, m; Kodierer, m; Kodierungseinrichtung, f; Kodierungsgerät, n; Verschlüßler, m; Verschlüsseler, m rus. кодер, m; кодирующее… … Automatikos terminų žodynas

кодер - к одер, а … Русский орфографический словарь

кодер - Syn: шифратор … Тезаурус русской деловой лексики

кодер - а, ч., спец. Пристрій, який виконує кодування … Український тлумачний словник

кодер - Устройство, осуществляющее кодирование … Политехнический терминологический толковый словарь

кодер ИКМ - кодер Устройство, предназначенное для осуществления квантования и кодирования отсчетов сигнала электросвязи при ИКМ. Примечание Аналогично кодеру ИКМ получают свои названия и определения другие кодеры, например кодер ДИКМ. [ГОСТ 22670 77]… … Справочник технического переводчика

Книги

  • Электроника: логические микросхемы, усилители и датчики для начинающих , Платт Чарльз. Обучение в ходе экспериментов. В книге "Электроника для начинающих" был представлен мир электроники и изложены его основные понятия. Теперь вы готовы перейти к следующему этапу - разработке…
  • Электроника. Логические микросхемы, усилители и датчики для начинающих , Платт Ч.. Обучение в ходе экспериментов. . В книге "Электроника для начинающих" был представлен мир электроники и изложены его основные понятия. Теперь вы готовы перейти к следующему этапу -…

Глоссарий

Отсутствие импульса в цифровом сигнале соответствует передаче

Наличие импульса в цифровом сигнале соответствует передаче

Ошибка квантования это

Назначение операции квантования

В системах передачи ЦСП на оконечных станциях при кодировании применяют

Для восстановления непрерывного сигнала из дисрктных отсчетов в пункте приема его необходимо пропустить

А) через АИМ преобразователь В) через дискретизатор С) через полосовой фильтр

Д) через кодер Е) через фильтр низких частот

А) 8-разрядный код В) 9-разрядный код С) 6-разрядный код

Д) 7-разрядный код Е) 12-разрядный код

А) преобразование непрерывного сигнала в дискретный

В) округление сигнала до ближайшего разрешенного уровня

С) представление сигнала в цифровом виде Д) преобразования АИМ-1 в АИМ-П

Е) восстановления искаженного сигнала

4.Что называется шагом квантования?

Д) разность между истинным значением сигнала и квантованным

А) разность между амплитудами токов кодируемого отсчета и эталонов

В) разность между двумя соседними разрешенными уровнями

С) преобразованные кодовые группы ИКМ сигнала

Д) разность между истинным значением сигнала и квантованным значением

Е) промежуток между дискретными отсчетами

А) нуля В) изменении фазы С) пробела Д) единицы Е) изменении частоты

СРУ: Виды квантования, ДИКМ, Дельта- модуляция. (конспект) Л1 21 – 47 стр.

СРУП: П реобразование десятичного числа в двоичное Л1 6-8 стр, 23.

Используемая литература

Основная:

1. Ю.В. Скалин «Цифровые системы передачи» М, Радио и связь, 1988г. Л1 21 – 47 бет

2. В.И. Иванова «Цифровые и аналоговые системы передачи», Горячая линия – Телеком, 2005г. Л2 78 – 94, 104-108 бет.

Линейные и нелинейные кодеры и декодеры. Виды линейных кодеров: - счетного типа, взвешивающего типа, матричные. Структурные схемы линейного кодера взвешивающего типа для однополярного и двухполярного сигналов. Структурные схемы нелинейного кодера идекодера. Характеристика компрессии типа А-87,6/13.



Кодер с линейной шкалой квантования называется линейным, а с нелинейной шкалой квантования – нелинейным.


Вх АИМ сигн.

Рисунок 2. Структурная схема линейного кодера взвешивающего типа для вдух-полярного сигнала.

Для примера рассмотрим работу кодера при кодировании отсчета с отрицательной амплитудой - 105.3 Δ. Кодируемый отсчет подается на первый вход (I) компаратора, а цикл начинается с установки первого выхода ЛУ в состояние 1. В этом случае за--мыкается ключ Кл + источника положительных эталонных токов (напомним, что выходы 2,..8 ЛУ при этом находятся в состоянии. О, т, е. Кл(- Кл? и Кл[-Кл-/ разомкнуты, на втором входе компаратора, Iэт = 0). Поскольку отсчет имеет отрицательную поляр--ность, т. е. Iс<0, то в первом такте кодирования на выходе компаратора будет сформирована 1 и состояние первого выхода ЛУ ста­нет 0, Тогда Кл+ будет разомкнут, а через инвертор DD 2 будет включен Кл - . Единица на выходе инвертора DD 2 изменит и положение ключа КлК на выходе компаратора и к нему подключится. инвертор. Необходимость такой операции пояснялась ранее. Таким образом, согласно полярности амплитуды входного сигнала включен ГЭТ отрицательных эталонных токов и схема готова к следующим этапам кодирования, для чего переводятся в состояние 1 второй выход ЛУ. Перевод в состояние 1 второго выхода ЛУ обеспечивает подключение через Кл - , эталонного тока-64Δ в точку суммирования этапов Вх2 компаратора и т.д..

Рисунок 3. Характеристика компрессии типа А-87,6/13

В системах ИКМ-ВРК вместо плавной амплитудной характе­ристики, которую имеют аналоговые_компандеры, применяются сегментные характеристики. Они представляют собой кусочно-ломаную аппроксимацию плавных характеристик, при которой изменение крутизны происходит дискретными ступенями. Два в положительной и два в отрицательной областях объединяются в один центральный сегмент, поэтому общее число сегментов на двухполярной характеристике равно 13. Каждый из 16 сегментов характеристики содержит по 16 шагов (уровней), квантования, а общее число уровней равно 256, из них 128 поло­жительных и 128 отрицательных.

Каждый сегмент начинается с определенного эталона, назы­ваемого основным – 16, 32, 64, 128, 256, 512, 1024, 2048.

Кодирование осуществляется за восемь тактов и включает три основных этапа:

1 - определение и кодирование полярности вход­ного сигнала;

2 - определение и кодщювание номера сегмента узла, в котором заключен кодируемый отсчет;

3 - определение и кодирование номера уровня квантования сегмента, в зоне кото­рого заключена амплитуда кодируемого отсчета. Первый этап кодирования осуществляется за 1-й такт, второй этап - за 2...4-й такты, третий этап - за 5.,.8-й такты кодирования.

Вх АИМ
Вых ИКМ
ГО
ГО
ГО
ПК
ЦР
ГЭТ1
ГЭТ2
БКЭ

Рисунок 4. Структурная схема нелинейного декодера

Пример: -252.

1 этап: (–) 1 разряд 0 так полярность отрицательный.

2 этап: 252 > 128 0 1

252 < 512 1 0

252 < 256 1 0

3 этап: 252 > 128+64 0 1

252 > 128+64+32 0 1

252 > 128+64+32+16 0 1