Сайт о телевидении

Сайт о телевидении

» » Кластерные компьютеры представляют собой. Кластерные системы: Реферат: Компьютеры и периферийные устройства. Испытание системы до катастрофы

Кластерные компьютеры представляют собой. Кластерные системы: Реферат: Компьютеры и периферийные устройства. Испытание системы до катастрофы

Дата публикации:

25.06.2009

Как известно, оперативная память вкладывает большую составляющую в производительность компьютера. И понятно, что пользователи стараются увеличить объем оперативной памяти по максимуму.
Если года 2-3 назад на рынке было буквально несколько типов модулей памяти, то сейчас их значительно больше. И разобраться в них стало сложнее.

В этой статье мы рассмотрим различные обозначения в маркировке модулей памяти, чтобы вам проще в них было ориентироваться.

Для начала введем ряд терминов, котоыре нам понадобятся для понимания статьи:

  • планка ("плашка") - модуль памяти, печатная плата с микросхемами памяти на борту, устанавливаемая в слот памяти;
  • односторонняя планка - планка памяти, у которой микросхемы памяти расположены с 1 стороны модуля.
  • двухсторонняя планка - планка памяти, у которой микросхемы памяти расположены с обоих сторон модуля.
  • RAM (Random Access Memory, ОЗУ) - память с произвольным доступом, проще говоря - оперативная память. Это энергозависимая память, содержимое которой теряется при отсутствии питания.
  • SDRAM (Synchronous Dynamic RAM) - синхронная динамическая оперативная память: все современные модули памяти имеют именно такое устройство, то есть требуют постоянной синхронизации и обновления содержимого.

Рассмотрим маркировки

  • 4096Mb (2x2048Mb) DIMM DDR2 PC2-8500 Corsair XMS2 C5 BOX
  • 1024Mb SO-DIMM DDR2 PC6400 OCZ OCZ2M8001G (5-5-5-15) Retail

Объем

Первым обозначением в строке идет объем модулей памяти. В частности, в первом случае это - 4 ГБ, а во втором - 1 ГБ. Правда, 4 ГБ в данном случае реализованы не одной планкой памяти, а двумя. Это так называемый Kit of 2 - набор из двух планок. Обычно такие наборы покупаются для установки планок в двухканальном режиме в параллельные слоты. Тот факт, что они имеют одинаковые параметры, улучшит их совместимость, что благоприятно сказывается на стабильности.

Тип корпуса

DIMM/SO-DIMM - это тип корпуса планки памяти. Все современные модули памяти выпускаются в одном из двух указанных конструктивных исполнений.
DIMM (Dual In-line Memory Module) - модуль, у которого контакты расположены в ряд на обоих сторонах модуля.
Память типа DDR SDRAM выпускается в виде 184-контактных DIMM-модулей, а для памяти типа DDR2 SDRAM выпускаются 240-контактные планки.

В ноутбуках используются модули памяти меньших габаритов, называемые SO-DIMM (Small Outline DIMM).

Тип памяти

Тип памяти - это архитектура, по которой организованы сами микросхемы памяти. Она влияет на все технические характеристики памяти - производительность, частоту, напряжение питание и др.

На данный момент используется 3 типа памяти: DDR SDRAM, DDR2 SDRAM, DDR3 SDRAM. Из них DDR3 - самые производительные, меньше всего потребляющие энергии.

Частоты передачи данных для типов памяти:

  • DDR: 200-400 МГц
  • DDR2: 533-1200 МГц
  • DDR3: 800-2400 МГц

Цифра, указываемая после типа памяти - и есть частота: DDR400, DDR2-800 .

Модули памяти всех типов отличаются напряжением питания и разъемами и не позволяют быть вставленными друг в друга.

Частота передачи данных характеризует потенциал шины памяти по передаче данных за единицу времени: чем больше частота, тем больше данных можно передать.

Однако, есть еще факторы, такие как количество каналов памяти, разрядность шины памяти. Они также влияют на производительность подсистем памяти.

Для комплексной оценки возможностей RAM используется термин пропускная способность памяти. Он учитывает и частоту, на которой передаются данные и разрядность шины и количество каналов памяти.

Пропускная способность (B) = Частота (f) x разрядность шины памяти (c) x кол-во каналов (k)

Например, при использовании памяти DDR400 400 МГц и двухканального контроллера памяти пропускная способность будет:
(400 МГц x 64 бит x 2)/ 8 бит = 6400 Мбайт/с

На 8 мы поделили, чтобы перевести Мбит/с в Мбайт/с (в 1 байте 8 бит).

Стандарт скорости модуля памяти

В обозначении для облегчения понимания скорости модуля указывается и стандарт пропускной способности памяти. Он как раз и показывает, какую пропускную способность имеет модуль.

Все эти стандарты начинаются с букв PC и далее идут цифры, указывающие пропускную способность памяти в Мбайтах в секунду.

Название модуля Частота шины Тип чипа
PC2-3200 200 МГц DDR2-400 3200 МБ/с или 3.2 ГБ/с
PC2-4200 266 МГц DDR2-533 4200 МБ/с или 4.2 ГБ/с
PC2-5300 333 МГц DDR2-667 5300 МБ/с или 5.3 ГБ/с 1
PC2-5400 337 МГц DDR2-675 5400 МБ/с или 5.4 ГБ/с
PC2-5600 350 МГц DDR2-700 5600 МБ/с или 5.6 ГБ/с
PC2-5700 355 МГц DDR2-711 5700 МБ/с или 5.7 ГБ/с
PC2-6000 375 МГц DDR2-750 6000 МБ/с или 6.0 ГБ/с
PC2-6400 400 МГц DDR2-800 6400 МБ/с или 6.4 ГБ/с
PC2-7100 444 МГц DDR2-888 7100 МБ/с или 7.1 ГБ/с
PC2-7200 450 МГц DDR2-900 7200 МБ/с или 7.2 ГБ/с
PC2-8000 500 МГц DDR2-1000 8000 МБ/с или 8.0 ГБ/с
PC2-8500 533 МГц DDR2-1066 8500 МБ/с или 8.5 ГБ/с
PC2-9200 575 МГц DDR2-1150 9200 МБ/с или 9.2 ГБ/с
PC2-9600 600 МГц DDR2-1200 9600 МБ/с или 9.6 ГБ/с
Тип памяти Частота памяти Время цикла Частота шины Передач данных в секунду Название стандарта Пиковая скорость передачи данных
DDR3-800 100 МГц 10.00 нс 400 МГц 800 млн PC3-6400 6400 МБ/с
DDR3-1066 133 МГц 7.50 нс 533 МГц 1066 млн PC3-8500 8533 МБ/с
DDR3-1333 166 МГц 6.00 нс 667 МГц 1333 млн PC3-10600 10667 МБ/с
DDR3-1600 200 МГц 5.00 нс 800 МГц 1600 млн PC3-12800 12800 МБ/с
DDR3-1800 225 МГц 4.44 нс 900 МГц 1800 млн PC3-14400 14400 МБ/с
DDR3-2000 250 МГц 4.00 нс 1000 МГц 2000 млн PC3-16000 16000 МБ/с
DDR3-2133 266 МГц 3.75 нс 1066 МГц 2133 млн PC3-17000 17066 МБ/с
DDR3-2400 300 МГц 3.33 нс 1200 МГц 2400 млн PC3-19200 19200 МБ/с

В таблицах указываются именно пиковые величины, на практике они могут быть недостижимы.

Производитель и его part number

Каждый производитель каждому своему продукту или детали дает его внутреннюю производственную маркировку, называемую P/N (part number) - номер детали.

Для модулей памяти у разных производителей она выглядит примерно так:

  • Kingston KVR800D2N6/1G
  • OCZ OCZ2M8001G
  • Corsair XMS2 CM2X1024-6400C5

На сайте многих производителей памяти можно изучить, как читается их Part Number.
Модули Kingston семейства ValueRAM:

Модули Kingston семейства HyperX (с дополнительным пассивным охлаждением для разгона):

По маркировке OCZ можно понять, что это модуль DDR2 объемом 1 Гбайт, частотой 800 МГц.

По маркировке CM2X1024-6400C5 понятно, что это модуль DDR2 объемом 1024 Мбайт стандарта PC2-6400 и задержками CL=5.

Некоторые производители вместо частоты или стандарта памяти указывают время в нс доступа к чипу памяти. По этому времени можно понять, какая используется частота.
Так поступает Micron: MT47H128M16HG-3 . Цифра в конце обозначает, что время доступа - 3 нс (0.003 мс).

По известной форуме T=1/f частота работы чипа f=1/T : 1/0,003 = 333 МГц.
Частота передачи данных в 2 раза выше - 667 МГц.
Соответственно, данный модуль DDR2-667.

Тайминги

Тайминги - это задержки при обращении к микросхемам памяти. Естественно, чем они меньше - тем быстрее работает модуль.

Дело в том, что микросхемы памяти на модуле имеют матричную структуру - представлены в виде ячеек матрицы с номером строки и номером столбца.
При обращении к ячейке памяти считывается вся строка, в которой находится нужная ячейка.

Сначала происходит выбор нужной строки, затем нужного столбца. На пересечении строки и номера столбца и находится нужная ячейка. С учетом огромных объемом современной RAM такие матрицы памяти не целиковые - для более быстрого доступа к ячейкам памяти они разбиты на страницы и банки.
Сначала происходит обращение к банку памяти, активизация страницы в нем, затем уже происходит работа в пределах текущей страницы: выбор строки и столбца.
Все эти действия происходит с определенно задержкой друг относительно друг друга.

Основные тайминги RAM - это задержка между подачей номера строки и номера столбца, называемая временем полного доступа (RAS to CAS delay, RCD ), задержка между подачей номера столбца и получением содержимого ячейки, называемая временем рабочего цикла (CAS latency, CL ), задержка между чтением последней ячейки и подачей номера новой строки (RAS precharge, RP ). Тайминги измеряются в наносекундах (нс).

Эти тайминги так и идут друг за другом в порядке выполнения операций и также обозначаются схематично 5-5-5-15 . В данном случае все три тайминга по 5 нс, а общий рабочий цикл - 15 нс с момента активизации строки.

Главным таймингом считается CAS latency , который часто обозначается сокращенно CL=5 . Именно он в наибольшей степени "тормозит" память.

Основываясь на этой информации, вы сможете грамотно выбрать подходящий модуль памяти.

Бурное развитие информационных технологий, рост обрабатываемых и передаваемых данных и в то же время повышение требований к надежности, степени готовности, отказоустойчивости и масштабируемости заставляют по-новому взглянуть на уже далеко не молодую технологию кластеризации. Эта технология позволяет создавать довольно гибкие системы, которые будут отвечать всем вышеперечисленным требованиям. Было бы не верно думать, что установка кластера решит абсолютно все проблемы. Но добиться впечатляющих результатов от кластеризации вполне реально. Нужно только четко представлять себе, что это такое, в чем наиболее существенные различия их отдельных разновидностей, а также знать преимущества тех или иных систем - с точки зрения эффективности применения их в вашем деле.

Аналитики из IDC подсчитали, что объем рынка кластеров в 1997 году составлял всего 85 млн. долл., тогда как в прошлом году этот рынок «стоил» уже 367,7 млн. долл. Тенденция роста налицо.

Итак, попробуем расставить все точки над «i». На сегодняшний день не существует какого-либо четкого определения кластера. Более того, нет ни одного стандарта, четко регламентирующего кластер. Однако не стоит отчаиваться, ведь сама суть кластеризации не подразумевает соответствие какому-либо стандарту. Единственное, что определяет, что кластер - это кластер, так это набор требований, предъявляемых к таким системам. Перечислим эти требования (четыре правила):l надежность;l доступность функции (готовность);l масштабируемость;l вычислительная мощность. Исходя из этого сформулируем определение кластера. Кластер - это система произвольных устройств (серверы, дисковые накопители, системы хранения и пр.), обеспечивающих отказоустойчивость на уровне 99,999%, а также удовлетворяющая «четырем правилам». Для примера: серверный кластер - это группа серверов (обычно называемых узлами кластера), соединенных и сконфигурированных таким образом, чтобы предоставлять пользователю доступ к кластеру как к единому целостному ресурсу.

Отказоустойчивость

Несомненно, основной характеристикой в кластере является отказоустойчивость. Это подтверждает и опрос пользователей: 95% опрошенных ответили, что в кластерах им необходимы надежность и отказоустойчивость. Однако не следует смешивать эти два понятия. Под отказоустойчивостью понимается доступность тех или иных функций в случае сбоя, другими словами, это резервирование функций и распределение нагрузки. А под надежностью понимается набор средств обеспечения защиты от сбоев. Такие требования к надежности и отказоустойчивости кластерных систем обусловлены спецификой их использования. Приведем небольшой пример. Кластер обслуживает систему электронных платежей, поэтому если клиент в какой-то момент останется без обслуживания для компании-оператора, это ему будет дорого стоить. Другими словами, система должна работать в непрерывном режиме 24 часа в сутки и семь дней в неделю (7Ѕ24). При этом отказоустойчивости в 99% явно не достаточно, так как это означает, что почти четыре дня в году информационная система предприятия или оператора будет неработоспособной. Это может показаться не таким уж и большим сроком, учитывая профилактические работы и техническое обслуживание системы. Но сегодняшнему клиенту абсолютно безразличны причины, по которым система не работает. Ему нужны услуги. Итак, приемлемой цифрой для отказоустойчивости становится 99,999%, что эквивалентно 5 минутам в год. Таких показателей позволяет достичь сама архитектура кластера. Приведем пример серверного кластера: каждый сервер в кластере остается относительно независимым, то есть его можно остановить и выключить (например, для проведения профилактических работ или установки дополнительного оборудования), не нарушая работоспособность кластера в целом. Тесное взаимодействие серверов, образующих кластер (узлов кластера), гарантирует максимальную производительность и минимальное время простоя приложений за счет того, что:l в случае сбоя программного обеспечения на одном узле приложение продолжает функционировать (либо автоматически перезапускается) на других узлах кластера;l сбой или отказ узла (или узлов) кластера по любой причине (включая ошибки персонала) не означает выхода из строя кластера в целом;l профилактические и ремонтные работы, реконфигурацию и смену версий программного обеспечения в большинстве случаев можно осуществлять на узлах кластера поочередно, не прерывая работу приложений на других узлах кластера.Возможные простои, которые не в состоянии предотвратить обычные системы, в кластере оборачиваются либо некоторым снижением производительности (если узлы выключаются из работы), либо существенным сокращением (приложения недоступны только на короткий промежуток времени, необходимый для переключения на другой узел), что позволяет обеспечить уровень готовности в 99,99%.

Масштабируемость

Высокая стоимость кластерных систем обусловлена их сложностью. Поэтому масштабируемость кластера довольно актуальна. Ведь компьютеры, производительность которых удовлетворяет сегодняшние требования, не обязательно будет удовлетворять их и в будущем. Практически при любом ресурсе в системе рано или поздно приходится сталкиваться с проблемой производительности. В этом случае возможно два варианта масштабирования: горизонтальное и вертикальное. Большинство компьютерных систем допускают несколько способов повышения их производительности: добавление памяти, увеличение числа процессоров в многопроцессорных системах или добавление новых адаптеров или дисков. Такое масштабирование называется вертикальным и позволяет временно улучшить производительность системы. Однако в системе будет установлено максимальное поддерживаемое количество памяти, процессоров или дисков, системные ресурсы будут исчерпаны. И пользователь столкнется с той же проблемой улучшения характеристик компьютерной системы, что и ранее.Горизонтальное масштабирование предоставляет возможность добавлять в систему дополнительные компьютеры и распределять работу между ними. Таким образом, производительность новой системы в целом выходит за пределы предыдущей. Естественным ограничением такой системы будет программное обеспечение, которые вы решите на ней запускать. Самым простым примером использования такой системы является распределение различных приложений между разными компонентами системы. Например, вы можете переместить ваши офисные приложения на один кластерный узел приложения для Web на другой, корпоративные базы данных - на третий. Однако здесь возникает вопрос взаимодействия этих приложений между собой. И в этом случае масштабируемость обычно ограничивается данными, используемыми в приложениях. Различным приложениям, требующим доступ к одним и тем же данным, необходим способ, обеспечивающий доступ к данным с различных узлов такой системы. Решением в этом случае становятся технологии, которые, собственно, и делают кластер кластером, а не системой соединенных вместе машин. При этом, естественно, остается возможность вертикального масштабирования кластерной системы. Таким образом, за счет вертикального и горизонтального масштабирования кластерная модель обеспечивает серьезную защиту инвестиций потребителей.В качестве варианта горизонтального масштабирования стоит также отметить использование группы компьютеров, соединенных через коммутатор, распределяющий нагрузку (технология Load Balancing). Об этом довольно популярном варианте мы подробно расскажем в следующей статье. Здесь мы лишь отметим невысокую стоимость такого решения, в основном слагаемую из цены коммутатора (6 тыс. долл. и выше - в зависимости от функционального оснащения) и хост-адаптер (порядка нескольких сот долларов за каждый; хотя, конечно, можно использовать и обыкновенные сетевые карты). Такие решения находят основное применение на Web-узлах с высоким трафиком, где один сервер не справляется с обработкой всех поступающих запросов. Возможность распределения нагрузки между серверными узлами такой системы позволяет создавать на многих серверах единый Web-узел.

Beowulf, или Вычислительная мощность

Часто решения, похожие на вышеописанные, носят названия Beowulf-кластера. Такие системы прежде всего рассчитаны на максимальную вычислительную мощность. Поэтому дополнительные системы повышения надежности и отказоустойчивости просто не предусматриваются. Такое решение отличается чрезвычайно привлекательной ценой, и, наверное, поэтому наибольшую популярность приобрело во многих образовательных и научно-исследовательских организациях. Проект Beowulf появился в 1994 году - возникла идея создавать параллельные вычислительные системы (кластеры) из общедоступных компьютеров на базе Intel и недорогих Ethernet-сетей, устанавливая на эти компьютеры Linux и одну из бесплатно распространяемых коммуникационных библиотек (PVM, а затем MPI). Оказалось, что на многих классах задач и при достаточном числе узлов такие системы дают производительность, сравнимую с суперкомпьютерной. Как показывает практика, построить такую систему довольно просто. Все, что для этого нужно, это высокопроизводительный коммутатор и несколько подсоединенных к нему рабочих станций (серверов) с установленной операционной системой Linux. Однако этого недостаточно. Для того чтобы эта груда железа ожила, необходимо специальное программное обеспечение для параллельных вычислений.Наиболее распространенным интерфейсом параллельного программирования в модели передачи сообщений является MPI (Message Passing Interface). Название «Интерфейс передачи сообщений» говорит само за себя. Это хорошо стандартизованный механизм для построения параллельных программ в модели обмена сообщениями. Существуют бесплатные (!) и коммерческие реализации почти для всех суперкомпьютерных платформ, а также для сетей рабочих станций UNIX и Windows NT. В настоящее время MPI - наиболее широко используемый и динамично развивающийся интерфейс своего класса. Рекомендуемая бесплатная реализация MPI - пакет MPICH, разработанный в Аргоннской Национальной Лаборатории. Стандартизацией MPI занимается MPI Forum. Последняя версия стандарта - 2.0. В этой версии к MPI добавлены такие важные функции, как динамическое управление процессами, односторонние коммуникации (Put/Get), параллельный ввод-вывод.Постоянный спрос на высокие вычислительные мощности обусловил появление привлекательного для многих производителей рынка. Некоторые из них разработали собственные технологии соединения компьютеров в кластер. Наиболее известные из них - Myrinet производства MyriCom и cLAN фирмы Giganet. Myrinet является открытым стандартом. Для его реализации MyriCom предлагает широкий выбор сетевого оборудования по сравнительно невысоким ценам. На физическом уровне поддерживаются сетевые среды SAN (System Area Network), LAN (CL-2) и оптоволокно. Технология Myrinet дает высокие возможности масштабирования сети и в настоящее время очень широко используется при построении высокопроизводительных кластеров. Giganet занимается разработкой программных и аппаратных средств для непосредственного взаимодействия центральных процессорных устройств серверов кластера на гигабитных скоростях, минуя функции ОС. Стоимость решения составляет: около 2500 долл. - за 8-портовый коммутатор, 150 долл. - за адаптер для Myrinet, около 6250 долл. - за 8-портовый коммутатор и 800 долл. - за адаптер для Giganet. Последняя, кстати, получила на выставке Microsoft Tech Ed 2000 премию «Best of Show». В качестве примера приведем реализацию Beowulf-кластера в Институте высокопроизводительных вычислений и баз данных Министерства науки и технической политики РФ. Кластер, получивший название «ПАРИТЕТ», создан на базе общедоступных комплектующих для персональных компьютеров и рабочих станций и обеспечивает суммарную пиковую производительность 3,2 GFLOP/sec. Кластер состоит из четырех двухпроцессорных вычислительных узлов, на базе процессоров Intel Pentium II/450MHz. На каждом узле установлена оперативная память объемом 512 Мбайт и 10-гигабайтный жесткий диск на интерфейсе Ultra Wide SCSI. Вычислительные узлы кластера объединены высокопроизводительным коммутатором Myrinet (каналы с пропускной способностью 1,28 Гбайт/с, полный дуплекс). Имеется также резервная сеть, используемая для управления и конфигурирования (100 Mbit Fast Ethernet). На узлах вычислительного кластера установлена операционная система Linux (дистрибутив Red Hat 5,2). Для программирования параллельных приложений используются интерфейсы передачи сообщений MPI/PVM.

Мини-кластер от Dell и Compaq

Помимо коммутаторного решения для построения кластера существует еще целый ряд решений - как аппаратных, так и программных. Некоторые решения являются комплексными и поставляются «As is» - «все в одной коробке». Последний вариант - назовем его «кластер в коробке» - также является довольно популярным решением, поскольку рассчитан на массовый рынок и является кластером начального уровня (по производительности и параметрам масштабирования). Однако построение таких систем, взаимосвязь внутренних компонентов, надежность и отказоустойчивость полностью соответствуют «большим» системам. Для того чтобы разобраться, как устроен кластер, рассмотрим две похожие системы производства - Compaq и Dell. Кластеры от этих известных игроков компьютерного рынка построены из двух серверов DELL - PowerEdge 6100 либо PowerEdge 4200 и, в свою очередь, Compaq - Proliant 1850R. В качестве программного обеспечения используется Microsoft Cluster Server (Compaq, Dell) или Novell High-Availability Services for NetWare 4.0 / Clustering Services for NetWare 5.0 (Compaq). Программное обеспечение позволяет сконфигурировать два сервера таким образом, что, если в одном из серверов кластера происходит сбой, выполняемая им работа и приложения будут сразу же автоматически перенесены на другой сервер, что позволяет устранить простои. Оба сервера кластера предоставляют свои ресурсы для выполнения производственной работы, поэтому ни один из них не простаивает зря в ожидании, пока другой не выйдет из строя.Представленная на рисунке конфигурация является типичным кластером с реализацией принципа безотказности, обеспечивающим высокую степень работоспособности и дублирования компонентов на системном уровне. Связь между двумя серверами осуществляется по так называемому пульсирующему соединению (Heartbeat) выделенного участка локальной сети. При возникновении сбоя на основном сервере второй сервер, следящий за поступающими по пульсирующему соединению сообщениями, узнает об отключении основного сервера и перекладывает на себя рабочую нагрузку, выполнявшуюся вышедшей из строя машиной. В число выполняемых функций входит запуск прикладных программ, процессов и обслуживания, требуемых для ответа на запросы клиентов на предоставление доступа к вышедшему из строя серверу. Хотя каждый из серверов кластера должен иметь все ресурсы, требуемые для возложения на себя функций другого сервера, основные выполняемые обязанности могут быть абсолютно разными. Вторичный сервер, входящий в кластер с реализацией принципа безотказности, отвечает требованию предоставления возможности «горячего» резервирования, но помимо этого он может выполнять и свои собственные приложения. Однако, несмотря на массовое дублирование ресурсов, у такого кластера есть «узкое» место (bottle neck) - интерфейс шины SCSI и разделяемой системы внешней памяти, выход которых из строя влечет за собой сбой кластера. Хотя, по утверждениям производителей, вероятность этого ничтожно мала.Такие мини-кластеры прежде всего рассчитаны на автономную работу без постоянного контроля и администрирования. В качестве примера использования можно привести решение для удаленных офисов больших компаний для обеспечения высокой готовности (7Ѕ24) наиболее ответственных приложений (баз данных, почтовых систем и т.д.). С учетом повышения спроса на мощные и в то же время отказоустойчивые системы начального уровня рынок для этих кластеров выглядит довольно благоприятным. Единственное «но» в том, что не каждый потенциальный потребитель кластерных систем готов выложить за двухсерверную систему около 20 тыс. долл.

Сухой остаток

В качестве резюме следует отметить, что у кластеров наконец-то появился массовый рынок. Такой вывод легко можно сделать исходя из прогнозов аналитиков Standish Group International, которые утверждают, что в следующие два года общемировой рост количества установленных кластерных систем составит 160%. Кроме того, аналитики из IDC подсчитали, что объем рынка кластеров в 1997 году составлял всего 85 млн. долл., а в прошлом году этот рынок «стоил» уже 367,7 млн. долл. Тенденция роста налицо. И действительно, потребность в кластерных решениях сегодня возникает не только в крупных центрах обработки данных, но и в небольших компаниях, которые не хотят жить по принципу «скупой платит дважды» и вкладывают свои деньги в высоконадежные и легкомасштабируемые кластерные системы. Благо, что вариантов реализации кластера более чем достаточно. Однако при выборе какого-либо решения не следует забывать, что все параметры кластера взаимозависимы. Другими словами, нужно четко определить приоритеты на необходимые функциональные возможности кластера, поскольку при увеличении производительности уменьшается степень готовности (доступность). Увеличение производительности и обеспечение требуемого уровня готовности неизбежно ведет к росту стоимости решения. Таким образом, пользователю необходимо сделать самое важное - найти золотую середину возможностей кластера на текущий момент. Это сделать тем труднее, чем больше разнообразных решений предлагается сегодня на рынке кластеров.При подготовке статьи использованы материалы WWW-серверов: http://www.dell.ru/ , http://www.compaq.ru/ , http://www.ibm.ru/ , http://www.parallel.ru/ , http://www.giganet.com/ , http://www.myri.com/

КомпьютерПресс 10"2000

(К слову, говоря, при этом есть возможность собрать недорогой и эффективный кластер из xbox 360 или PS3, процессоры там примерно как Power, и на миллион можно купить не одну приставку.)

Исходя из этого отметим интересные по цене варианты построения высокопроизводительной системы. Разумеется, она должна быть многопроцессорной. У Intel для таких задач используются процессоры Xeon, у AMD – Opteron.

Если много денег


Отдельно отметим крайне дорогую, но производительную линейку процессоров на сокете Intel Xeon LGA1567.
Топовый процессор этой серии – E7-8870 с десятью ядрами 2,4 ГГц. Его цена $4616. Для таких CPU фирмы HP и Supermicro выпускают! восьмипроцессорные! серверные шасси. Восемь 10-ядерных процессоров Xeon E7-8870 2.4 ГГц с поддержкой HyperThreading поддерживают 8*10*2=160 потоков, что в диспетчере задач Windows отображается как сто шестьдесят графиков загрузки процессоров, матрицей 10x16.

Для того, чтобы восемь процессоров уместились в корпусе, их размещают не сразу на материнской плате, а на отдельных платах, которые втыкаются в материнскую плату. На фотографии показаны установленные в материнскую плату четыре платы с процессорами (по два на каждой). Это решение Supermicro. В решении HP на каждый процессор приходится своя плата. Стоимость решения HP составляет два-три миллиона, в зависимости от наполнения процессорами, памятью и прочим. Шасси от Supermicro стоит $10 000, что привлекательнее. Кроме того в Supermicro можно поставить четыре сопроцессорных платы расширения в порты PCI-Express x16 (кстати, еще останется место для Infiniband-адаптера чтобы собирать кластер из таких), а в HP только две. Таким образом, для создания суперкомпьютера восьмипроцессорная платформа от Supermicro привлекательнее. На следующем фото с выставки представлен суперкомпьютер в сборе с четырьмя GPU платами.


Однако это очень дорого.
Что подешевле
Зато есть перспектива сборки суперкомпьютера на более доступных процессорах AMD Opteron G34, Intel Xeon LGA2011 и LGA 1366.

Чтобы выбрать конкретную модель, я составил таблицу, в которой сосчитал для каждого процессора показатель цена/(число ядер*частота). Я отбросил из расчета процессоры частотой ниже 2 ГГц, и для Intel - с шиной ниже 6,4GT/s.

Модель
Кол-во ядер
Частота
Цена, $
Цена/ядро, $
Цена/Ядро/ГГц
AMD





6386 SE
16
2,8
1392
87
31
6380
16
2,5
1088
68
27
6378
16
2,4
867
54
23
6376
16
2,3
703
44
19
6348
12
2,8
575
48
17
6344
12
2,6
415
35
13
6328
8
3,2
575
72
22
6320
8
2,8
293
37
13
INTEL





E5-2690
8
2,9
2057
257
89
E5-2680
8
2,7
1723
215
80
E5-2670
8
2,6
1552
194
75
E5-2665
8
2,4
1440
180
75
E5-2660
8
2,2
1329
166
76
E5-2650
8
2
1107
138
69
E5-2687W
8
3,1
1885
236
76
E5-4650L
8
2,6
3616
452
174
E5-4650
8
2,7
3616
452
167
E5-4640
8
2,4
2725
341
142
E5-4617
6
2,9
1611
269
93
E5-4610
6
2,4
1219
203
85
E5-2640
6
2,5
885
148
59
E5-2630
6
2,3
612
102
44
E5-2667
6
2,9
1552
259
89
X5690
6
3,46
1663
277
80
X5680
6
3,33
1663
277
83
X5675
6
3,06
1440
240
78
X5670
6
2,93
1440
240
82
X5660
6
2,8
1219
203
73
X5650
6
2,66
996
166
62
E5-4607
6
2,2
885
148
67
X5687
4
3,6
1663
416
115
X5677
4
3,46
1663
416
120
X5672
4
3,2
1440
360
113
X5667
4
3,06
1440
360
118
E5-2643
4
3,3
885
221
67

Жирным курсивом выделена модель с минимальным показателем соотношения, подчеркнутым – самый мощный AMD и на мой взгляд наиболее близкий по производительности Xeon.

Таким, образом, мой выбор процессоров для суперкомпьютера – Opteron 6386 SE, Opteron 6344, Xeon E5-2687W и Xeon E5-2630.

Материнские платы

PICMG
На обычные материнские платы невозможно поставить более четырех двухслотовых плат расширения. Есть и другая архитектура – использование кросс-плат, таких как BPG8032 PCI Express Backplane.


В такую плату ставятся платы расширения PCI Express и одна процессорная плата, чем-то похожая на те, которые установлены в восьмипроцессорных серверах на базе Supermicro, о которых речь шла выше. Но только эти процессорные платы подчиняются отраслевым стандартам PICMG. Стандарты развиваются медленно и такие платы зачастую не поддерживают самые современные процессоры. Максимум такие процессорные платы сейчас выпускают на два Xeon E5-2448L - Trenton BXT7059 SBC.

Стоить такая система будет без GPU не меньше $5000.

Готовые платформы TYAN
За ту же примерно сумму можно приобрести готовую платформу для сборки суперкомпьютеров TYAN FT72B7015 . В такой можно установить до восьми GPU и два Xeon LGA1366.
«Обычные» серверные материнские платы
Для LGA2011
Supermicro X9QR7-TF - на эту материнскую плату можно установить 4 Платы расширения и 4 процессора.

Supermicro X9DRG-QF - эта плата специально разработана для сборки высокопроизводительных систем.

Для Opteron
Supermicro H8QGL-6F - эта плата позволяет установить четыре процессора и три платы расширения

Усиление платформы платами расширения

Этот рынок почти полностью захвачен NVidia, которые выпускают помимо геймерских видеокарт еще и вычислительные карты. Меньшую долю рынка имеет AMD, и относительно недавно на этот рынок пришла корпорация Intel.

Особенностью таких сопроцессоров является наличие на борту большого объема оперативной памяти, быстрые расчеты с двойной точностью и энергоэффективность.

FP32, Tflops FP64, Tflops Цена Память, Гб
Nvidia Tesla K20X 3.95 1.31 5.5 6
AMD FirePro S10000 5.91 1.48 3.6 6
Intel Xeon Phi 5110P 1 2.7 8
Nvidia GTX Titan 4.5 1.3 1.1 6
Nvidia GTX 680 3 0.13 0.5 2
AMD HD 7970 GHz Edition 4 1 0.5 3
AMD HD 7990 Devil 13 2x3,7 2х0.92 1.6 2x3

Топовое решение от Nvidia называется Tesla K20X на архитектуре Kepler. Именно такие карты стоят в самом мощном в мире суперкомпьютере Titan. Однако недавно Nvidia выпустила видеокарту Geforce Titan. Старые модели были с урезанной производительностью FP64 до 1/24 от FP32 (GTX680). Но в Титане производитель обещает довольно высокую производительность в расчетах с двойной точностью. Решения от AMD тоже неплохи, но они построены на другой архитектуре и это может создать трудности для запуска вычислений, оптимизированных под CUDA (технология Nvidia).

Решение от Intel - Xeon Phi 5110P интересно тем, что все ядра в сопроцессоре выполнены на архитектуре x86 и не требуется особой оптимизации кода для запуска расчетов. Но мой фаворит среди сопроцессоров – относительно недорогая AMD HD 7970 GHz Edition. Теоретически эта видеокарта покажет максимальную производительность в расчете на стоимость.

Можно соединить в кластер

Для повышения производительности системы несколько компьютеров можно объединить в кластер, который будет распределять вычислительную нагрузку между входящими в состав кластера компьютерами.

Использовать в качестве сетевого интерфейса для связи компьютеров обычный гигабитный Ethernet слишком медленно. Для этих целей чаще всего используют Infiniband. Хост адаптер Infiniband относительно сервера стоит недорого. Например, на международном аукционе Ebay такие адаптеры продают по цене от $40. Например, адаптер X4 DDR (20Gb/s) обойдется с доставкой до России примерно в $100.

При этом коммутационное оборудование для Infiniband стоит довольно дорого. Да и как уже было сказано выше, классическая звезда в качестве топологии вычислительной сети – не лучший выбор.

Однако хосты InfiniBand можно подключать друг к другу напрямую, без свича. Тогда довольно интересным становится, например, такой вариант: кластер из двух компьютеров, соединенных по infiniband. Такой суперкомпьютер вполне можно собрать дома.

Сколько нужно видеокарт

В самом мощном суперкомпьютере современности Cray Titan отношение процессоров к «видеокартам» 1:1, то есть в нем 18688 16-ядерных процессоров и 18688 Tesla K20X.

В Тяньхэ-1А – китайском суперкомпьютере на ксеонах отношение следующее. Два шестиядерных процессора к одной «видюшке» Nvidia M2050 (послабее, чем K20X).

Такое отношение мы и примем для наших сборок за оптимальное (ибо дешевле). То есть 12-16 ядер процессоров на один GPU. На таблице ниже жирным обозначены практически возможные варианты, подчеркиванием – наиболее удачные с моей точки зрения.

GPU Cores 6-core CPU 8-core CPU 12-core CPU 16-core CPU
2 24 32 4
5
3
4
2
3
2
2
3 36 48 6
8
5
6
3
4
2
3
4 48 64 8
11
6
8
4
5
3
4

Если система с уже установленным отношением процессоров/видеокарт сможет принять «на борт» еще дополнительно вычислительных устройств, то мы их добавим, чтобы увеличить мощность сборки.

Итак, сколько стоит

Представленные ниже варианты – шасси суперкомпьютера без оперативной памяти, жестких дисков и ПО. Во всех моделях используется видеоадаптер AMD HD 7970 GHz Edition. Его можно заменить на другой, по требованию задачи (например, на xeon phi). Там, где система позволяет, одна из AMD HD 7970 GHz Edition заменена на трехслотовую AMD HD 7990 Devil 13.
Вариант 1 на материнской плате Supermicro H8QGL-6F


Материнская плата Supermicro H8QGL-6F 1 1200 1200
Процессор AMD Opteron 6344 4 500 2000
Кулер Процессора Thermaltake CLS0017 4 40 160
Корпус 1400Вт SC748TQ-R1400B 1 1000 1000
Графический ускоритель AMD HD 7970 GHz Edition 3 500 1500
5860

Теоретически, производительность составит около 12 Tflops.
Вариант 2 на материнской плате TYAN S8232, кластерный


Эта плата не поддерживает Opteron 63xx, поэтому используется 62xx. В этом варианте два компьютера объединены в кластер по Infiniband x4 DDR двумя кабелями. Теоретически скорость соединения в этом случае упрется в скорость PCIe x8 то есть 32Гб/с. Блоков питания используется два. Как их согласовать между собой, можно найти в интернете.
Количество Цена Сумма
Материнская плата TYAN S8232 1 790 790
Процессор AMD Opteron 6282SE 2 1000 2000
Кулер Процессора Noctua NH-U12DO A3 2 60 120
Корпус Antec Twelve Hundred Black 1 200 200
Блок питания FSP AURUM PRO 1200W 2 200 400
Графический ускоритель AMD HD 7970 GHz Edition 2 500 1000
Графический ускоритель AX7990 6GBD5-A2DHJ 1 1000 1000
Infiniband адаптер X4 DDR Infiniband 1 140 140
Infiniband кабель X4 DDR Infiniband 1 30 30
5680 (за один блок)

Для кластера таких конфигураций нужно две и стоимость их составит $11360 . Его энергопотребление при полной нагрузке будет около 3000Вт. Теоретически, производительность составит до 31Tflops.
кафедра 29 "Управляющие Интеллектуальные Системы"

Реферат на тему:

Кластерные системы

Выполнил:

студент группы К9-292

Попов И.А

МОСКВА 2001

1. Введение

2. Основные классы современных параллельных компьютеров

3. Кластерная архитектура параллельных компьютеров

4. Цели создания кластерных систем

5. Отказоустойчивые кластеры

6. Высокопроизводительные кластеры

7. Проект Beowulf

8. Заключение

9. Литература

Введение

Развитие многопроцессорных вычислительных систем

Развитие традиционных архитектур построения вычислительных систем, таких как SMP, MPP, векторных параллельных систем идет достаточно быстрыми темпами. Повышается производительность, растет надежность и отказоустойчивость. Однако у этих архитектур есть один недостаток - стоимость создаваемых систем, подчас недоступная для многих пользователей таких систем - образовательных и научно-исследовательских организаций. Она оказывает очень высокой из-за усложнения аппаратных и программных составляющих системы, которые требуются для обеспечения таких темпов роста производиельности. Однако потребность в вычислительных ресурсах в настоящее время очень высока во многих сферах научной и практической деятельности и для ее обеспечения не хватает ресурсов традиционных суперкомпьютерных систем.

Кластерные системы возникли как более дешевое решение проблемы недостатка вычислительных ресурсов, и основываются на использовании в своей архитектуре широко распространенных и относительно дешевых технологий, аппаратных и программных средств, таких как PC, Ethernet, Linux и т.д. Использование массовых технологии в кластерных системах стало возможным благодаря значительному прогрессу в развитии компонентов обычных вычислительных систем, таких как центральные процессоры, операционные системы, коммуникационные среды.

Так как кластерные системы архитектурно являются развитием систем с массовым параллелизмом MPP, то главную роль в их развитии является прогресс в области сетевых технологий. К настоящему времени появились недорогие, но эффективные коммуникационные решения. Это и предопределило быстрое появление и развитие кластерных вычислительных систем. Также прогрессу развития кластерных систем способствовали и другие факторы.

Производительность персональных компьютеров на базе процессоров Intel в последние годы также значительно выросла. Такие компьютеры стали создавать серьезную конкуренцию рабочим станциям на базе более дорогих и мощных RISC процессоров. Одновременно стала приобретать все большую популярность ОС Linux - бесплатно распространяемая версия UNIX. При этом в научных организациях и университетах, где и разрабатывается большинство кластерных систем, как правило, имеются специалисты по ОС Linux.

Высокую степень развития кластерных систем на сегоднящний день показывает тот факт, что в списке самых мощных суперкомпьютеров мира Top500 – числится 11 кластерных установок.


Основные классы современных параллельных компьютеров

Кластерные системы являются развитием параллельных систем. Чтобы проказать место кластерных систем среди остальных типов параллельных архитектур вычислительных систем нужно привести их классификацию. Параллельные системы могут быть класифицированы по различным критериям.

С аппаратной точки зрения, основным параметром классификации паралелльных компьютеров является наличие общей (SMP) или распределенной памяти (MPP). Нечто среднее между SMP и MPP представляют собой NUMA-архитектуры, где память физически распределена, но логически общедоступна.

Симметричные мультипроцессорные системы

SMP система состоит из нескольких однородных процессоров и массива общей памяти. Один из часто используемых в SMP архитектурах подходов для формирования масштабируемой, общедоступной системы памяти, состоит в однородной организации доступа к памяти посредством организации масштабируемого канала память-процессоры:

Каждая операция доступа к памяти интерпретируется как транзакция по шине процессоры-память. Когерентность кэшей поддерживается аппаратными средствами.

В SMP каждый процессор имеет по крайней мере одну собственную кэш-память (а возможно, и несколько).

Можно сказать, что SMP система - это один компьютер с несколькими равноправными процессорами. Все остальное - в одном экземпляре: одна память, одна подсистема ввода/вывода, одна операционная система. Слово "равноправный" означает, что каждый процессор может делать все, что любой другой. Каждый процессор имеет доступ ко всей памяти, может выполнять любую операцию ввода/вывода, прерывать другие процессоры и т.д.

Недостатком данной архитектуры является необходимость организации канала процессоры-память с очень высокой пропускной способностью.

Массивно-параллельные системы

Массивно-параллельная система MPP состоит из однородных вычислительных узлов, включающих в себя:

  • один или несколько центральных процессоров (обычно RISC)
  • локальную память (прямой доступ к памяти других узлов невозможен)
  • коммуникационный процессор или сетевой адаптер
  • жесткие диски и/или другие устройства В/В

К системе могут быть добавлены специальные узлы ввода-вывода и управляющие узлы. Узлы связаны через некоторую коммуникационную среду (высокоскоростная сеть, коммутатор и т.п.)

Системы с неоднородным доступом к памяти NUMA

NUMA (nonuniform memory access) в отличие от привычной SMP архитектуры с разделяемой памятью представляет собой несколько отдельных процессоров, каждый из которых, кроме собственного кэша, обладает также локальной памятью:

В подобной архитектуре процессор и модули памяти тесно интегрированы, следовательно, скорость доступа к локальной памяти гораздо выше, чем к памяти “соседнего” процессора. Подсистемы ввода-вывода могут быть частью каждого узла или консолидированы на выделенных узлах ввода-вывода. Если во всей системе поддерживается когерентность кэшей, то такую архитектуру называют cc-NUMA.

Проще всего охарактеризовать NUMA-систему, представив себе большую систему SMP, разделенную на несколько частей, эти части связаны коммуникационной магистралью, подключенной к системным шинам, и каждая часть включает собственную основную память и подсистему ввода/вывода. Это и есть NUMA: большая SMP, разбитая на набор более мелких и простых SMP. Основной проблемой NUMA является обеспечение когерентности кэшей. Аппаратура позволяет работать со всеми отдельными устройствами основной памяти составных частей системы (называемых обычно узлами) как с единой гигантской памятью.

Кластерная архитектура

Рассмотрим место кластерной архитектуры вычислительных систем в данной классификации.

Кластер - это связанный набор полноценных компьютеров, используемый в качестве единого ресурса. Под понятием "полноценный компьютер" понимается завершенная компьютерная система, обладающая всем, что требуется для ее функционирования, включая процессоры, память, подсистему ввода/вывода, а также операционную систему, подсистемы, приложения и т.д. Обычно для этого годятся персональные компьютеры или параллельные системы, которые могут обладать архитектурой SMP и даже NUMA. Кластеры являются слабосвязанными системами, связи узлов используется одна из стандартных сетевых технологий (Fast/Gigabit Ethernet, Myrinet) на базе шинной архитектуры или коммутатора. Поэтому они являются более дешевой в построении модификацией MPP архитектуры.

Кластерная архитектура параллельных компьютеров

Общие принципы

Как уже было сказано раньше вычислительный кластер - это совокупность компьютеров, объединенных в рамках некоторой сети для решения одной задачи (рис.3), которая для пользователя представляется в качестве единого ресурса. Такую концепцию кластера впервые предложила и реализовала в начале 80-х корпорация Digital Equipment, которая и по сей день развивает эту технологию

Понятие "единый ресурс" означает наличие программного обеспечения, дающего возможность пользователям, администраторам и прикладным программам считать, что имеется только одна сущность, с которой они работают - кластер. Например, система пакетной обработки кластера позволяет послать задание на обработку кластеру, а не какому-нибудь отдельному компьютеру. Более сложным примером являются системы баз данных. Практически у всех производителей систем баз данных имеются версии, работающие в параллельном режиме на нескольких машинах кластера. В результате приложения, использующие базу данных, не должны заботиться о том, где выполняется их работа. СУБД отвечает за синхронизацию параллельно выполняемых действий и поддержание целостности базы данных.

Компьютеры, образующие кластер, - так называемые узлы кластера - всегда относительно независимы, что допускает остановку или выключение любого из них для проведения профилактических работ или установки дополнительного оборудования без нарушения работоспособности всего кластера.

В качестве вычислительных узлов в кластере обычно используются однопроцессорные персональные компьютеры, двух- или четырехпроцессорные SMP-серверы. Каждый узел работает под управлением своей копии операционной системы, в качестве которой чаще всего используются стандартные операционные системы: Linux, NT, Solaris и т.п. Состав и мощность узлов может меняться даже в рамках одного кластера, давая возможность создавать неоднородные системы. Выбор конкретной коммуникационной среды определяется многими факторами: особенностями класса решаемых задач, необходимостью последующего расширения кластера и т.п. Возможно включение в конфигурацию специализированных компьютеров, например, файл-сервера, и, как правило, предоставлена возможность удаленного доступа на кластер через Internet.

Из определения архитектуры кластерных систем следует, что она включает в себя очень широкий спектр систем. Рассматривая крайние точки, кластером можно считать как пару ПК, связанных локальной 10-мегабитной сетью Ethernet, так и вычислительную систему, создаваемую в рамках проекта Cplant в Национальной лаборатории Sandia: 1400 рабочих станций на базе процессоров Alpha, связанных высокоскоростной сетью Myrinet.

Таким образом видно, что различных вариантов построения кластеров очень много. При этом в архитектуре кластера большое значение имеют используемые коммуникационные технологии и стандарты. Они во многом определяют круг задач, для решения которых можно использовать кластеры, построенные на основе этих технологий.

Коммуникационные технологии построения кластеров

Кластеры могут стоится как на основе специализированных высокоскоростных шин передачи данных, так и на основе массовых сетевых технологий. Среди массовых коммуникационных стандартов сейчас чаще всего используется сеть Ethernet или более ее производительный вариант - Fast Ethernet, как правило, на базе коммутаторов. Однако большие накладные расходы на передачу сообщений в рамках Fast Ethernet приводят к серьезным ограничениям на спектр задач, которые можно эффективно решать на таком кластере. Если от кластера требуется большая производительность и универсальность, то необходимо применять более скоростные и специализированные технологии. К ним относятся SCI, Myrinet, cLAN, ServerNet и др. Сравнительная характеристика параметров этих технологий приведена в
таблице 1.

ServerNet

Fast Ethernet

Латентность (MPI)

Пропускная способность(MPI)

180 Мбайт/c

Пропускная способность (аппаратная)

400 Мбайт/c

160 Мбайт/c

150 Мбайт/c

12,5 Мбайт/c

Реализация MPI

HPVM, MPICH-GM и др.

Таблица 1.

Производительность коммуникационных сетей в кластерных системах определяется несколькими числовыми характеристиками. Основных характеристик две: латентность – время начальной задержки при посылке сообщений и пропускная способность сети, определяющая скорость передачи информации по каналам связи. При этом важны не столько пиковые характеристики, заявленные в стандарте, сколько реальные, достигаемые на уровне пользовательских приложений, например, на уровне MPI-приложений. В частности, после вызова пользователем функции посылки сообщения Send() сообщение последовательно пройдет через целый набор слоев, определяемых особенностями организации программного обеспечения и аппаратуры, прежде, чем покинуть процессор – поэтому существует существенный разбром по стандартам значений латентности. Наличие латентности приводит к тому, что максимальная скорость передачи по сети не может быть достигнута на сообщениях с небольшой длиной.

Скорость передачи данных по сети в рамках технологий Fast Ethernet и Scalable Coherent Interface (SCI) зависит от длины сообщения. Для Fast Ethernet характерна большая величина латентности – 160-180 мкс, в то время как латентность для SCI это величина около 5,6 мкс. Максимальная скорость передачи для этих же технологий 10 Мбайт/c и 80 Мбайт/с соответственно.

Цели создания кластерных систем

Разработчики архитектур кластерных систем приследовали различные цели при их создании. Первой была фирма Digital Equipment с кластерами VAX/VMS. Целью создания этой машины было повышение надежности работы системы, обеспечение высокой готовности и отказоустойчивости системы. В настоящее время существует множество аналогичных по архитектуре систем от других производителей.

Другой целью создания кластерных систем является создание дешевых высокопроизводительных параллельных вычислительных систем. Один из первых проектов, давший имя целому классу параллельных систем – кластер Beowulf – возник в центре NASA Goddard Space Flight Center для поддержки необходимыми вычислительными ресурсами проекта Earth and Space Sciences. Проект Beowulf начался летом 1994 года, и вскоре был собран 16-процессорный кластер на процессорах Intel 486DX4/100 МГц. На каждом узле было установлено по 16 Мбайт оперативной памяти и по 3 сетевых Ethernet-адаптера. Эта система оказалась очень удачной по отношению цена/производительность, поэтому такую архитектуру стали развивать и широко использовать в других научных организациях и институтах.

Для каждого класса кластеров характерны свои особенности архитекуры и применяемые аппаратные средства. Рассмотрим их более подробно.

Отказоустойчивые кластеры

Принципы построения

Для обеспечения надежности и отказоустойчивости вычислительных систем применяется множество различных аппаратурных и программных решений. Например, в системе может дублироваться все подверженные отказам элементы - источники питания, процессоры, оперативная и внешняя память. Такие отказоустойчивые системы с резервированием компонентов применяются для решения задач, в которых недостаточно надежности обычных вычислительных систем, оцениваемой в настоящий момент вероятностью безотказной работы 99%. В таких задачах требуется вероятность 99,999% и выше. Такую надежность можно достичь применяя отличные от приведенного выше методы повышения отказоустойчивости. В зависимости от уровня готовности вычислительной системы к использованию выделяют четыре типа надежности:

Уровень готовности, %

Мaкс. время простоя

Тип системы

3,5 дня в год

Обычная (Conventional)

8,5 часов в год

Высокая надежность (High Availability)

1 час в год

Отказоустойчивая (Fault Resilient)

5 минут в год

Безотказная (Fault Tolerant)

Таблица 2.

В отличие от отказоустойчивых систем с избыточными компонентами, а также различных вариантов многопроцессорности, кластеры объединяют относительно независимые друг от друга машины, каждую из которых можно остановить для профилактики или реконфигурирования, не нарушая при этом работоспособности кластера в целом. Высокая производительность кластера и сведение к минимуму времени простоев приложений достигается благодаря тому, что:

  • в случае сбоя ПО на одном из узлов приложение продолжает функционировать или автоматически перезапускается на других узлах кластера;
  • выход из строя одного из узлов (или нескольких) не приведет к краху всей кластерной системы;
  • профилактические и ремонтные работы, реконфигурацию или смену версий программного обеспечения, как правило, можно осуществлять в узлах кластера поочередно, не прерывая работы других узлов.

Неотъемлемой частью кластера является специальное программное обеспечение, которое, собственно, и решает проблему восстановления узла в случае сбоя, а также решает другие задачи. Кластерное ПО обычно имеет несколько заранее заданных сценариев восстановления работоспособности системы, а также может предоставлять администратору возможности настройки таких сценариев. Восстановление после сбоев может поддерживаться как для узла в целом, так и для отдельных его компонентов - приложений, дисковых томов и т.д. Эта функция автоматически инициируется в случае системного сбоя, а также может быть запущена администратором, если ему, например, необходимо отключить один из узлов для реконфигурации.

Кластеры могут иметь разделяемую память на внешних дисках, как правило, на дисковом массиве RAID. Дисковый массив RAID - это серверная подсистема ввода- вывода для хранения данных большого объема. В массивах RAID значительное число дисков относительно малой емкости используется для хранения крупных объемов данных, а также для обеспечения более высокой надежности и избыточности. Подобный массив воспринимается компьютером как единое логическое устройство.

Восстановление после сбоев может поддерживаться как для узла в целом, так и для отдельных его компонентов - приложений, дисковых томов и т.д. Эта функция автоматически инициируется в случае системного сбоя, а также может быть запущена администратором, если ему, например, необходимо отключить один из узлов для реконфигурации.

Узлы кластера контролируют работоспособность друг друга и обмениваются специфической «кластерной» информацией, например, о конфигурации кластера, а также передавать данные между разделяемыми накопителями и координировать их использование. Контроль работоспособности осуществляется с помощью специального сигнала, который узлы кластера передают друг другу, для того чтобы подтвердить свое нормальное функционирование. Прекращение подачи сигналов с одного из узлов сигнализирует кластерному программному обеспечению о произошедшем сбое и необходимости перераспределить нагрузку на оставшиеся узлы. В качестве примера рассмотрим отказоустойчивый кластер VAX/VMS.

Кластера VAX/VMS

Компания DEC первой анонсировала концепцию кластерной системы в 1983 году, определив ее как группу объединенных между собой вычислительных машин, представляющих собой единый узел обработки информации. По существу VAX-кластер представляет собой слабосвязанную многомашинную систему с общей внешней памятью, обеспечивающую единый механизм управления и администрирования.

VAX-кластер обладает следующими свойствами:

Разделение ресурсов. Компьютеры VAX в кластере могут разделять доступ к общим ленточным и дисковым накопителям. Все компьютеры VAX в кластере могут обращаться к отдельным файлам данных как к локальным.

Высокая готовность. Если происходит отказ одного из VAX-компьютеров, задания его пользователей автоматически могут быть перенесены на другой компьютер кластера. Если в системе имеется несколько контроллеров HSC и один из них отказывает, другие контроллеры HSC автоматически подхватывают его работу.

Высокая пропускная способность . Ряд прикладных систем могут пользоваться возможностью параллельного выполнения заданий на нескольких компьютерах кластера.

Удобство обслуживания системы . Общие базы данных могут обслуживаться с единственного места. Прикладные программы могут инсталлироваться только однажды на общих дисках кластера и разделяться между всеми компьютерами кластера.

Расширяемость . Увеличение вычислительной мощности кластера достигается подключением к нему дополнительных VAX-компьютеров. Дополнительные накопители на магнитных дисках и магнитных лентах становятся доступными для всех компьютеров, входящих в кластер.

Работа VAX-кластера определяется двумя главными компонентами. Первым компонентом является высокоскоростной механизм связи, а вторым - системное программное обеспечение, которое обеспечивает клиентам прозрачный доступ к системному сервису. Физически связи внутри кластера реализуются с помощью трех различных шинных технологий с различными характеристиками производительности.

Основные методы связи в VAX-кластере представлены на рис. 4.

Рис. 4 VAX/VMS-кластер

Шина связи компьютеров CI (Computer Interconnect) работает со скоростью 70 Мбит/с и используется для соединения компьютеров VAX и контроллеров HSC с помощью коммутатора Star Coupler. Каждая связь CI имеет двойные избыточные линии, две для передачи и две для приема, используя базовую технологию CSMA, которая для устранения коллизий использует специфические для данного узла задержки. Максимальная длина связи CI составляет 45 метров. Звездообразный коммутатор Star Coupler может поддерживать подключение до 32 шин CI, каждая из которых предназначена для подсоединения компьютера VAX или контроллера HSC. Контроллер HSC представляет собой интеллектуальное устройство, которое управляет работой дисковых и ленточных накопителей.

Компьютеры VAX могут объединяться в кластер также посредством локальной сети

Ethernet, используя NI - Network Interconnect (так называемые локальные VAX-кластеры), однако производительность таких систем сравнительно низкая из-за необходимости делить пропускную способность сети Ethernet между компьютерами кластера и другими клиентами сети.

Также кластера могут стоиться на основе шины DSSI (Digital Storage System Interconnect). На шине DSSI могут объединяться до четырех компьютеров VAX нижнего и среднего класса. Каждый компьютер может поддерживать несколько адаптеров DSSI. Отдельная шина DSSI работает со скоростью 4 Мбайт/с (32 Мбит/с) и допускает подсоединение до 8 устройств. Поддерживаются следующие типы устройств: системный адаптер DSSI, дисковый контроллер серии RF и ленточный контроллер серии TF. DSSI ограничивает расстояние между узлами в кластере 25 метрами.

Системное программное обеспечение VAX-кластеров

Для гарантии правильного взаимодействия процессоров друг с другом при обращениях к общим ресурсам, таким, например, как диски, компания DEC использует распределенный менеджер блокировок DLM (Distributed Lock Manager). Очень важной функцией DLM является обеспечение когерентного состояния дисковых кэшей для операций ввода/вывода операционной системы и прикладных программ. Например, в приложениях реляционных СУБД DLM несет ответственность за поддержание согласованного состояния между буферами базы данных на различных компьютерах кластера.

Задача поддержания когерентности кэш-памяти ввода/вывода между процессорами в кластере подобна задаче поддержания когерентности кэш-памяти в сильно связанной многопроцессорной системе, построенной на базе некоторой шины. Блоки данных могут одновременно появляться в нескольких кэшах и если один процессор модифицирует одну из этих копий, другие существующие копии не отражают уже текущее состояние блока данных. Концепция захвата блока (владения блоком) является одним из способов управления такими ситуациями. Прежде чем блок может быть модифицирован должно быть обеспечено владение блоком.

Работа с DLM связана со значительными накладными расходами. Накладные расходы в среде VAX/VMS могут быть большими, требующими передачи до шести сообщений по шине CI для одной операции ввода/вывода. Накладные расходы могут достигать величины 20% для каждого процессора в кластере.

Высокопроизводительные кластеры

Принципы построения

Архитектура высокопроизводительных кластеров появилась как развитие принципов построения систем MPP на менее производительных и массовых компонентах, управляемых операционной ситемой общего назначения. Кластеры также как и MPP системы состоят из слабосвязанных узлов, которые могут быть как однородными, так и, в отличие от MPP, различными или гетерогенными. Особое внимание при проектировании высокопроизводительной кластерной архутектуры уделяется обеспечению высокой эффективности коммуникационной шины, связывающей узлы кластера. Так как в кластерах нередко применяются массовые относительно низкопроизводительные шины, то приходится принимать ряд мер по исключению их низкой пропускной способности на производительность кластеров и организацию эффективного распараллеливания в кластере. Так например пропускная способность одной из самых высокоскоростных технологий Fast Ethernet на порядки ниже, чем у межсоединений в современных суперкомпьютерах МРР-архитектуры.

Для решения проблем низкой производительности сети применяют несколько методов:

Кластер разделяется на несколько сегментов, в пределах которых узлы соединены высокопроизводительной шиной типа Myrinet, а связь между узлами разных сегментов осуществляется низкопроизводительными сетями типа Ethernet/Fast Ethernet. Это позволяет вместе с сокращением расходов на коммуникационную среду существенно повысить производительность таких кластеров при решении задач с интенсивным обменом данными между процессами.

Применение так называемого «транкинга», т.е. объединение нескольких каналов Fast Ethernet в один общий скоростной канал, соединяющий несколько коммутаторов. Очевидным недостатком такого подхода является «потеря» части портов, задействованных в межсоединении коммутаторов.

Для повышения производительности создаются специальные протоколы обмена информацией по таким сетям, которые позволяют более эффективно использовать пропускную способность каналов и снимают некоторые ограничения накладываемые стандартными протоколами (TCP/IP,IPX). Такой метод часто используют в ситемах класса Beowulf.

Основным качеством, которым должен обладать высокопроизводительный кластер являтся горизонтальная масштабируемость, так как одним из главных преимуществ, которые предоставляет кластерная архитектура является возможность наращивать мощность существующей системы за счет простого добавления новых узлов в систему. Причем увеличение мощности происходит практически пропорционально мощности добавленных ресурсов и может производиться без остановки системы во время ее функционирования. В системах с другой архитектурой (в частности MPP) обычно возможна только вертикальная масштабируемость: добавление памяти, увеличение числа процессоров в многопроцессорных системах или добавление новых адаптеров или дисков. Оно позволяет временно улучшить производительность системы. Однако в системе будет установлено максимальное поддерживаемое количество памяти, процессоров или дисков, системные ресурсы будут исчерпаны, и для увеличеия производительности придется создавать новую систему или существенно перерабатывать старую. Кластерная система также допускает вертикальную масштабируемость. Таким образом, за счет вертикального и горизонтального масштабирования кластерная модель обеспечивает большую гибкость и простоту увеличения производительности систем.

Проект Beowulf

Beowulf - это скандинавский эпос, повествующий о событиях VII - первой трети VIII века, участником которых является одноименный герой, прославивший себя в сражениях.

Одним из примеров реализации кластерной системы такой структуры являются кластеры Beowulf. Проект Beowulf объединил около полутора десятков организаций (главным образом университетов) в Соединенных Штатах. Ведущие разработчики проекта - специалисты агентства NASA. В данном виде кластеров можно выделить следующие основные особенности:

Кластер Beowulf состоит из нескольких отдельных узлов, объединенных в общую сеть, общие ресурсы узлами кластера не используются;

Оптимальным считается построение кластеров на базе двухпроцессорных SMP систем;

Для уменьшения накладных расходов на взаимодействие между узлами применяют полнодуплексный 100 MB Fast Ethernet (реже используют SCI), создают несколько сетевых сегментов или соединяют узлы кластера через коммутатор;

В качестве программного обеспечения применяют ОС Linux, и бесплатно распространяемые коммуникационные библиотеки (PVM и MPI);

История проекта Beowulf

Проект начался летом 1994 года в научно-космическом центре NASA - Goddard Space Flight Center (GSFC), точнее в созданном на его основе CESDIS (Center of Excellence in Space Data and Information Sciences).

Первый Beowulf-кластер был создан на основе компьютеров Intel архитектуры под ОС Linux. Это была система, состоящая из 16 узлов (на процессорах 486DX4/100MHz, 16MB памяти и 3 сетевых адаптера на каждом узле, 3 "параллельных" Ethernet-кабеля по 10Mbit). Он создавался как вычислительный ресурс проекта "Earth and Space Sciences Project" (ESS).

Далее в GSFC и других подразделениях NASA были собраны другие, более мощные кластеры. Например, кластер theHIVE (Highly-parallel Integrated Virtual Environment) содержит 64 узла по 2 процессора Pentium Pro/200MHz и 4GB памяти в каждом, 5 коммутаторов Fast Ethernet. Общая стоимость этого кластера составляет примерно $210 тыс. В рамках проекта Beowulf был разработан ряд высокопроизводительных и специализированных сетевых драйверов (в частности, драйвер для использования нескольких Ethernet-каналов одновременно).

Архитектура Beowulf

Узлы кластера.

Это или однопроцессорные ПК, или SMP-сервера с небольшим числом процессоров (2-4, возможно до 6). По некоторым причинам оптимальным считается построение кластеров на базе двухпроцессорных систем, несмотря на то, что в этом случае настройка кластера будет несколько сложнее (главным образом потому, что доcтупны относительно недорогие материнские платы для 2 процессоров Pentium II/III). Стоит установить на каждый узел 64-128MB оперативной памяти (для двухпроцессорных систем 64-256MB).

Одну из машин следует выделить в качестве центральной (головной) куда следует установить достаточно большой жесткий диск, возможно более мощный процессор и больше памяти, чем на остальные (рабочие) узлы. Имеет смысл обеспечить (защищенную) связь этой машины с внешним миром.

При комплектации рабочих узлов вполне возможно отказаться от жестких дисков - эти узлы будут загружать ОС через сеть с центральной машины, что, кроме экономии средств, позволяет сконфигурировать ОС и все необходимое ПО только 1 раз (на центральной машине). Если эти узлы не будут одновременно использоваться в качестве пользовательских рабочих мест, нет необходимости устанавливать на них видеокарты и мониторы. Возможна установка узлов в стойки (rackmounting), что позволит уменьшить место, занимаемое узлами, но будет стоить несколько дороже.

Возможна организация кластеров на базе уже существующих сетей рабочих станций, т.е. рабочие станции пользователей могут использоваться в качестве узлов кластера ночью и в выходные дни. Системы такого типа иногда называют COW (Cluster of Workstations).

Количество узлов следует выбирать исходя из необходимых вычислительных ресурсов и доступных финансовых средств. Следует понимать, что при большом числе узлов придется также устанавливать более сложное и дорогое сетевое оборудование.

Основные типы локальных сетей, задействованные в рамках проекта Beowulf, - это Gigabit Ethernet, Fast Ethernet и 100-VG AnyLAN. В простейшем случае используется один сегмент Ethernet (10Mbit/sec на витой паре). Однако дешевизна такой сети, вследствие коллизий оборачивается большими накладными расходами на межпроцессорные обмены; а хорошую производительность такого кластера следует ожидать только на задачах с очень простой параллельной структурой и при очень редких взаимодействиях между процессами (например, перебор вариантов).

Для получения хорошей производительности межпроцессорных обменов используют полнодуплексный Fast Ethernet на 100Mbit/sec. При этом для уменьшения числа коллизий или устанавливают несколько "параллельных" сегментов Ethernet, или соединяют узлы кластера через коммутатор (switch).

Более дорогостоящим, но также популярным вариантом являются использование коммутаторов типа Myrinet (1.28Gbit/sec, полный дуплекс).

Менее популярными, но также реально используемыми при построении кластеров сетевыми технологиями являются технологии сLAN, SCI и Gigabit Ethernet.

Иногда для связи между узлами кластера используют параллельно несколько физичеких каналов связи - так называемое «связывание каналов» (channel bonding), которое обычно применяется для технологии Fast Ethernet. При этом каждый узел подсоединяется к коммутатору Fast Ethernet более чем одним каналом. Чтобы достичь этого, узлы оснащаются либо несколькими сетевыми платами, либо многопортовыми платами Fast Ethernet. Применение связывания каналов в узлах под управлением ОС Linux позволяет организовать равномерное распределение нагрузки приема/передачи между соответствующими каналами.

Системное ПО

Операционная система. Обычно используется система Linux в версиях, специально оптимизированных под распределенные параллельные вычисления. Была проведена доработку ядра Linux 2.0. В процессе построения кластеров выяснилось, что стандартные драйверы сетевых устройств в Linux весьма неэффективны. Поэтому были разработаны новые драйверы, в первую очередь для сетей Fast Ethernet и Gigabit Ethernet, и обеспечена возможность логического объединения нескольких параллельных сетевых соединений между персональными компьютерами (аналогично аппаратному связыванию каналов) , что позволяет из дешевых локальных сетей, обладающих низкой пропускной способностью, соорудить сеть с высокой совокупной пропускной способностью.

Как и в любом кластере, на каждом узле кластера исполняется своя копия ядра ОС. Благодаря доработкам обеспечена уникальность идентификаторов процессов в рамках всего кластера, а не отдельных узлов.

Коммуникационные библиотеки. Наиболее распространенным интерфейсом параллельного программирования в модели передачи сообщений является MPI. Рекомендуемая бесплатная реализация MPI - пакет MPICH, разработанный в Аргоннской Национальной Лаборатории. Для кластеров на базе коммутатора Myrinet разработана система HPVM, куда также входит реализация MPI.

Для эффективной организации параллелизма внутри одной SMP-cистемы возможны два варианта:

  1. Для каждого процессора в SMP-машине порождается отдельный MPI-процесс. MPI-процессы внутри этой системы обмениваются сообщениями через разделяемую память (необходимо настроить MPICH соответствующим образом).
  2. На каждой машине запускается только один MPI-процесс. Внутри каждого MPI-процесса производится распараллеливание в модели "общей памяти", например с помощью директив OpenMP.

После установки реализации MPI имеет смысл протестировать реальную производительность сетевых пересылок.

Кроме MPI, есть и другие библиотеки и системы параллельного программирования, которые могут быть использованы на кластерах.

Пример реализации кластера Beowulf - Avalon

В 1998 году в Лос-аламосской национальной лаборатории астрофизик Michael Warren и другие ученые из группы теоретической астрофизики построили суперкомпьютер Avalon, который представляет из себя Beowulf -кластер на базе процессоров DEC Alpha/533MHz. Avalon первоначально состоял из 68 процессоров, затем был расширен до 140. В каждом узле установлено 256MB оперативной памяти, EIDE-жесткий диск на 3.2GB, сетевой адаптер от Kingston (общая стоимость узла - $1700). Узлы соединены с помощью 4-х 36-портовых коммутаторов Fast Ethernet и расположенного "в центре" 12-портового коммутатора Gigabit Ethernet от 3Com.

Общая стоимость Avalon - $313 тыс., а его производительность по LINPACK (47.7 GFLOPS) позволила ему занять 114 место в 12-й редакции списка Top500 (рядом с 152-процессорной системой IBM SP2). 70-процессорная конфигурация Avalon по многим тестам показала такую же производительность, как 64-процессорная система SGI Origin2000/195MHz стоимость которой превышает $1 млн.

В настоящее время Avalon активно используется в астрофизических, молекулярных и других научных вычислениях. На конференции SC"98 создатели Avalon представили доклад, озаглавленный "Avalon: An Alpha/Linux Cluster Achieves 10 Gflops for $150k" и заслужили премию по показателю цена/производительность ("1998 Gordon Bell Price/Performance Prize").

Заключение

Ведущие производители микропроцессоров: Sun Microsystems, Dell и IBM придерживаются одинаковой точки зрения на будущее отрасли суперкомпьютеров: на смену отдельным, независимым суперкомпьютерам должны прийти группы высокопроизводительных серверов, объединяемых в кластер. Уже сегодня распределенные кластерные системы опережают современные классические суперкомпьютеры по производительности: самый мощный на сегодняшний день компьютер в мире - IBM ASCI White - обладает производительностью в 12 ТераФЛОП, производительность сети SETI@Home оценивается примерно в 15 ТераФЛОП. При этом, IBM ASCI White был продан за 110 миллионов долларов, а за всю историю существования SETI@Home было потрачено около 500 тысяч долларов.

Литература

2. http://www.beowulf.com

3. http://newton.gsfc.nasa.gov/thehive/

4. LoBoS, http://www.lobos.nih.gov

5. http://parallel.ru/news/kentucky_klat2.html

6. http://parallel.ru/news/anl_chibacity.html

7. http://parallel.ru/cluster/

8. http://www.ptc.spbu.ru

MIMD компьютеры

MIMD компьютер имеет N процессоров, независимо исполняющих N потоков команд и обрабатывающих N потоков данных. Каждый процессор функционирует под управлением собственного потока команд, то есть MIMD компьютер может параллельно выполнять совершенно разные программы.


MIMD архитектуры далее классифицируются в зависимости от физической организации памяти, то есть имеет ли процессор свою собственную локальную память и обращается к другим блокам памяти, используя коммутирующую сеть, или коммутирующая сеть подсоединяет все процессоры к общедоступной памяти. Исходя из организации памяти, различают следующие типы параллельных архитектур:

  • Компьютеры с распределенной памятью (Distributed memory )
    Процессор может обращаться к локальной памяти, может посылать и получать сообщения, передаваемые по сети, соединяющей процессоры. Сообщения используются для осуществления связи между процессорами или, что эквивалентно, для чтения и записи удаленных блоков памяти. В идеализированной сети стоимость посылки сообщения между двумя узлами сети не зависит как от расположения обоих узлов, так и от трафика сети, но зависит от длины сообщения.

  • Компьютеры с общей (разделяемой) памятью (True shared memory )
    Все процессоры совместно обращаются к общей памяти, обычно, через шину или иерархию шин. В идеализированной PRAM (Parallel Random Access Machine - параллельная машина с произвольным доступом) модели, часто используемой в теоретических исследованиях параллельных алгоритмов, любой процессор может обращаться к любой ячейке памяти за одно и то же время. На практике масштабируемость этой архитектуры обычно приводит к некоторой форме иерархии памяти. Частота обращений к общей памяти может быть уменьшена за счет сохранения копий часто используемых данных в кэш-памяти, связанной с каждым процессором. Доступ к этому кэш-памяти намного быстрее, чем непосредственно доступ к общей памяти.

  • Компьютеры с виртуальной общей (разделяемой) памятью (Virtual shared memory )
    Общая память как таковая отсутствует. Каждый процессор имеет собственную локальную память и может обращаться к локальной памяти других процессоров, используя "глобальный адрес". Если "глобальный адрес" указывает не на локальную память, то доступ к памяти реализуется с помощью сообщений, пересылаемых по коммуникационной сети.

Примером машин с общей памятью могут служить:

  • Sun Microsystems (многопроцессорные рабочие станции)
  • Silicon Graphics Challenge (многопроцессорные рабочие станции)
  • Sequent Symmetry
  • Convex
  • Cray 6400.

Следующие компьютеры относятся к классу машин с распределенной памятью

  • IBM-SP1/SP2
  • Parsytec GC
  • CM5 (Thinking Machine Corporation)
  • Cray T3D
  • Paragon (Intel Corp.)
  • nCUBE
  • Meiko CS-2
  • AVX (Alex Parallel Computers)
  • IMS B008

MIMD архитектуры с распределенной памятью можно так же классифицировать по пропускной способности коммутирующей сети. Например, в архитектуре, в которой пары из процессора и модуля памяти (процессорный элемент) соединены сетью с топологий реш§тка , каждый процессор имеет одно и то же число подключений к сети вне зависимости от числа процессоров компьютера. Общая пропускная способность такой сети растет линейно относительно числа процессоров. С другой стороны в архитектуре, имеющей сеть с топологий гиперкуб , число соединений процессора с сетью является логарифмической функцией от числа процессоров, а пропускная способность сети растет быстрее, чем линейно по отношению к числу процессоров. В топологии клика каждый процессор должен быть соединен со всеми другими процессорами.


Сеть с топологией 2D реш§тка (тор )

Сеть с топологией 2D тор


Сеть с топологией клика

Национального Центра Суперкомпьютерных Приложений (университет шт. Иллинойс, Urbana-Champaign)

MPI: The Message Passing Interface

Название "интерфейс передачи сообщений", говорит само за себя. Это хорошо стандартизованный механизм для построения параллельных программ в модели обмена сообщениями. Существуют стандартные "привязки" MPI к языкам С/С++, Fortran 77/90. Существуют бесплатные и коммерческие реализации почти для всех суперкомпьютерных платформ, а также для сетей рабочих станций UNIX и Windows NT. В настоящее время MPI - наиболее широко используемый и динамично развивающийся интерфейс из своего класса.

Beowulf - кластеры на базе ОС Linux

Михаил Кузьминский

"Открытые системы"

На пороге тысячелетий мы имеем все шансы стать свидетелями монополизации компьютерной индустрии, которая может охватить как микропроцессоры, так и операционные системы. Конечно же, речь идет о микропроцессорах от Intel (Merced грозит вытеснить процессоры архитектуры RISC) и ОС от Microsoft.

В обоих случаях успех во многом определяется мощью маркетинговой машины, а не только "потребительскими" свойствами выпускаемых продуктов. По моему мнению, компьютерное сообщество еще не осознало масштабов возможных последствий.

Некоторые специалисты сопоставляют потенциальную монополизацию компьютерного рынка с наблюдавшимся в 70-е годы монопольным господством IBM - как в области мэйнфреймов, так и операционных систем. Я долгое время работаю с этой техникой и по мере распространения в нашей стране ОС Unix все больше осознаю многие преимущества операционной системы MVS производства IBM. Тем не менее я разделяю распространенную точку зрения, что подобная монополия не способствовала ускорению прогресса.

Западные университеты, которые в свое время одними из первых перешли к использованию Unix, по-прежнему в своих перспективных разработках опираются на эту систему, причем в качестве платформы все чаще избирается Linux. Одной из поучительных академических разработок и посвящена эта статья.

Linux как общественное явление

Мы уже не удивляемся тому, что Linux cтала заметным явлением компьютерной жизни. В сочетании с богатейшим набором свободно распространяемого программного обеспечения GNU эта операционная система стала чрезвычайно популярна у некоммерческих пользователей как у нас, так и за рубежом. Ее популярность все возрастает. Версии Linux существуют не только для платформы Intel x86, но и для других процессорных архитектур, в том числе DEC Alрha, и широко используются для приложений Internet, а также выполнения задач расчетного характера. Одним словом, Linux стала своеобразной "народной операционной системой". Hельзя, впрочем, сказать, что у Linux нет слабых мест; одно из них - недостаточная поддержка SMР-архитектур.

Самый дешевый способ нарастить компьютерные ресурсы, в том числе вычислительную мощность, - это построить кластер. Массивно-параллельные суперкомпьютеры с физически и логически распределенной оперативной памятью также можно рассматривать как своеобразные кластеры. Наиболее яркий пример такой архитектуры - знаменитый компьютер IBM SР2.

Весь вопрос в том, что связывает компьютеры (узлы) в кластер. В "настоящих" суперкомпьютерах для этого используется специализированная и поэтому дорогая аппаратура, призванная обеспечить высокую пропускную способность. В кластерах, как правило, применяются обычные сетевые стандарты - Ethernet, FDDI, ATM или HiРРI.

Кластерные технологии с использованием операционной системы Linux начали развиваться несколько лет назад и стали доступны задолго до появления Wolfрack для Windows NT. Так в середине 90-х годов и возник проект Beowulf.

Герой эпической поэмы

"Беовульф" - это скандинавский эпос, повествующий о событиях VII - первой трети VIII века, участником которых является одноименный герой, прославивший себя в сражениях. Неизвестно, задумывались ли авторы проекта, с кем ныне будет сражаться Beowulf (вероятно, с Windows NT?), однако героический образ позволил объединить в консорциум около полутора десятков организаций (главным образом университетов) в Соединенных Штатах. Нельзя сказать, что среди участников проекта доминируют суперкомпьютерные центры, однако кластеры "Локи" и "Мегалон" установлены в таких известных в мире высокопроизводительных вычислений центрах, как Лос-Аламос и лаборатория Sandia Министерства энергетики США; ведущие разработчики проекта - специалисты агентства NASA. Вообще, все без исключения кластеры, созданные участниками проекта, получают громкие имена.

Кроме Beowulf, известна еще одна близкая кластерная технология - NOW. В NOW персональные компьютеры обычно содержат информацию о самих себе и поставленных перед ними задачах, а в обязанности системного администратора такого кластера входит формирование данной информации. Кластеры Beowulf в этом отношении (то есть с точки зрения системного администратора) проще: там отдельные узлы не знают о конфигурации кластера. Лишь один выделенный узел содержит информацию о конфигурации; и только он имеет связь по сети с внешним миром. Все остальные узлы кластера объединены локальной сетью, и с внешним миром их связывает только "тоненький мостик" от управляющего узла.

Узлами в технологии Beowulf являются материнские платы ПК. Обычно в узлах задействованы также локальные жесткие диски. Для связи узлов используются стандартные типы локальных сетей. Этот вопрос мы рассмотрим ниже, сначала же остановимся на программном обеспечении.

Его основу в Beowulf составляет обычная коммерчески доступная ОС Linux, которую можно приобрести на CD-ROM. Первое время большинство участников проекта ориентировались на компакт-диски, издаваемые Slackware, а сейчас предпочтение отдаетcя версии RedHat.

В обычной ОС Linux можно инсталлировать известные средства распараллеливания в модели обмена сообщениями (LAM MРI 6.1, РVM 3.3.11 и другие). Можно также воспользоваться стандартом р-threads и стандартными средствами межпроцессорного взаимодействия, входящими в любую ОС Unix System V. В рамках проекта Beowulf были выполнены и серьезные дополнительные разработки.

Прежде всего следует отметить доработку ядра Linux 2.0. В процессе построения кластеров выяснилось, что стандартные драйверы сетевых устройств в Linux весьма неэффективны. Поэтому были разработаны новые драйверы (автор большинства разработок - Дональд Бекер), в первую очередь для сетей Fast Ethernet и Gigabit Ethernet, и обеспечена возможность логического объединения нескольких параллельных сетевых соединений между персональными компьютерами, что позволяет из дешевых локальных сетей, обладающих более чем скромной скоростью, соорудить сеть с высокой совокупной пропускной способностью.

Как и во всяком кластере, в каждом узле живет своя копия ядра ОС. Благодаря доработкам обеспечена уникальность идентификаторов процессов в рамках всего кластера, а не отдельных узлов, а также "удаленная доставка" сигналов ОС Linux.

Кроме того, надо отметить функции загрузки по сети (netbooting) при работе с материнскими платами Intel РR 440FX, причем они могут применяться и для работы с другими материнскими платами, снабженными AMI BIOS.

Очень интересные возможности предоставляют механизмы сетевой виртуальной памяти (Network Virtual Memory) или разделяемой распределенной памяти DSM (Distributed Shared Memory), позволяющие создать для процесса определенную "иллюзию" общей оперативной памяти узлов.

Сеть - дело тонкое

Поскольку для распараллеливания суперкомпьютерных приложений вообще, и кластерных в частности, необходима высокая пропускная способность и низкие задержки для обмена сообщениями между узлами, сетевые характеристики становятся параметрами, определяющими производительность кластера. Выбор микропроцессоров для узлов очевиден - это стандартные процессоры производства Intel; а вот с топологией кластера, типом сети и сетевых плат можно поэкспериментировать. Именно в этой области и проводились основные исследования.

При анализе различных сетевых плат ПК, представленных сегодня на рынке, особое внимание было уделено таким характеристикам, как эффективная поддержка широковещательной рассылки (multicasting), поддержка работы с пакетами больших размеров и т. д. Основные типы локальных сетей, задействованные в рамках проекта Beowulf, - это Gigabit Ethernet, Fast Ethernet и 100-VG AnyLAN. (Возможности ATM-технологии также активно исследовались, но, насколько известно автору, это делалось вне рамок данного проекта.)

Как самому собрать суперкомпьютер

Проанализировав итоги работ, выполненных в рамках проекта Beowulf, можно прийти к следующему выводу: найденные решения позволяют самостоятельно собрать высокопроизводительный кластер на базе стандартных для ПК компонентов и использовать обычное программное обеспечение. Среди самых крупных экземпляров нельзя не отметить 50-узловой кластер в CESDIS, включающий 40 узлов обработки данных (на базе одно- и двухпроцессорных плат Рentium Рro/200 МГц) и 10 масштабирующих узлов (двухпроцессорная плата Рentium Рro/166 МГц). Соотношение стоимость/пиковая производительность в таком кластере представляется очень удачным. Вопрос в том, насколько эффективно удается распараллелить приложения - иными словами, какова будет реальная, а не пиковая производительность. Над решением этой проблемы сейчас и работают участники проекта.

Следует отметить, что построение кластеров из обычных ПК становится сегодня достаточно модным в научной среде. Некоторые академические институты в нашей стране также планируют создать подобные кластеры.

При объединении в кластер компьютеров разной мощности или разной архитектуры, говорят о гетерогенных (неоднородных) кластерах. Узлы кластера могут одновременно использоваться в качестве пользовательских рабочих станций. В случае, когда это не нужно, узлы могут быть существенно облегчены и/или установлены в стойку.

Используются стандартные для рабочих станций ОС, чаще всего, свободно распространяемые - Linux/FreeBSD, вместе со специальными средствами поддержки параллельного программирования и распределения нагрузки. Программирование, как правило, в рамках модели передачи сообщений (чаще всего - MPI). Более подробно она рассмотрена в следующем параграфе.

История развития кластерной архитектуры.

Компания DEC первой анонсировала концепцию кластерной системы в 1983 году, определив ее как группу объединенных между собой вычислительных машин, представляющих собой единый узел обработки информации.

Один из первых проектов, давший имя целому классу параллельных систем – кластеры Beowulf – возник в центре NASA Goddard Space Flight Center для поддержки необходимыми вычислительными ресурсами проекта Earth and Space Sciences. Проект Beowulf стартовал летом 1994 года, и вскоре был собран 16-процессорный кластер на процессорах Intel 486DX4/100 МГц. На каждом узле было установлено по 16 Мбайт оперативной памяти и по 3 сетевых Ethernet-адаптера. Для работы в такой конфигурации были разработаны специальные драйверы, распределяющие трафик между доступными сетевыми картами.

Позже в GSFC был собран кластер theHIVE – Highly-parallel Integrated Virtual Environment , структура которого показана на рис. 2. Этот кластер состоит из четырех подкластеров E, B, G, и DL, объединяя 332 процессора и два выделенных хост-узла. Все узлы данного кластера работают под управлением RedHat Linux.

В 1998 году в Лос-Аламосской национальной лаборатории астрофизик Майкл Уоррен и другие ученые из группы теоретической астрофизики построили суперкомпьютер Avalon, который представляет собой Linux-кластер на базе процессоров Alpha 21164A с тактовой частотой 533 МГц. Первоначально Avalon состоял из 68 процессоров, затем был расширен до 140. В каждом узле установлено по 256 Мбайт оперативной памяти, жесткий диск на 3 Гбайт и сетевой адаптер Fast Ethernet. Общая стоимость проекта Avalon составила 313 тыс. долл., а показанная им производительность на тесте LINPACK – 47,7 GFLOPS, позволила ему занять 114 место в 12-й редакции списка Top500 рядом с 152-процессорной системой IBM RS/6000 SP. В том же 1998 году на самой престижной конференции в области высокопроизводительных вычислений Supercomputing’98 создатели Avalon представили доклад «Avalon: An Alpha/Linux Cluster Achieves 10 Gflops for $150k», получивший первую премию в номинации «наилучшее отношение цена/производительность».

В апреле текущего года в рамках проекта AC3 в Корнелльском Университете для биомедицинских исследований был установлен кластер Velocity+, состоящий из 64 узлов с двумя процессорами Pentium III/733 МГц и 2 Гбайт оперативной памяти каждый и с общей дисковой памятью 27 Гбайт. Узлы работают под управлением Windows 2000 и объединены сетью cLAN компании Giganet.

Проект Lots of Boxes on Shelfes реализован в Национальном Институте здоровья США в апреле 1997 года и интересен использованием в качестве коммуникационной среды технологии Gigabit Ethernet. Сначала кластер состоял из 47 узлов с двумя процессорами Pentium Pro/200 МГц, 128 Мбайт оперативной памяти и диском на 1,2 Гбайт на каждом узле. В 1998 году был реализован

следующий этап проекта – LoBoS2, в ходе которого узлы были преобразованы в настольные компьютеры с сохранением объединения в кластер. Сейчас LoBoS2 состоит из 100 вычислительных узлов, содержащих по два процессора Pentium II/450 МГц, 256 Мбайт оперативной и 9 Гбайт дисковой памяти. Дополнительно к кластеру подключены 4 управляющих компьютера с общим RAID-массивом емкостью 1,2 Тбайт.

Одной из последних кластерных разработок стал суперкомпьютер AMD Presto III, представляющий собой кластер Beowulf из 78 процессоров Athlon. Компьютер установлен в Токийском Технологическом Институте. На сегодняшний день AMD построила 8 суперкомпьютеров, объединенных в кластеры по методу Beowulf, работающих под управлением ОС Linux.

Кластеры IBM

RS/6000

Компания IBM предлагает несколько типов слабо связанных систем на базе RS/6000, объединенных в кластеры и работающих под управлением программного продукта High-Availability Clastered Multiprocessor/6000 (HACMP/6000).

Узлы кластера работают параллельно, разделяя доступ к логическим и физическим ресурсам пользуясь возможностями менеджера блокировок, входящего в состав HACMP/6000.

Начиная с объявления в 1991 году продукт HACMP/6000 постоянно развивался. В его состав были включены параллельный менеджер ресурсов, распределенный менеджер блокировок и параллельный менеджер логических томов, причем последний обеспечил возможность балансировки загрузки на уровне всего кластера. Максимальное количество узлов в кластере возросло до восьми. В настоящее время в составе кластера появились узлы с симметричной многопроцессорной обработкой, построенные по технологии Data Crossbar Switch, обеспечивающей линейный рост производительности с увеличением числа процессоров.

Кластеры RS/6000 строятся на базе локальных сетей Ethernet, Token Ring или FDDI и могут быть сконфигурированы различными способами с точки зрения обеспечения повышенной надежности:

  • Горячий резерв или простое переключение в случае отказа. В этом режиме активный узел выполняет прикладные задачи, а резервный может выполнять некритичные задачи, которые могут быть остановлены в случае необходимости переключения при отказе активного узла.
  • Симметричный резерв. Аналогичен горячему резерву, но роли главного и резервного узлов не фиксированы.
  • Взаимный подхват или режим с распределением нагрузки. В этом режиме каждый узел в кластере может "подхватывать" задачи, которые выполняются на любом другом узле кластера.

IBM SP2

IBM SP2 лидируют в списке крупнейших суперкомпьютеров TOP500 по числу инсталляций (141 установка, а всего в мире работает 8275 таких компьютеров с общим числом узлов свыше 86 тыс. В основу этих суперкомпьютеров заложенный в основу архитектуры кластерный подход с использованием мощного центрального коммутатора. IBM использует этот подход уже много лет.

Общая архитектура SP2

Общее представление об архитектуре SP2 дает рис. 1. Основная ее особенность архитектуры - применение высокоскоростного коммутатора с низкими задержками для соединения узлов между собой. Эта внешне предельно простая схема, как показал опыт, оказалась чрезвычайно гибкой. Сначала узлы SP2 были однопроцессорными, затем появились узлы с SMP-архитектурой.

Собственно, все детали скрываются в строении узлов. Мало того, узлы бывают различных типов, причем даже процессоры в соседних узлах могут быть разными. Это обеспечивает

большую гибкость выбора конфигураций. Общее число узлов в вычислительной системе может достигать 512. Узлы SP2 фактически являются самостоятельными компьютерами, и их прямые аналоги продаются корпорацией IBM под самостоятельными названиями. Наиболее ярким примером этого является четырехпроцессорный SMP-сервер RS/6000 44P-270 c микропроцессорами Power3-II, который сам по себе можно отнести к классу компьютеров среднего класса или даже к мини-суперкомпьютерам.

Устанавливавшиеся в узлах SP2 микропроцессоры развивались по двум архитектурным линиям: Power - Power2 - Power3 - Power3-II и по линии PowerPC вплоть до модели 604e с тактовой частотой 332 МГц.

Традиционными для SP2 являются «тонкие» (Thin Node) и «широкие» (Wide Node) узлы, обладающие SMP-архитектурой. В них могут устанавливаться как PowerPC 604e (от двух до четырех процессоров), так и Power3-II (до четырех). Емкость оперативной памяти узлов составляет от 256 Мбайт до 3 Гбайт (при использовании Power3-II - до 8 Гбайт). Основные отличия между тонкими и широкими узлами касаются подсистемы ввода/вывода. Широкие узлы предназначены для задач, требующих более мощных возможностей ввода/вывода: в них имеется по десять слотов PCI (в том числе три 64-разрядных) против двух слотов в тонких узлах. Соответственно, и число монтажных отсеков для дисковых устройств в широких узлах больше.

Быстродействие коммутатора характеризуется низкими величинами задержек: 1,2 мс (до 2 мс при числе узлов свыше 80). Это на порядок лучше того, что можно получить в современных Linux-кластерах Beowulf. Пиковая пропускная способность каждого порта: она составляет 150 Мбайт/с в одном направлении (то есть 300 Мбайт/с при дуплексной передаче). Той же пропускной способностью обладают и расположенные в узлах SP2 адаптеры коммутатора. IBM приводит также отличные результаты по задержкам и пропускной способности.

Наиболее мощные узлы SP2 - «высокие» (High Node). Высокий узел - это комплекс, состоящий из вычислительного узла с подсоединенными устройствами расширения ввода/вывода в количестве до шести штук. Такой узел также обладает SMP-архитектурой и содержит до 8 процессоров Power3 с тактовой частотой 222 или 375 МГц.

Кроме того, узел этого типа содержит плату ввода/вывода, которая также подсоединена к системной плате. Плата ввода/вывода содержит два симметричных логических блока SABER, через которые осуществляется передача данных к внешним устройствам, таким

как диски и телекоммуникационное оборудование. На плате ввода/вывода имеется четыре слота 64-разрядной шины PCI и один 32-разрядный слот (частота 33 МГц), а также интегрированы контроллеры UltraSCSI, Ethernet 10/100 Мбит/с, три последовательных и один параллельный порт.

C появлением высоких узлов и микропроцессоров Power3-II/375 МГц на тестах Linpack parallel системы IBM SP2 достигли производительности 723,4 GFLOPS. Этот результат достигнут при использовании 176 узлов (704 процессора). Учитывая, что узлов можно установить до 512, этот результат показывает, что серийно выпускаемые IBM SP2 потенциально близки к отметке 1 TFLOPS.

Кластерные решения Sun Microsystems

Sun Microsystems предлагает кластерные решения на основе своего продукта SPARCclaster PDB Server, в котором в качестве узлов используются многопроцессорные SMP-серверы SPARCserver 1000 и SPARCcenter 2000. Максимально в состав SPARCserver 1000 могут входить до восьми процессоров, а в SPARCcenter 2000 до 20 процессоров SuperSPARC. В комплект базовой поставки входят следующие компоненты: два кластерных узла на основе SPARCserver 1000/1000E или SPARCcenter 2000/2000E, два дисковых массива SPARCstorage Array, а также пакет средств для построения кластера, включающий дублированное оборудование для осуществления связи, консоль управления кластером Claster Management Console, программное обеспечение SPARCclaster PDB Software и пакет сервисной поддержки кластера.

Для обеспечения высокой производительности и готовности коммуникаций кластер поддерживает полное дублирование всех магистралей данных. Узлы кластера объединяются с помощью каналов SunFastEthernet с пропускной способностью 100 Мбит/с. Для подключения дисковых подсистем используется оптоволоконный интерфейс Fibre Channel с пропускной способностью 25 Мбит/с, допускающий удаление накопителей и узлов друг от друга на расстояние до 2 км. Все связи между узлами, узлами и дисковыми подсистемами дублированы на аппаратном уровне. Аппаратные, программные и сетевые средства кластера обеспечивают отсутствие такого места в системе, одиночный отказ или сбой которого выводил бы всю систему из строя.

Университетские проекты

Интересная разработка Университета штата Кентукки – кластер KLAT2 (Kentucky Linux Athlon Testbed 2 ). Система KLAT2 состоит из 64 бездисковых узлов с процессорами AMD Athlon/700 МГц и оперативной памятью 128 Мбайт на каждом. Программное обеспечение, компиляторы и математические библиотеки (SCALAPACK, BLACS и ATLAS) были доработаны для эффективного использования технологии 3DNow! процессоров AMD, что позволило увеличить производительность. Значительный интерес представляет и использованное сетевое решение, названное «Flat Neighbourghood Network» (FNN). В каждом узле установлено четыре сетевых адаптера Fast Ethernet от Smartlink, а узлы соединяются с помощью девяти 32-портовых коммутаторов. При этом для любых двух узлов всегда есть прямое соединение через один из коммутаторов, но нет необходимости в соединении всех узлов через единый коммутатор. Благодаря оптимизации программного обеспечения под архитектуру AMD и топологии FNN удалось добиться рекордного соотношения цена/производительность – 650 долл. за 1 GFLOPS.

Идея разбиения кластера на разделы получила интересное воплощение в проекте Chiba City , реализованном в Аргоннской Национальной лаборатории. Главный раздел содержит 256 вычислительных узлов, на каждом

из которых установлено два процессора Pentium III/500 МГц, 512 Мбайт оперативной памяти и локальный диск емкостью 9 Гбайт. Кроме вычислительного раздела в систему входят раздел визуализации (32 персональных компьютера IBM Intellistation с графическими платами Matrox Millenium G400, 512 Мбайт оперативной памяти и дисками 300 Гбайт), раздел хранения данных (8 серверов IBM Netfinity 7000 с процессорами Xeon/500 МГц и дисками по 300 Гбайт) и управляющий раздел (12 компьютеров IBM Netfinity 500). Все они объединены сетью Myrinet, которая используется для поддержки параллельных приложений, а также сетями Gigabit Ethernet и Fast Ethernet для управляющих и служебных целей. Все разделы делятся на «города» (town) по 32 компьютера. Каждый из них имеет своего «мэра», который локально обслуживает свой «город», снижая нагрузку на служебную сеть и обеспечивая быстрый доступ к локальным ресурсам.

Кластерные проекты в России

В России всегда была высока потребность в высокопроизводительных вычислительных ресурсах, и относительно низкая стоимость кластерных проектов послужила серьезным толчком к широкому распространению подобных решений в нашей стране. Одним из первых появился кластер «Паритет», собранный в ИВВиБД и состоящий из восьми процессоров Pentium II, связанных сетью Myrinet. В 1999 году вариант кластерного решения на основе сети SCI был апробирован в НИЦЭВТ, который, по сути дела, и был пионером использования технологии SCI для построения параллельных систем в России.

Высокопроизводительный кластер на базе коммуникационной сети SCI, установлен в Научно-исследовательском вычислительном центре Московского государственного университета . Кластер НИВЦ включает 12 двухпроцессорных серверов «Эксимер» на базе Intel Pentium III/500 МГц, в общей сложности 24 процессора с суммарной пиковой производительностью 12 млрд. операций в секунду. Общая стоимость системы – около 40 тыс. долл. или примерно 3,33 тыс. за 1 GFLOPS.

Вычислительные узлы кластера соединены однонаправленными каналами сети SCI в двумерный тор 3x4 и одновременно подключены к центральному серверу через вспомогательную сеть Fast Ethernet и коммутатор 3Com Superstack. Сеть SCI – это ядро кластера, делающее данную систему уникальной вычислительной установкой суперкомпьютерного класса, ориентированной на широкий класс задач. Максимальная скорость обмена данными по сети SCI в приложениях пользователя составляет более 80 Мбайт/с, а время латентности около 5,6 мкс. При построении данного вычислительного кластера использовалось интегрированное решение Wulfkit, разработанное компаниями Dolphin Interconnect Solutions и Scali Computer (Норвегия).

Основным средством параллельного программирования на кластере является MPI (Message Passing Interface) версии ScaMPI 1.9.1. На тесте LINPACK при решении системы линейных уравнений с матрицей размера 16000х16000 реально полученная производительность составила более 5,7 GFLOPS. На тестах пакета NPB производительность кластера сравнима, а иногда и превосходит производительность суперкомпьютеров семейства Cray T3E с тем же самым числом процессоров.

Основная область применения вычислительного кластера НИВЦ МГУ – это поддержка фундаментальных научных исследований и учебного процесса.

Из других интересных проектов следует отметить решение, реализованное в Санкт-Петербургском университете на базе технологии Fast Ethernet : собранные кластеры могут использоваться и как полноценные независимые учебные классы, и как единая вычислительная установка, решающая единую задачу. В Самарском научном центре

пошли по пути создания неоднородного вычислительного кластера, в составе которого работают компьютеры на базе процессоров Alpha и Pentium III. В Санкт-Петербургском техническом университете собирается установка на основе процессоров Alpha и сети Myrinet без использования локальных дисков на вычислительных узлах. В Уфимском государственном авиационном техническом университете проектируется кластер на базе двенадцати Alpha-станций, сети Fast Ethernet и ОС Linux.

(К слову, говоря, при этом есть возможность собрать недорогой и эффективный кластер из xbox 360 или PS3, процессоры там примерно как Power, и на миллион можно купить не одну приставку.)

Исходя из этого отметим интересные по цене варианты построения высокопроизводительной системы. Разумеется, она должна быть многопроцессорной. У Intel для таких задач используются процессоры Xeon, у AMD – Opteron.

Если много денег


Отдельно отметим крайне дорогую, но производительную линейку процессоров на сокете Intel Xeon LGA1567.
Топовый процессор этой серии – E7-8870 с десятью ядрами 2,4 ГГц. Его цена $4616. Для таких CPU фирмы HP и Supermicro выпускают! восьмипроцессорные! серверные шасси. Восемь 10-ядерных процессоров Xeon E7-8870 2.4 ГГц с поддержкой HyperThreading поддерживают 8*10*2=160 потоков, что в диспетчере задач Windows отображается как сто шестьдесят графиков загрузки процессоров, матрицей 10x16.

Для того, чтобы восемь процессоров уместились в корпусе, их размещают не сразу на материнской плате, а на отдельных платах, которые втыкаются в материнскую плату. На фотографии показаны установленные в материнскую плату четыре платы с процессорами (по два на каждой). Это решение Supermicro. В решении HP на каждый процессор приходится своя плата. Стоимость решения HP составляет два-три миллиона, в зависимости от наполнения процессорами, памятью и прочим. Шасси от Supermicro стоит $10 000, что привлекательнее. Кроме того в Supermicro можно поставить четыре сопроцессорных платы расширения в порты PCI-Express x16 (кстати, еще останется место для Infiniband-адаптера чтобы собирать кластер из таких), а в HP только две. Таким образом, для создания суперкомпьютера восьмипроцессорная платформа от Supermicro привлекательнее. На следующем фото с выставки представлен суперкомпьютер в сборе с четырьмя GPU платами.


Однако это очень дорого.
Что подешевле
Зато есть перспектива сборки суперкомпьютера на более доступных процессорах AMD Opteron G34, Intel Xeon LGA2011 и LGA 1366.

Чтобы выбрать конкретную модель, я составил таблицу, в которой сосчитал для каждого процессора показатель цена/(число ядер*частота). Я отбросил из расчета процессоры частотой ниже 2 ГГц, и для Intel - с шиной ниже 6,4GT/s.

Модель
Кол-во ядер
Частота
Цена, $
Цена/ядро, $
Цена/Ядро/ГГц
AMD





6386 SE
16
2,8
1392
87
31
6380
16
2,5
1088
68
27
6378
16
2,4
867
54
23
6376
16
2,3
703
44
19
6348
12
2,8
575
48
17
6344
12
2,6
415
35
13
6328
8
3,2
575
72
22
6320
8
2,8
293
37
13
INTEL





E5-2690
8
2,9
2057
257
89
E5-2680
8
2,7
1723
215
80
E5-2670
8
2,6
1552
194
75
E5-2665
8
2,4
1440
180
75
E5-2660
8
2,2
1329
166
76
E5-2650
8
2
1107
138
69
E5-2687W
8
3,1
1885
236
76
E5-4650L
8
2,6
3616
452
174
E5-4650
8
2,7
3616
452
167
E5-4640
8
2,4
2725
341
142
E5-4617
6
2,9
1611
269
93
E5-4610
6
2,4
1219
203
85
E5-2640
6
2,5
885
148
59
E5-2630
6
2,3
612
102
44
E5-2667
6
2,9
1552
259
89
X5690
6
3,46
1663
277
80
X5680
6
3,33
1663
277
83
X5675
6
3,06
1440
240
78
X5670
6
2,93
1440
240
82
X5660
6
2,8
1219
203
73
X5650
6
2,66
996
166
62
E5-4607
6
2,2
885
148
67
X5687
4
3,6
1663
416
115
X5677
4
3,46
1663
416
120
X5672
4
3,2
1440
360
113
X5667
4
3,06
1440
360
118
E5-2643
4
3,3
885
221
67

Жирным курсивом выделена модель с минимальным показателем соотношения, подчеркнутым – самый мощный AMD и на мой взгляд наиболее близкий по производительности Xeon.

Таким, образом, мой выбор процессоров для суперкомпьютера – Opteron 6386 SE, Opteron 6344, Xeon E5-2687W и Xeon E5-2630.

Материнские платы

PICMG
На обычные материнские платы невозможно поставить более четырех двухслотовых плат расширения. Есть и другая архитектура – использование кросс-плат, таких как BPG8032 PCI Express Backplane.


В такую плату ставятся платы расширения PCI Express и одна процессорная плата, чем-то похожая на те, которые установлены в восьмипроцессорных серверах на базе Supermicro, о которых речь шла выше. Но только эти процессорные платы подчиняются отраслевым стандартам PICMG. Стандарты развиваются медленно и такие платы зачастую не поддерживают самые современные процессоры. Максимум такие процессорные платы сейчас выпускают на два Xeon E5-2448L - Trenton BXT7059 SBC.

Стоить такая система будет без GPU не меньше $5000.

Готовые платформы TYAN
За ту же примерно сумму можно приобрести готовую платформу для сборки суперкомпьютеров TYAN FT72B7015 . В такой можно установить до восьми GPU и два Xeon LGA1366.
«Обычные» серверные материнские платы
Для LGA2011
Supermicro X9QR7-TF - на эту материнскую плату можно установить 4 Платы расширения и 4 процессора.

Supermicro X9DRG-QF - эта плата специально разработана для сборки высокопроизводительных систем.

Для Opteron
Supermicro H8QGL-6F - эта плата позволяет установить четыре процессора и три платы расширения

Усиление платформы платами расширения

Этот рынок почти полностью захвачен NVidia, которые выпускают помимо геймерских видеокарт еще и вычислительные карты. Меньшую долю рынка имеет AMD, и относительно недавно на этот рынок пришла корпорация Intel.

Особенностью таких сопроцессоров является наличие на борту большого объема оперативной памяти, быстрые расчеты с двойной точностью и энергоэффективность.

FP32, Tflops FP64, Tflops Цена Память, Гб
Nvidia Tesla K20X 3.95 1.31 5.5 6
AMD FirePro S10000 5.91 1.48 3.6 6
Intel Xeon Phi 5110P 1 2.7 8
Nvidia GTX Titan 4.5 1.3 1.1 6
Nvidia GTX 680 3 0.13 0.5 2
AMD HD 7970 GHz Edition 4 1 0.5 3
AMD HD 7990 Devil 13 2x3,7 2х0.92 1.6 2x3

Топовое решение от Nvidia называется Tesla K20X на архитектуре Kepler. Именно такие карты стоят в самом мощном в мире суперкомпьютере Titan. Однако недавно Nvidia выпустила видеокарту Geforce Titan. Старые модели были с урезанной производительностью FP64 до 1/24 от FP32 (GTX680). Но в Титане производитель обещает довольно высокую производительность в расчетах с двойной точностью. Решения от AMD тоже неплохи, но они построены на другой архитектуре и это может создать трудности для запуска вычислений, оптимизированных под CUDA (технология Nvidia).

Решение от Intel - Xeon Phi 5110P интересно тем, что все ядра в сопроцессоре выполнены на архитектуре x86 и не требуется особой оптимизации кода для запуска расчетов. Но мой фаворит среди сопроцессоров – относительно недорогая AMD HD 7970 GHz Edition. Теоретически эта видеокарта покажет максимальную производительность в расчете на стоимость.

Можно соединить в кластер

Для повышения производительности системы несколько компьютеров можно объединить в кластер, который будет распределять вычислительную нагрузку между входящими в состав кластера компьютерами.

Использовать в качестве сетевого интерфейса для связи компьютеров обычный гигабитный Ethernet слишком медленно. Для этих целей чаще всего используют Infiniband. Хост адаптер Infiniband относительно сервера стоит недорого. Например, на международном аукционе Ebay такие адаптеры продают по цене от $40. Например, адаптер X4 DDR (20Gb/s) обойдется с доставкой до России примерно в $100.

При этом коммутационное оборудование для Infiniband стоит довольно дорого. Да и как уже было сказано выше, классическая звезда в качестве топологии вычислительной сети – не лучший выбор.

Однако хосты InfiniBand можно подключать друг к другу напрямую, без свича. Тогда довольно интересным становится, например, такой вариант: кластер из двух компьютеров, соединенных по infiniband. Такой суперкомпьютер вполне можно собрать дома.

Сколько нужно видеокарт

В самом мощном суперкомпьютере современности Cray Titan отношение процессоров к «видеокартам» 1:1, то есть в нем 18688 16-ядерных процессоров и 18688 Tesla K20X.

В Тяньхэ-1А – китайском суперкомпьютере на ксеонах отношение следующее. Два шестиядерных процессора к одной «видюшке» Nvidia M2050 (послабее, чем K20X).

Такое отношение мы и примем для наших сборок за оптимальное (ибо дешевле). То есть 12-16 ядер процессоров на один GPU. На таблице ниже жирным обозначены практически возможные варианты, подчеркиванием – наиболее удачные с моей точки зрения.

GPU Cores 6-core CPU 8-core CPU 12-core CPU 16-core CPU
2 24 32 4
5
3
4
2
3
2
2
3 36 48 6
8
5
6
3
4
2
3
4 48 64 8
11
6
8
4
5
3
4

Если система с уже установленным отношением процессоров/видеокарт сможет принять «на борт» еще дополнительно вычислительных устройств, то мы их добавим, чтобы увеличить мощность сборки.

Итак, сколько стоит

Представленные ниже варианты – шасси суперкомпьютера без оперативной памяти, жестких дисков и ПО. Во всех моделях используется видеоадаптер AMD HD 7970 GHz Edition. Его можно заменить на другой, по требованию задачи (например, на xeon phi). Там, где система позволяет, одна из AMD HD 7970 GHz Edition заменена на трехслотовую AMD HD 7990 Devil 13.
Вариант 1 на материнской плате Supermicro H8QGL-6F


Материнская плата Supermicro H8QGL-6F 1 1200 1200
Процессор AMD Opteron 6344 4 500 2000
Кулер Процессора Thermaltake CLS0017 4 40 160
Корпус 1400Вт SC748TQ-R1400B 1 1000 1000
Графический ускоритель AMD HD 7970 GHz Edition 3 500 1500
5860

Теоретически, производительность составит около 12 Tflops.
Вариант 2 на материнской плате TYAN S8232, кластерный


Эта плата не поддерживает Opteron 63xx, поэтому используется 62xx. В этом варианте два компьютера объединены в кластер по Infiniband x4 DDR двумя кабелями. Теоретически скорость соединения в этом случае упрется в скорость PCIe x8 то есть 32Гб/с. Блоков питания используется два. Как их согласовать между собой, можно найти в интернете.
Количество Цена Сумма
Материнская плата TYAN S8232 1 790 790
Процессор AMD Opteron 6282SE 2 1000 2000
Кулер Процессора Noctua NH-U12DO A3 2 60 120
Корпус Antec Twelve Hundred Black 1 200 200
Блок питания FSP AURUM PRO 1200W 2 200 400
Графический ускоритель AMD HD 7970 GHz Edition 2 500 1000
Графический ускоритель AX7990 6GBD5-A2DHJ 1 1000 1000
Infiniband адаптер X4 DDR Infiniband 1 140 140
Infiniband кабель X4 DDR Infiniband 1 30 30
5680 (за один блок)

Для кластера таких конфигураций нужно две и стоимость их составит $11360 . Его энергопотребление при полной нагрузке будет около 3000Вт. Теоретически, производительность составит до 31Tflops.