Сайт о телевидении

Сайт о телевидении

» » Каналы связи: виды, характеристики. Передача информации по каналам связи. Основные характеристики каналов связи

Каналы связи: виды, характеристики. Передача информации по каналам связи. Основные характеристики каналов связи

Каналы связи (КС) служат для передачи сигнала и являются общим звеном любой системы передачи информации.

По физической природе каналы связи подразделяются на механические, используемые для передачи материальных носителей информации, акустические , оптические и электрические , передающие соответственно звуковые, световые и электрические сигналы.

Электрические и оптические каналы связи в зависимости от способа передачи сигналов можно подразделить на проводные, использующие для передачи сигналов физические проводники (электрические провода, кабели, световоды), и беспроводные, использующие для передачи сигналов электромагнитные волны (радиоканалы, инфракрасные каналы).

По форме представления передаваемой информации каналы связи делятся на аналоговые , по которым информация передается в непрерывной форме, т.е. в виде непрерывного ряда значений какой-либо физической величины, и цифровые, передающие информацию, представленную в виде цифровых (дискретных, импульсных) сигналов различной физической природы.

В зависимости от возможных направлений передачи информации каналы связи подразделяются на симплексные, позволяющие передавать информацию только в одном направлении; полудуплексные , обеспечивающие попеременную передачу информации как в прямом, так и в обратном направлениях; дуплексные , позволяющие вести передачу информации одновременно в прямом и обратном направлениях.

Каналы связи бывают коммутируемые , которые создаются из отдельных участков (сегментов) только на время передачи по ним информации, а по окончании передачи такой канал ликвидируется (разъединяется), и некоммутируемые (выделенные), создаваемые на длительное время и имеющие постоянные характеристики по длине, пропускной способности, помехозащищенности.

Широко используемые в автоматизированных системах обработки информации и управления электрические проводные каналы связи различаются по пропускной способности:

низкоскоростные, скорость передачи информации в которых от 50 до 200 бит/с. Это телеграфные каналы связи, как коммутируемые (абонентский телеграф), так и некоммутируемые;

среднескоростные, использующие аналоговые (телефонные) каналы связи; скорость передачи в них от 300 до 9600 бит/с, а в новых стандартах V.32 - V.34 Международного консультативного комитета по телеграфии и телефонии (МККТТ) и от 14400 до 56 000 бит/с;

высокоскоростные (широкополосные), обеспечивающие скорость передачи информации свыше 56 000 бит/с.

Для передачи информации в низкоскоростных и среднескоростных КС физической средой обычно являются проводные линии связи: группы либо параллельных, либо скрученных проводов, называемых витая пара. Она представляет собой изолированные проводники, попарно свитые между собой для уменьшения как перекрестных электромагнитных наводок, так и затухания сигнала при передаче на высоких частотах.


Для организации высокоскоростных (широкополосных) КС используются различные кабели:

Экранированные с витыми парами из медных проводов;

Неэкранированные с витыми парами из медных проводов;

Коаксиальные;

Оптоволоконные.

STP-кабели (экранированные с витыми парами из медных проводов) имеют хорошие технические характеристики, но неудобны в работе и дороги.

UTP-кабели (неэкранированные с витыми парами из медных проводов) довольно широко используются в системах передачи данных, в частности в вычислительных сетях.

Выделяют пять категорий витых пар: первая и вторая категории используются при низкоскоростной передаче данных; третья, четвертая и пятая - при скоростях передачи соответственно до 16,25 и 155 Мбит/с. Эти кабели обладают хорошими техническими характеристиками, сравнительно недороги, удобны в работе, не требуют заземления.

Коаксиальный кабель представляет собой медный проводник, покрытый диэлектриком и окруженный свитой из тонких медных проводников экранирующей защитной оболочкой. Скорость передачи данных по коаксиальному кабелю довольно высокая (до 300 Мбит/с), но он недостаточно удобен в работе и имеет высокую стоимость.

Оптоволоконный кабель (рис. 8.2) состоит из стеклянных или пластиковых волокон диаметром несколько микрометров (свето-ведущая жила) с высоким показателем преломления п с, окруженных изоляцией с низким показателем преломления n 0 и помещенных в защитную полиэтиленовую оболочку. На рис. 8.2, а показано распределение показателя преломления по сечению оптоволоконного кабеля, а на рис. 8.2, б - схема распространения лучей. Источником излучения, распространяемого по оптоволоконному кабелю, является светодиод или полупроводниковый лазер, приемником излучения - фотодиод, который преобразует световые сигналы в электрические. Передача светового луча по волокну основана на принципе полного внутреннего отражения луча от стенок световедущей жилы, за счет чего обеспечивается минимальное затухание сигнала.

Рис. 8.2. Распространение лучей по оптоволоконному кабелю:

а - распределение показателя преломления по сечению оптоволоконного кабеля;

б - схема распространения лучей

Кроме того, оптоволоконные кабели обеспечивают защиту передаваемой информации от внешних электромагнитных полей и высокую скорость передачи до 1000 Мбит/с. Кодирование информации осуществляется с помощью аналоговой, цифровой или импульсной модуляции светового луча. Оптоволоконный кабель достаточно дорогой и используется обычно лишь для прокладки ответственных магистральных каналов связи, например, проложенный по дну Атлантического океана кабель связывает Европу с Америкой. В вычислительных сетях оптоволоконный кабель используется на наиболее ответственных участках, в частности, в Internet. По одному толстому магистральному оптоволоконному кабелю можно одновременно организовать несколько сотен тысяч телефонных, несколько тысяч видеотелефонных и около тысячи телевизионных каналов связи.

Высокоскоростные КС организуются на базе беспроводных радиоканалов.

Радиоканал - это беспроводный канал связи, прокладываемый через эфир. Для формирования радиоканала используются радиопередатчик и радиоприемник. Скорости передачи данных по радиоканалу практически ограничиваются полосой пропускания приемопередающей аппаратуры. Радиоволновый диапазон определяется используемой для передачи данных частотной полосой электромагнитного спектра. В табл. 8.1 представлены диапазоны радиоволн и соответствующие им частотные полосы.

Для коммерческих телекоммуникационных систем чаще всего используются частотные диапазоны 902 - 928 МГц и 2,40 - 2,48 ГГц.

Беспроводные каналы связи обладают плохой помехозащищенностью, но обеспечивают пользователю максимальную мобильность и быстроту реакции.

Телефонные линии связи наиболее разветвлены и распространены. Они осуществляют передачу звуковых (тональных) и факсимильных сообщений. На базе телефонной линии связи построены информационно-справочные системы, системы электронной почты и вычислительных сетей. На базе телефонных линий могут быть созданы аналоговые и цифровые каналы передачи информации.

В аналоговых телефонных линиях телефонный микрофон преобразует звуковые колебания в аналоговый электрический сигнал, который и передается по абонентской линии в АТС. Требуемая для передачи человеческого голоса полоса частот составляет примерно 3 кГц (диапазон 300 Гц -3,3 кГц). Передача сигналов вызова производится по тому же каналу, что и передача речи.

В цифровых каналах связи аналоговый сигнал перед вводом дискретизируется - преобразуется в цифровую форму: каждые 125 мкс (частота дискретизации равна 8 кГц) текущее значение аналогового сигнала отображается 8-разрядным двоичным кодом.

Таблица 8.1

Диапазоны радиоволн и соответствующие им частотные полосы

Для того чтобы передавать различную информацию, изначально должна быть создана среда ее распространения, которая представляет собой совокупность линий, или же каналов передачи данных со специализированным приемо-передающим оборудованием. Линии, или же каналы связи, представляют собой связующее звено в любой современной системе передачи данных, и с точки зрения организации подразделяются на два основных типа - это линии и каналы.

Линия связи представляет собой множество кабелей или же проводов, при помощи которых объединяются пункты связи между собой, а абоненты объединяются с ближайшими узлами. При этом каналы связи могут быть созданы самым разным образом в зависимости от особенностей определенного объекта и схемы.

Какими они могут быть?

Они могут представлять собой физические проводные каналы, которые основываются на использовании специализированных кабелей, а также могут быть волновыми. Волновые каналы связи формируются для организации в определенной среде всевозможных видов радиосвязи с использованием антенн, а также выделенной полосы частот. При этом как оптические, так и электрические каналы связи также подразделяются на два основных типа - это проводные и беспроводные. В связи с этим оптический и электрический сигнал может передаваться через провода, эфир, а также множество других способов.

В телефонной сети после того как будет набран номер, канал образуется на то время, пока будет присутствовать соединение, к примеру, между двумя абонентами, а также пока будет поддерживаться сеанс голосовой связи. Проводные каналы связи формируются посредством использования специализированного оборудования уплотнения, при помощи которого можно в течение длительного или же короткого времени передавать через линии связи информацию, которая подается из огромнейшего количества различных источников. Такие линии включают в себя одну или же одновременно несколько пар кабелей и предоставляют возможность передачи данных на достаточно большое расстояние. Вне зависимости от того, какие виды каналов связи рассматриваются, в радиосвязи они представляют собой среду передачи данных, которая организуется для какого-то определенного или же одновременно нескольких сеансов связи. Если речь идет именно о нескольких сеансах, то в таком случае может применяться так называемое частотное распределение.

Какие есть виды?

Точно так же, как и в современных средствах связи, существуют различные виды каналов связи:

  • Цифровые.
  • Аналоговые.
  • Аналогово-цифровые.

Цифровые

Данный вариант является на порядок более дорогостоящим по сравнению с аналоговыми. При помощи таких каналов достигается предельно высокое качество транслирования данных, а также появляется возможность внедрения различных механизмов, с помощью которых достигается абсолютная целостность каналов, высокая степень защищенности информации, а также использование целого ряда других сервисов. Для того чтобы обеспечить передачу аналоговой информации через технические каналы связи цифрового типа, эта информация первоначально преобразуется в цифровую.

В конце 80-х годов прошлого века появилась специализированная цифровая сеть с интеграцией услуг, более известная сегодня многим как ISDN. Предполагается, что такая сеть с течением времени сможет превратиться в глобальную цифровую магистраль, которая обеспечивает соединение офисных и домашних компьютеров, обеспечивая им достаточно большую скорость транслирования данных. Основные каналы связи данного типа могут быть:

  • Факс.
  • Телефон.
  • Устройства передачи данных.
  • Специализированное оборудование для проведения телеконференций.
  • И множество других.

В качестве конкуренции таким средствам могут выступать современные технологии, которые сегодня активно используются в сетях кабельного телевидения.

Другие разновидности

В зависимости от того, какая обеспечивается скорость передачи каналов связи, они подразделяются на:

  • Низкоскоростные. В данную категорию входят всевозможные телеграфные линии, которые отличаются чрезвычайно низкой (почти отсутствующей по нынешним меркам) скоростью передачи данных, которая достигает максимум 200 бит/с.
  • Среднескоростные. Здесь присутствуют аналоговые телефонные линии, обеспечивающие скорость передачи до 56000 бит/с.
  • Высокоскоростные или же, как их еще называют, широкополосные. Передача данных по каналам связи данного типа осуществляется на скорости более 56000 бит/с.

В зависимости от того, какие предусматриваются возможности организации направлений передачи данных, каналы связи могут подразделяться на следующие типы:

  • Симплексные. Организация каналов связи данного типа обеспечивает возможность транслирования данных только в каком-то определенном направлении.
  • Полудуплексные. Используя такие каналы, данные могут передаваться как в прямом, так и в обратном направлениях.
  • Дуплексные или же полнодуплексные. Используя такие каналы обратной связи, данные могут одновременно транслироваться в прямом и обратном направлениях.

Проводные

Проводные каналы связи включают в себя массу параллельных или же скрученных медных проводов, волоконно-оптических линий связи, а также специализированных коаксиальных кабелей. Если рассматривать, какие каналы связи используют кабеля, стоит выделить несколько основных:

  • Витая пара. Обеспечивает возможность передачи информации на скорости до 1 Мбит/с.
  • Коаксиальные кабели. К этой группе относятся кабели формата TV, включая как тонкий, так и толстый. В данном случае скорость передачи данных уже достигает 15 Мбит/с.
  • Оптоволоконные кабели. Наиболее современный и производительный вариант. Каналы связи передачи информации данного типа предусматривают скорость около 400 Мбит/с, что значительно превышает все остальные технологии.

Витая пара

Представляет собой изолированные проводники, которые между собой попарно свиваются для того, чтобы значительно снизить наводки между парами и проводниками. Стоит отметить, что на сегодняшний день существует семь категорий витых пар:

  • Первая и вторая применяются для того, чтобы обеспечить низкоскоростную передачу данных, причем первая представляет собой стандартный, хорошо известный всем телефонный провод.
  • Третья, четвертая и пятая категории используются для обеспечения скоростей передачи до 16, 25 и 155 Мбит/с, при этом разные категории предусматривают различную частоту.
  • Шестая и седьмая категории являются наиболее производительными. Речь идет о возможности передачи данных на скорости до 100 Гбит/с, что представляет собой самые производительные характеристики каналов связи.

Наиболее распространенной на сегодняшний день является третья категория. Ориентируясь на различные перспективные решения, касающиеся необходимости постоянно развивать пропускную способность сети, наиболее оптимальным будет использовать сети связи (каналы связи) пятой категории, которые обеспечивают скорость транслирования данных через стандартные телефонные линии.

Коаксиальный кабель

Специализированный медный проводник заключается внутрь цилиндрической экранирующей защитной оболочки, которая вьется из достаточно тонких жилок, а также является полностью изолированной от проводника при помощи диэлектрика. От стандартного телевизионного кабеля такой отличается тем, что в нем присутствует волновое сопротивление. Через такие информационные каналы связи данные могут передаваться на скорости до 300 Мбит/с.

Данный формат кабелей подразделяется на тонкий, который имеет толщину 5 мм, а также толстый - 10 мм. В современных ЛВС зачастую принято использовать тонкий кабель, так как он отличается предельной простотой в прокладывании и монтаже. Предельно высокая стоимость при непростой прокладке достаточно сильно ограничивают возможности использования таких кабелей в современных сетях передачи информации.

Сети кабельного телевидения

Такие сети основываются на применении специализированного коаксиального кабеля, аналоговый сигнал через который может транслироваться на расстояние до нескольких десятков километров. Типичная сеть кабельного телевидения отличается древовидной структурой, в которой основной узел получает сигналы со специализированного спутника или же через ВОЛС. На сегодняшний день активно используются такие сети, в которых используется волоконно-оптический кабель, при помощи которого обеспечивается возможность обслуживания больших территорий, а также транслирование более объемных данных, сохраняя при этом предельно высокое качество сигналов при отсутствии повторителей.

При симметричной архитектуре обратный и прямой сигналы транслируются при помощи единственного кабеля в разных диапазонах частот, и при этом с разными скоростями. Соответственно, обратный сигнал медленнее прямого. В любом случае, используя такие сети, можно обеспечить скорость передачи данных в несколько сотен раз больше по сравнению со стандартными телефонными линиями, в связи с чем последние уже давным-давно перестали использовать.

В организациях, в которых устанавливаются собственные кабельные сети, наиболее часто используются симметричные схемы, так как в данном случае как прямая, так и обратная передача данных осуществляется на одной скорости, которая составляет приблизительно 10 Мбит/с.

Особенности использования проводов

Количество проводов, которые могут использоваться для объединения домашних компьютеров и различной электроники, увеличивается с каждым годом. Согласно статистике, полученной в процессе исследований профессиональными специалистами, в 150-метровой квартире прокладывается приблизительно 3 км различных кабелей.

В 90-е годы прошлого века британская компания UnitedUtilities предложила довольно интересное решение данной проблемы при помощи собственной разработки под названием DigitalPowerLine, более известной сегодня по сокращению DPL. Компания предложила использовать стандартные силовые электросети в качестве среды для обеспечения высокоскоростного транслирования данных, осуществляя передачу пакетов информации или же голоса через обыкновенные электрические сети, напряжение которых составляло 120 или 220 В.

Наиболее успешной с этой точки зрения является израильская компания под названием Main.net, которая первой выпустила технологию PLC (PowerlineCommunications). При помощи данной технологии передача голоса или же данных осуществлялась со скоростью до 10 Мбит/с, при этом поток информации распределялся на несколько низкоскоростных, которые передавались на отдельных частотах, и в конечном итоге вновь объединялись в единый сигнал.

Использование технологии PLC на сегодняшний день является актуальным только в условиях транслирования данных на небольшой скорости, в связи с чем используется в домашней автоматике, различных бытовых устройствах и другом оборудовании. При помощи такой технологии достигается возможность выхода в интернет на скорости около 1 Мбит/с для тех приложений, которым требуется высокая скорость соединения.

При небольшом расстоянии между зданием и промежуточной приемопередающей точкой, которой служит трансформаторная подстанция, скорость транслирования данных может достигать 4.5 Мбит/с. Использование данной технологии активно осуществляется при формировании локальной сети в каком-нибудь жилом доме или же небольшом офисе, так как минимальная скорость передачи обеспечивает возможность покрытия расстояния до 300 метров. При помощи этой технологии обеспечивается возможность реализации различных услуг, связанных с дистанционным мониторингом, охраной объектов, а также управлением режимами объектов и их ресурсами, что входит в элементы интеллектуального дома.

Оптоволоконный кабель

Данный кабель составляется из специализированного кварцевого сердечника, диаметр которого составляет всего лишь 10 микронов. Этот сердечник окружается уникальной отражающей защитной оболочкой, внешний диаметр которой составляет около 200 микрон. Передача данных осуществляется посредством трансформации электрических сигналов в световые, используя, к примеру, какой-нибудь светодиод. Кодирование данных осуществляется посредством изменения интенсивности светового потока.

Осуществляя передачу данных, луч, который отражается от стенок волокна, в котором итоге поступает на приемный конец, имея при этом минимальное затухание. При помощи такого кабеля достигается предельно высокая степень защиты от воздействия со стороны каких-либо внешних электромагнитных полей, а также достигается достаточно высокая скорость передачи данных, которая может достигать 1000 Мбит/с.

Используя оптоволоконный кабель, есть возможность одновременной организации работы сразу нескольких сотен тысяч телефонных, видеотелефонных, а также телевизионных каналов. Если говорить о других преимуществах, присущих таким кабелям, стоит отметить следующие:

  • Предельно высокая сложность несанкционированного подключения.
  • Максимально высокая степень защиты от каких-либо возгораний.
  • Достаточно высокая скорость передачи данных.

Однако если говорить о том, какие недостатки имеют такие системы, стоит выделить то, что они являются довольно дорогостоящими и обуславливают необходимость в трансформации световых лазеров в электрические и наоборот. Использование таких кабелей в преимущественном большинстве случаев осуществляется в процессе прокладки магистральных линий связи, а уникальные свойства кабеля сделали его еще и достаточно распространенным среди провайдеров, обеспечивающих организацию сети интернет.

Коммутация

Помимо всего прочего, каналы связи могут быть коммутируемыми или же некоммутируемыми. Первые создаются только на определенное время, пока нужно передавать данные, в то время как некоммутируемые выделяются абоненту на конкретный промежуток времени, и не имеют никакой зависимости от того, в течение какого времени осуществлялась передача данных.

WiMAX

Такие линии, в отличие от традиционных технологий радиодоступа, могут функционировать также на отраженном сигнале, который не находится в прямой видимости той или иной базовой станции. Мнение экспертов сегодня однозначно сходится в том, что такие мобильные сети раскрывают для пользователей огромные перспективы по сравнению с фиксированным WiMAX, который является предназначенным для корпоративных заказчиков. В этом случае информация может транслироваться на достаточно большое расстояние (до 50 км), при этом характеристики каналов связи данного типа включают в себя скорость до 70 Мбит/с.

Спутниковые

Спутниковые системы предусматривают использование специализированных антенн СВЧ-диапазона частот, которые используются для приема радиосигналов от каких-либо наземных станций, и потом ретранслируют полученные сигналы обратно на другие наземные станции. Стоит отметить, что такие сети предусматривают использование трех основных видов спутников, располагающихся на средних или низких, а также геостационарных орбитах. В преимущественном большинстве случаев принято запускать спутники группами, так как, разносясь друг от друга, с их помощью обеспечивается охват всей поверхности нашей планеты.

Тема 1.4: Основы локальных сетей

Тема 1.5: Базовые технологии локальных сетей

Тема 1.6: Основные программные и аппаратные компоненты ЛВС

Локальные сети

1.2. Среда и методы передачи данных в вычислительных сетях

1.2.2. Линии связи и каналы передачи данных

Для построения компьютерных сетей применяются линии связи, использующие различную физическую среду. В качестве физической среды в коммуникациях используются: металлы (в основном медь), сверхпрозрачное стекло (кварц) или пластик и эфир. Физическая среда передачи данных может представлять собой кабель "витая пара", коаксиальные кабель, волоконно-оптический кабель и окружающее пространство.

Линии связи или линии передачи данных - это промежуточная аппаратура и физическая среда, по которой передаются информационные сигналы (данные).

В одной линии связи можно образовать несколько каналов связи (виртуальных или логических каналов), например путем частотного или временного разделения каналов. Канал связи - это средство односторонней передачи данных. Если линия связи монопольно используется каналом связи, то в этом случае линию связи называют каналом связи.

Канал передачи данных - это средства двухстороннего обмена данными, которые включают в себя линии связи и аппаратуру передачи (приема) данных. Каналы передачи данных связывают между собой источники информации и приемники информации.

В зависимости от физической среды передачи данных линии связи можно разделить на:

  • проводные линии связи без изолирующих и экранирующих оплеток;
  • кабельные, где для передачи сигналов используются такие линии связи как кабели "витая пара", коаксиальные кабели или оптоволоконные кабели;
  • беспроводные (радиоканалы наземной и спутниковой связи), использующие для передачи сигналов электромагнитные волны, которые распространяются по эфиру.

Проводные линии связи

Проводные (воздушные) линии связи используются для передачи телефонных и телеграфных сигналом, а также для передачи компьютерных данных. Эти линии связи применяются в качестве магистральных линий связи.

По проводным линиям связи могут быть организованы аналоговые и цифровые каналы передачи данных. Скорость передачи по проводным линиям "простой старой телефонной линии" (POST - Primitive Old Telephone System) является очень низкой. Кроме того, к недостаткам этих линий относятся помехозащищенность и возможность простого несанкционированного подключения к сети.

Кабельные линии связи

Кабельные линии связи имеют довольно сложную структуру. Кабель состоит из проводников, заключенных в несколько слоев изоляции. В компьютерных сетях используются три типа кабелей.

Витая пара (twisted pair) - кабель связи, который представляет собой витую пару медных проводов (или несколько пар проводов), заключенных в экранированную оболочку. Пары проводов скручиваются между собой с целью уменьшения наводок. Витая пара является достаточно помехоустойчивой. Существует два типа этого кабеля: неэкранированная витая пара UTP и экранированная витая пара STP.

Характерным для этого кабеля является простота монтажа. Данный кабель является самым дешевым и распространенным видом связи, который нашел широкое применение в самых распространенных локальных сетях с архитектурой Ethernet, построенных по топологии типа “звезда”. Кабель подключается к сетевым устройствам при помощи соединителя RJ45.

Кабель используется для передачи данных на скорости 10 Мбит/с и 100 Мбит/с. Витая пара обычно используется для связи на расстояние не более нескольких сот метров. К недостаткам кабеля "витая пара" можно отнести возможность простого несанкционированного подключения к сети.

Коаксиальный кабель (coaxial cable) - это кабель с центральным медным проводом, который окружен слоем изолирующего материала для того, чтобы отделить центральный проводник от внешнего проводящего экрана (медной оплетки или слой алюминиевой фольги). Внешний проводящий экран кабеля покрывается изоляцией.

Существует два типа коаксиального кабеля: тонкий коаксиальный кабель диаметром 5 мм и толстый коаксиальный кабель диаметром 10 мм. У толстого коаксиального кабеля затухание меньше, чем у тонкого. Стоимость коаксиального кабеля выше стоимости витой пары и выполнение монтажа сети сложнее, чем витой парой.

Коаксиальный кабель применяется, например, в локальных сетях с архитектурой Ethernet, построенных по топологии типа “общая шина”.

Коаксиальный кабель более помехозащищенный, чем витая пара и снижает собственное излучение. Пропускная способность – 50-100 Мбит/с. Допустимая длина линии связи – несколько километров. Несанкционированное подключение к коаксиальному кабелю сложнее, чем к витой паре.

Кабельные оптоволоконные каналы связи . Оптоволоконный кабель (fiber optic) – это оптическое волокно на кремниевой или пластмассовой основе, заключенное в материал с низким коэффициентом преломления света, который закрыт внешней оболочкой.

Оптическое волокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон. На передающем конце оптоволоконного кабеля требуется преобразование электрического сигнала в световой, а на приемном конце обратное преобразование.

Основное преимущество этого типа кабеля – чрезвычайно высокий уровень помехозащищенности и отсутствие излучения. Несанкционированное подключение очень сложно. Скорость передачи данных 3Гбит/c. Основные недостатки оптоволоконного кабеля – это сложность его монтажа, небольшая механическая прочность и чувствительность к ионизирующим излучениям.

Беспроводные (радиоканалы наземной и спутниковой связи) каналы передачи данных

Радиоканалы наземной (радиорелейной и сотовой) и спутниковой связи образуются с помощью передатчика и приемника радиоволн и относятся к технологии беспроводной передачи данных.

Радиорелейные каналы передачи данных

Радиорелейные каналы связи состоят из последовательности станций, являющихся ретрансляторами. Связь осуществляется в пределах прямой видимости, дальности между соседними станциями - до 50 км. Цифровые радиорелейные линии связи (ЦРРС) применяются в качестве региональных и местных систем связи и передачи данных, а также для связи между базовыми станциями сотовой связи.

Спутниковые каналы передачи данных

В спутниковых системах используются антенны СВЧ-диапазона частот для приема радиосигналов от наземных станций и ретрансляции этих сигналов обратно на наземные станции. В спутниковых сетях используются три основных типа спутников, которые находятся на геостационарных орбитах, средних или низких орбитах. Спутники запускаются, как правило, группами. Разнесенные друг от друга они могут обеспечить охват почти всей поверхности Земли. Работа спутникового канала передачи данных представлена на рисунке


Рис. 1.

Целесообразнее использовать спутниковую связь для организации канала связи между станциями, расположенными на очень больших расстояниях, и возможности обслуживания абонентов в самых труднодоступных точках. Пропускная способность высокая – несколько десятков Мбит/c.

Сотовые каналы передачи данных

Радиоканалы сотовой связи строятся по тем же принципам, что и сотовые телефонные сети. Сотовая связь - это беспроводная телекоммуникационная система, состоящая из сети наземных базовых приемо-передающих станций и сотового коммутатора (или центра коммутации мобильной связи).

Базовые станции подключаются к центру коммутации, который обеспечивает связь, как между базовыми станциями, так и с другими телефонными сетями и с глобальной сетью Интернет. По выполняемым функциям центр коммутации аналогичен обычной АТС проводной связи.

LMDS (Local Multipoint Distribution System) - это стандарт сотовых сетей беспроводной передачи информации для фиксированных абонентов. Система строится по сотовому принципу, одна базовая станция позволяет охватить район радиусом несколько километров (до 10 км) и подключить несколько тысяч абонентов. Сами БС объединяются друг с другом высокоскоростными наземными каналами связи либо радиоканалами. Скорость передачи данных до 45 Мбит/c.

Радиоканалы передачи данных WiMAX (Worldwide Interoperability for Microwave Access) аналогичны Wi-Fi. WiMAX, в отличие от традиционных технологий радиодоступа, работает и на отраженном сигнале, вне прямой видимости базовой станции. Эксперты считают, что мобильные сети WiMAX открывают гораздо более интересные перспективы для пользователей, чем фиксированный WiMAX, предназначенный для корпоративных заказчиков. Информацию можно передавать на расстояния до 50 км со скоростью до 70 Мбит/с.

Радиоканалы передачи данных MMDS (Multichannel Multipoint Distribution System). Эти системы способна обслуживать территорию в радиусе 50-60 км, при этом прямая видимость передатчика оператора является не обязательной. Средняя гарантированная скорость передачи данных составляет 500 Кбит/с - 1 Мбит/с, но можно обеспечить до 56 Мбит/с на один канал.

Радиоканалы передачи данных для локальных сетей . Стандартом беспроводной связи для локальных сетей является технология Wi-Fi. Wi-Fi обеспечивает подключение в двух режимах: точка-точка (для подключения двух ПК) и инфраструктурное соединение (для подключения несколько ПК к одной точке доступа). Скорость обмена данными до 11 Mбит/с при подключении точка-точка и до 54 Мбит/с при инфраструктурном соединении.

Радиоканалы передачи данных Bluetooht - это технология передачи данных на короткие расстояния (не более 10 м) и может быть использована для создания домашних сетей. Скорость передачи данных не превышает 1 Мбит/с.

В общем случае под каналом передачи информации понимают всю совокупность технических средств, обеспечивающих передачу электрических сигналов от источника сообщений к потребителю. При рассмотрении каналов линию связи чаще всего полагают заданной (считается, что все необходимые характеристики линии связи известны) и все задачи анализа и синтеза каналов передачи информации сводятся к анализу и синтезу операторов преобразования сигналов в передатчике, приемнике и других устройствах.

Каналы передачи информации классифицируют по различным признакам: по назначению, по характеру линий связи, по диапазону частот, по характеру сигналов на входе и выходе каналов и т. п. По назначению каналы делятся на телефонные,

телеграфвые, телевизионные, фототелеграфные, звукового вещания, телеметрические, передачи данных и др. В зависимости от того, распространяются ли сигналы в свободном пространстве или по направляющим линиям, различают каналы радиосвязи и каналы проводной связи: воздушные, кабельные, волноводные, световодные и др. По воздушным проводным линиям связи передают сигналы в диапазоне 0-160 кГц. На более высоких частотах возрастает влияние помех, резко увеличивается затухание сигналов, сказывается влияние радиовещательных станций длинноволнового диапазона. Существенный недостаток воздушных проводных линий связи - большая зависимость их характеристик от атмосферных условий. Значительно лучшими характеристиками и большей устойчивостью в работе обладают кабельные линии связи. Они являются основой сетей магистральной дальней связи, по ним передают сигналы в диапазоне частот от 600 кГц до 60 МГц. С дальнейшим увеличением частоты затухание сигналов резко возрастает.

В настоящее время ведутся интенсивные теоретические и экспериментальные работы по исследованию металлических волноводов. Полученные результаты позволяют надеяться, что эти линии связи будут широко использоваться для передачи сигналов в диапазоне 35-80 ГГц (длина волны 8,6-3,75 мм). Перспективен круглый волновод с внутренним диаметром 6 см, по которому молено организовать более 200 000 стандартных телефонных каналов (каналов тональной частоты с эффективно используемой полосой частот от 300 до 3400 Гц) или около 200 телевизионных каналов . Экономические расчеты показывают, что при организации телефонных каналов до 30000 еще целесообразно применять коаксиальный кабель, свыше 30 000 каналов - волновод. Еще большее число стандартных каналов можно организовать, используя оптические системы связи, в которых применяют сигналы в полосе частот 600-900 ТГц (0,5-0,3 мкм). Используя закрытые направляющие системы, которые получили название световодов, можно осуществить устойчивую связь на большие расстояния. Большой практический интерес представляют диэлектрические гибкие волоконные световоды.

Наряду с проводными линиями связи широко используют радиолинии различных диапазонов. Эти линии во многих случаях более экономичны, позволяют быстро организовать сверхдальнюю (глобальную) связь без промежуточных станций. Кроме того, и это очень важно, - эти линии являются единственным средством связи с подвижными объектами (воздушными судами, космическими кораблями, морскими судами, включая и подводные лодки, автомобилями и пр.).

Наибольшее распространение для передачи многоканальных сообщений получили наземные радиорелейные линии, работающие в метровом, дециметровом и сантиметровом диапазонах волн на частотах от 60 МГц до 15 ГГц. На этих частотах обеспечивается широкая полоса тракта передачи, необходимая для многоканальной телефонной и телевизионной связи, мал уровень

атмосферных и промышленных помех. Все это обеспечивает высокую помехоустойчивость передачи информации.

Разновидностью радиорелейных линий являются тропосферные линии, в которых принимаются сигналы, отраженные от неоднородностей тропосферы. Использование дальнего тропосферного распространения радиоволн позволяет создать линии дальней радиосвязи с расстояниями между ретрансляционными станциями в несколько сотен километров. Эти линии работают чаще всего в диапазоне частот от 0,5 до 6 ГГц.

Перспективны спутниковые линии связи. По принципу работы они представляют разновидность радиорелейных линий, ретрансляторы которых находятся на искусственных спутниках Земли. Существенным преимуществом спутниковых линий является большая дальность связи, которая при одном спутнике (ретрансляторе) составляет около 10 000 км. При использовании системы спутников можно организовать глобальную связь - между любыми пунктами Земли. Спутниковые линии связи работают в диапазоне частот 4-6 ГГц. В настоящее время отведено шесть новых частотных диапазонов от 11 до 250 ГГц, освоение которых позволит существенно повысить качественные показатели спутниковой связи. Спутниковые системы связи, особенно с цифровыми методами передачи сигналов, перспективны и в гражданской авиации, особенно с выходом на воздушные трассы сверхзвуковых пассажирских судов.

Как видим, для современных методов и средств передачи информации характерен переход на все более высокие частоты. Это обусловлено следующими основными причинами: применение высоких частот позволяет получить остронаправленное излучение при малых размерах антенн; в высокочастотных диапазонах меньшее влияние оказывают атмосферные и промышленные помехи; чем выше несущая частота, тем большее число каналов можно организовать без взаимных помех; только в высокочастотных диапазонах, начиная с метрового, можно организовать большое число широкополосных каналов, таких, например, как каналы видеотелефонной связи и телевизионные каналы.

Одной из основных задач анализа каналов передачи информации является анализ искажений передаваемых по ним сигналов. Более всего на качестве передачи информации сказываются искажения формы сигналов, определяемые реальными амплитудными и частотными характеристиками каналов, а также многолучевым распространением радиоволн. Математические модели для полного анализа искажений в реальных каналах достаточно сложны.

Для общего приближенного анализа искажений канал рассматривают как эквивалентный четырехполюсник, работа которого описывается определенным оператором Если входной сигнал то сигнал на выходе канала Для более детального анализа искажений канал связи представляют как последовательное соединение линейного, в общем случае инерционного, и нелинейного неинерционного четырехполюсников, в

которых и происходят линейные и нелинейные искажения сигналов. Если в состав канала входят модулятор и демодулятор или учитываются замирания сигналов, то к этим четырехполюсникам последовательно включают еще и четырехполюсник с переменными параметрами. Если требуется анализировать работу отдельных устройств канала, число последовательно соединенных четырехполюсников увеличивают. Например, для анализа радиоканала передачи дискретных сообщений часто используют структурную схему, представленную на рис. 1,1.

Рис. 1.1. Структурная схема канала передачи информации

Канал рассматривается как последовательное соединение кодера, первого и второго модулятора, линии связи, первого и второго демодулятора и декодера. Использование модели канала в виде эквивалентного четырехполюсника (или последовательного соединения четырехполюсников) позволяет решить ряд задач анализа и синтеза каналов методами теории радиотехнических цепей и статистической радиотехники .

По характеру сигналов на входе и выходе каналов различают дискретные, непрерывные, дискретно-непрерывные и непрерывно-дискретные каналы. Дискретным каналом, например в схеме рис. 1.1, является канал, рассматриваемый от входа кодера до выхода декодера или от входа первого модулятора до выхода второго демодулятора. Если рассматривать совокупность технических средств от выхода первого или второго модулятора до входа первого или второго демодулятора, то в любой системе передачи информации эта совокупность образует непрерывный канал. Примером дискретно-непрерывного канала служит совокупность технических средств от входа первого модулятора до входа первого или второго демодулятора. Непрерывно-дискретный канал образуется, если анализировать в схеме рис. 1.1 прохождение сигналов от выхода первого или второго модулятора до выхода второго демодулятора или в общем случае до выхода декодера. Таким образом, на основе непрерывного канала (на рис. 1.1 он показан штриховой

линией) образуются каналы всех других видов. Поэтому изучению непрерывных каналов уделяют большое внимание.

Математические модели для исследования каналов строят с учетом рассмотренной классификации. По существу разработка модели сводится к определению структуры и параметров эквивалентного оператора преобразования сигнала в канале. В зависимости от типа этого оператора различают каналы: линейные, нелинейные, инерционные, безынерционные, стационарные, нестационарные, детерминированные, вероятностные и др. Наиболее изучены линейные инерционные каналы с постоянными параметрами.

Если передаваемый сигнал рассматривается как случайный процесс, что значительно приближает модели сигналов к реальным, то при анализе прохождения сигнала через канал необходимо анализировать прохождение случайных процессов через четырехполюсники, описываемые различными операторами. Такие задачи решают в статистической радиотехнике , результаты решения этих задач находят непосредственное применение при анализе каналов передачи информации.

Как и для сигналов, для каналов удобно использовать такие физические характеристики, как время занятости канала полоса пропускания (прозрачности) канала, диапазон допустимых уровней сигналов при передаче по каналу, база канала емкость канала

Каналом передачи информации называют совокупность технических средств, обеспечивающую передачу электрических сигналов от одного пункта к другому. Входы канала подключаются к передатчику, а выходы - к приемнику. В современных цифровых системах связи основные функции передатчика и приемника выполняет модем. Одной из главных характеристик канала является скорость передачи информации. Максимально возможная скорость передачи информации (данных) по каналу связи при фиксированных ограничениях называется емкостью канала, обозначается через С и имеет размерность бит/с. В общем случае емкость канала можно определить по формуле: (8.22) где I- количество переданной за время Т информации. В качестве меры количества информации возьмем меру Р. Хартли определяемую как логарифм возможных состояний объекта Ь. (8.23) Для нахождения I воспользуемся теоремой Котельникова, которая доказывает, что сигнал, не содержащий в своем спектре частот выше Р, может представляться 2Р независимыми значениями в секунду, совокупность которых полностью определяет этот сигнал. Данная процедура, называемая аналого-цифровым преобразованием, была рассмотрена в гл. 6. Она состоит из двух этапов - дискретизации по времени, т. е. представлении сигнала в виде п отсчетов, взятых через интервал времени 1 = 1/(2Р), и квантования по уровню, т. е. представления амплитуды сигнала одним из т возможных значений. Определим количество различных сообщений, которое можно составить из п элементов, принимающих любые из т различных фиксированных состояний. Из ансамбля п элементов, каждый из которых может находиться в одном из т фиксированных состояний, можно составить т а различных комбинаций, т. е. 1= т". Тогда: (8.24) За время Тчисло отсчетов п= Г/1=2РГ. Если бы шума не существовало, то число т дискретных уровней сигнала было бы бесконечным. В случае наличия шума последний определяет степени различимости отдельных уровней амплитуды сигнала. Так как мощность является усредненной характеристикой амплитуды, число различимых уровней сигнала по мощности равно (Р е +Р ш)/Р ш), а по амплитуде соответственно: Тогда емкость канала: (8.25) Итак, емкость канала ограничивается двумя величинами: шириной полосы канала и шумом. Соотношение (8.25) известно как формула Хартли-Шеннона и считается основной в теории информации. Полоса частот и мощность сигнала входят в формулу таким образом, что для С= const при сужении полосы необходимо увеличивать мощность сигнала, и наоборот. К основным характеристикам каналов связи относятся: ■ амплитудно-частотная характеристика (АЧХ); ■ полоса пропускания; ■ затухание; * пропускная способность; ■ достоверность передачи данных; ■ помехоустойчивость. Для определения характеристик канала связи применяется анализ его реакции на некоторое эталонное воздействие. Чаще всего в качестве эталона используются синусоидальные сигналы разных частот. АЧХ показывает, как изменяется амплитуда синусоиды на выходе линии связи по сравнению с амплитудой на ее входе для всех частот передаваемого сигнала. Полоса пропускания - это диапазон частот, для которых отношение амплитуды выходного сигнала к входному превышает некоторый заданный предел (для мощности 0.5). Эта полоса частот определяет диапазон частот синусоидального сигнала, при которых этот сигнал передается по линии связи без значительных искажений. Ширина полосы пропускания влияет на максимально возможную скорость передачи информации по линии связи. Затухание - определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по линии связи сигнала определенной частоты. Затухание I обычно измеряется в децибелах (дБ) и вычисляется по формуле: где Р вых - мощность сигнала на выходе линии; Р вх - мощность сигнала на входе линии. Пропускная способность линии (throughput) характеризует максимально возможную скорость передачи данных по линии связи и измеряется в битах в секунду (бит/с), а так же в производных единицах Кбит/с, Мбит/с, Гбит/с. На пропускную способность линии оказывает влияние физическое и логическое кодирование. Способ представления дискретной информации в виде сигналов, передаваемых на линию связи, называется физическим линейным кодированием. От выбранного способа кодирования зависит спектр сигнала и соответственно пропускная способность линии. Таким образом, для одного или другого способа кодирования линия может иметь разную пропускную способность. Если сигнал изменяется так, что можно различить только два его состояния, то любое его изменение будет соответствовать наименьшей единице информации - биту. Если сигнал изменяется так, что можно различить более двух состояний, то любое его изменение несет несколько бит информации. Количество изменений информационного параметра несущего колебания (периодического сигнала) в секунду измеряется в бодах. Пропускная способность линии в битах в секунду в общем случае не совпадает с числом бод. Она может быть как выше, так и ниже числа бод, и это соотношение зависит от способа кодирования. Если сигнал имеет более двух различимых состояний, то пропускная способность в бит/с будет выше, чем число бод. Например, если информационными параметрами являются фаза и амплитуда синусоиды, причем различают 4 состояния фазы (О, 90, 180 и 270) и два значения амплитуды, то информационный сигнал имеет восемь различимых состояний. В этом случае модем, работающий со скоростью 2400 бод (с тактовой частотой 2400 Гц), передает информацию со скоростью 7200 бит/с, так как при одном изменении сигнала передается три бита информации. При использовании сигнала с двумя различными состояниями может наблюдаться обратная картина. Это происходит, когда для надежного распознавания приемником информации каждый бит в последовательности кодируется с помощью нескольких изменений информационного параметра несущего сигнала. Например, при кодировании единичного значения бита импульсом положительной полярности, а нолевого значения бита - импульсом отрицательной полярности, сигнал дважды меняет свое состояние при передаче каждого бита. При таком способе кодирования пропускная способность линии в два раза ниже, чем число бод, передаваемое по линии. На пропускную способность оказывает влияние логическое кодирование, которое выполняется до физического и подразумевает замену бит исходной информации новой последовательности бит, несущей ту же информацию, но обладающей при этом дополнительными свойствами (обнаруживающие коды, шифрование). При этом искаженная последовательность бит заменяется более длинной последовательностью, поэтому пропускная способность канала уменьшается. В общем случае связь между полосой пропускания линии и ее максимально возможной пропускной способностью определяется соотношением (8.25). Из этого соотношения следует, что хотя теоретического предела увеличения пропускной способности линии (с фиксированной полосой пропускания) нет, на практике такой предел существует. Повысить пропускную способность линии можно, увеличив мощность передатчика или уменьшая мощность помех. Однако увеличение мощности передатчика приводит к росту его габаритов и стоимости, а уменьшение шума требует применения специальных кабелей с хорошими защитными экранами и снижения шума в аппаратуре связи. Емкость канала представляет собой максимальную величину скорости. Чтобы достигнуть такой скорости передачи, информация должна быть закодирована наиболее эффективным образом. Утверждение, что такое кодирование возможно, является важнейшим результатом созданной Шенноном теории информации. Шеннон доказал принципиальную возможность такого эффективного кодирования, не определив, однако, конкретных путей его реализации. (Отметим, что на практике инженеры часто говорят о емкости канала, подразумевая под этим реальную, а не потенциальную скорость передачи.) Эффективность систем связи характеризуется параметром, равным скорости передачи информации Я на единицу ширины полосы Г, т. е. Я/Р. Для иллюстрации существующих возможностей по созданию эффективных систем связи на рис. 8.12 приведены графики зависимости эффективности передачи информации при различных видах М-ичной дискретной амплитудной, частотной и фазовой модуляции (кроме бинарной модуляции используется также модуляция с 4, 8, 16 и даже с 32 положениями модулируемого параметра) от отношения энергии одного бита к спектральной плотности мощности шума (Ео/Мо). Для сравнения показана также граница Шеннона. Сравнение кривых показывает, в частности, что наиболее эффективной оказывается передача с фазовой дискретной модуляцией, однако при неизменном отношении сигнал-шум наиболее популярный вид модуляции 4ФМн в три раза хуже потенциально достижимого. Достовернсть передачи данных характеризует вероятность искажения для каждого передаваемого бита данных. Показателем достоверности является вероятность ошибочного приема информационного символа - Р. 1 ОШ Рис. 8.12. Эффективность цифровых систем связи: 1 - граница Шеннона; 2 - М-ичная ФМн; 3 - М-ичная АМн; 4 - М-ичная ЧМн Величина Р ош для каналов связи без дополнительных средств защиты от ошибок составляет, как правило, 10 4 ... 10 6 . В оптоволоконных линиях связи Р ош составляет 10" 9 . Это значит, что при Р ош = 10 4 в среднем из 10 000 бит искажается значение одного бита. Искажения бит происходят как из-за наличия помех на линии, так и из-за искажений формы сигнала, ограниченной полосой пропускания линии. Поэтому для повышения достоверности передаваемых данных необходимо повышать степень помехозащищенности линий, а также использовать более широкополосные линии связи. Непременной составной частью любого канала является линия связи - физическая среда, обеспечивающая поступление сигналов от передающего устройства к приемному. В зависимости от среды передачи данных линии связи могут быть: ■ проводные (воздушные); ■ кабельные (медные и волоконно-оптические); ■ радиоканалы наземной и спутниковой связи (беспроводные каналы связи). Проводные линии связи представляют собой проложенные между опорами провода без каких-либо экранирующих или изолирующих оплеток. Помехозащищенность и скорость передачи данных в этих линиях низкая. По таким линиям связи передаются, как правило, телефонные и телеграфные сигналы. 8.3.1.