Сайт о телевидении

Сайт о телевидении

» » Какой язык программирования лучше изучать для роботов. Где взять материал? Программирование для контроллеров Arduino

Какой язык программирования лучше изучать для роботов. Где взять материал? Программирование для контроллеров Arduino

Одним из наиболее перспективных направлений в сфере IT-технологий является робототехника. Почему? Да потому что в течение следующих пятнадцати лет в мире появится дюжина новых профессий, в основе которых и будут знания из робототехнической области.

Речь идет о таких специальностях, как:
проектировщик промышленной робототехники;
проектировщик-эргономист;
инженер-композитчик;
оператор многофункциональных робототехнических комплексов;
проектировщик детской робототехники;
проектировщик медицинских роботов;
проектировщик домашних роботов;
проектировщик нейроинтерфейсов по управлению роботами.

Самоуправляющие устройства стали применятся во второй половине прошлого столетия. Изначально роботы трудились в сферах производства и исследований, но затем успешно перекочевали в сферу услуг. Безусловно, роботы на текущий момент не являются каким-нибудь массовым явлением, но вектор выбран и изменить его практически невозможно. Именно поэтому можно говорить о том, что в ближайшем будущем роль человека, как рабочего, кардинально измениться. Но как подступиться к робототехнике? С чего начать свое увлекательное путешествие? Давайте попробуем ответить на эти вопросы.

Робототехника для детей

Начинать осваивать азы робототехники лучше всего в раннем возрасте, но это не означает, что взрослому человеку путь закрыт. Дело в том, что ребенок быстрее усваивает новые навыки, у него нет забот, которые могли бы помешать заниматься любимым хобби. Кроме того, робототехника для детей направлена на изучение конкретного предмета, в то время как профессиональная занимается решением сложных задач. Например, дети и любители могут разбирать простые механизмы, чтобы понять принцип их работы, а вот более зрелые специалисты создают сложные промышленные манипуляторы.

Чтобы понять, есть ли у ребенка склонность к робототехнике, достаточно купить конструктор (благо детские роботы сегодня не в дефиците) и посмотреть, проявляет ли он интерес к процессу его сборки. Если да, то можно подыскать кружок робототехники, в котором ребенок сможет развить фантазию, логику, мелкую моторику, пространственное восприятие, терпеливость и концентрацию.

Стоит отметить, что направления в робототехнике бывают разные: программирование, электроника, конструирование. Если ребенку нравится собирать конструктор, скорее всего ему подходит конструирование. Заниматься электроникой следует тем, кому интересно познавать, как устроена та или иная вещь. Программирование заинтересует любого юного математика.

В каком возрасте начинать учиться?

Идеальный возраст для старта в робототехнике 8-12 лет. Раньше у ребенка могут возникнуть трудности с пониманием принципов работы тех или иных механизмов, а о желании учить математику (которая крайне необходима для составления алгоритмов, проектирования схем и механизмов) в раннем возрасте лучше не упоминать. Ну кто из нас хотел штудировать формулы и теоремы, когда на улице отличная погода, а под телевизором расположилась Sony PlayStation? Вопрос риторический.

А вот в 8-9 лет дети без особых проблем могут понимать и запоминать, что такое конденсатор, светодиод, резистор. В этом возрасте они уже могут осваивать понятия из школьной физики, значительно опережая программу наших учебных заведений.

Если до 14-15 лет ребенок не утратит интерес к своему хобби, ему следует продолжать заниматься математикой и начать изучение программирования. Вне кружков его ожидает много интересного: математический базис, теория механизмов и машин, реализация алгоритмов автоматической навигации, проектирование электромеханической оснастки робототехнического устройства, машинное обучение и алгоритмы компьютерного зрения (что-то меня понесло).

Немного о выборе конструкторов

Для каждой возрастной группы имеются свои образовательные платформы и конструкторы, отличающиеся степенью сложности. Сегодня на рынке представлены как зарубежные, так и отечественные наборы, стоимость которых варьирует от 400 до 15 000 гривен.
8-11 летнему ребенку подойдут конструкторы от BitKit, Fischertechnik или (конечно, в ассортименте этих производителей имеются наборы и для взрослых детей). Например, продукция BitKit направлена на изучение электроники (их конструктор Омка я тестировал лично и писал об этом зимой 2016 года – ); Fischertechnik – приближает к настоящей разработке роботов, в их наборах есть и штекеры, и провода, и визуальная среда программирования; Lego предлагает очень известные конструкторы с интересными и яркими деталями, подробной инструкцией и большими возможностями.

Стандартом в области образовательной робототехники являются модули Arduino, а также одноплатный компьютер . Для работы с ними потребуются базовые навыки программирования, но в конечном итоге можно научиться собственными руками создавать всевозможные “умные” устройства – от системы автоматического полива до сигнализации.


Где заниматься робототехникой?

Курсы робототехники для детей в Украине предлагают следующие организации:
курс “Stem Fll” от First Lego League;
курс “Робо-3D Junior” от RoboUa;
курс “Робо-3D” от Lego Mindstorms;
курсы на базе Arduino, Lego и Fischertechnik от Robot School;
курсы для детей от 4х лет от студии МАН;
учебная программа от Boteon;
курс “Подготовка к полету” от Singularity Studio;
курсы от IT-школы “Смарт”.

Самостоятельное обучение: возможно ли?

Для самостоятельного изучения в интернете имеется множество бесплатных онлайн-курсов. Но вряд ли такой формат подойдет ребенку, поэтому дистанционное образование может быть привлекательным исключительно для взрослого человека.

Что касается ребенка, ему в помощь помимо увлекательных и полезных наборов пригодятся книги по робототехнике, а именно:

Брага Ньютон, “Создание роботов в домашних условиях”;
Дуглас Вильямс, “Программируемый робот, управляемый с КПК”;
Оуэн Бишоп, “Настольная книга разработчика роботов”;
Вадим Мицкевич, “Занимательная анатомия роботов”;
Владимир Гололобов, “С чего начинаются роботы”.

Подобных работ очень много. К сожалению, робототехника быстро развивается и актуальность информации в книгах устаревает. Поэтому под рукой всегда должны быть тематический форумы и профильные сайты.

Что в итоге?

В итоге мы получаем очень перспективное направление, которое не стоит ни в коем случае игнорировать. Если у вас есть дети, задумайтесь об их будущем и возможно моя статья на Keddre станет катализатором для поиска подходящих кружков.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Работающий на стыке кибернетики, психологии и бихевиоризма (науки о поведении), и инженер, составляющий алгоритмы для промышленных роботизированных комплексов, среди основных инструментов которого - высшая математика и мехатроника, работают в самой перспективной отрасли ближайших лет - робототехнике. Роботы, несмотря на сравнительную новизну термина, издавна знакомы человечеству. Вот лишь несколько фактов из истории развития умных механизмов.

Железные люди Анри Дро

Еще в мифах Древней Греции упоминались механические рабы, созданные Гефестом для выполнения тяжелых и однообразных работ. А первым изобретателем и разработчиком человекоподобного робота стал легендарный Леонардо да Винчи. До наших дней сохранились подробнейшие чертежи итальянского гения, описывающие механического рыцаря, способного имитировать человеческие движения руками, ногами, головой.

Созданию первых автоматических механизмов с программным управлением положили начало в конце XVΙΙΙ века европейские часовые мастера. Наиболее преуспели на этом поприще швейцарские специалисты отец и сын Пьер-Жак и Анри Дро. Ими создана целая серия ("пишущий мальчик", "рисовальщик", "музыкантша") в основе управления которыми лежали часовые механизмы. Именно в честь Анри Дро в дальнейшем все программируемые человекоподобные автоматы стали называть "андроидами".

У истоков программирования

Основы программирования промышленных роботов были заложены на заре XIX века во Франции. Здесь же и были разработаны первые программы для автоматических текстильных станков (прядильных и ткацких). Стремительно растущая армия Наполеона остро нуждалась в обмундировании и, следовательно, тканях. Изобретатель из Лиона Жозеф Жаккар предложил способ быстрой перенастройки ткацкого станка для производства различных видов продукции. Нередко эта процедура требовала огромного количества времени, колоссальных усилий и внимания целого коллектива. Суть нововведения сводилась к использованию картонных карточек с перфорированными отверстиями. Иглы, попадая в просеченные места, необходимым образом смещали нити. Смена карт быстро проводилась оператором станка: новая перфокарта - новая программа - новый тип ткани или узора. Французская разработка стала прообразом современных автоматизированных комплексов, роботов с возможностью программирования.

Идею, предложенную Жаккаром, с восторгом использовали в своих автоматических устройствах многие изобретатели:

  • Начальник статистического управления С. Н. Корсаков (Россия, 1832 г.) - в механизме для сравнивания и анализа идей.
  • Математик Чарльз Бэббидж (Англия, 1834 г.) - в аналитической машине для решения широкого круга математических задач.
  • Инженер (США, 1890 г.) - в устройстве для хранения и обработки статистических данных (табуляторе). Для заметки: в 1911 году компания. Холлерита получила название IBM (International Business Machines).

Перфокарты были основными носителями информации вплоть до 60-х годов прошлого века.

Своим названием интеллектуальные машины обязаны чешскому драматургу В пьесе "R.U.R.", увидевшей свет в 1920 году, писатель назвал роботом искусственного человека, созданного для тяжелых и опасных участков производства (robota (чешск.) - каторга). А что отличает робота от механизмов и автоматических устройств? В отличие от последних, робот не только выполняет определенные действия, слепо следуя заложенному алгоритму, но и способен более тесно взаимодействовать с окружающей средой и человеком (оператором), адаптировать свои функции при изменении внешних сигналов и условий.

Принято считать, что первый действующий робот был сконструирован и реализован в 1928 году американским инженером Р. Уэнсли. Человекоподобный "железный интеллектуал" получил имя Герберт Телевокс. На лавры пионеров претендуют также ученый-биолог Макото Нисимура (Япония, 1929 г.) и английский военнослужащий Уильям Ричардс (1928 г.). Созданные изобретателями антропоморфные механизмы имели схожий функционал: способны были двигать конечностями и головой, выполнять голосовые и звуковые команды, отвечать на простые вопросы. Основным предназначением устройств была демонстрация научно-технических достижений. Очередной виток в развитии технологий позволил в скором времени создать и первых индустриальных роботов.

Поколение за поколением

Разработка робототехники представляет собой непрерывный, поступательный процесс. К настоящему моменту сформировались три ярко выраженных поколения "умных" машин. Каждое характеризуется определенными показателями и сферами применения.

Первое поколение роботов создавалось для узкого вида деятельности. Машины способны выполнять только определенную запрограммированную последовательность операций. Устройства управления роботами, схемотехника и программирование практически исключают автономное функционирование и требуют создания специального технологического пространства с необходимым дополнительным оборудованием и информационно-измерительными системами.

Машины второго поколения называют очувствленными, или адаптивными. Программирование роботов осуществляется с учетом большого набора внешних и внутренних сенсоров. На основе анализа информации, поступающей с датчиков, вырабатываются необходимые управляющие воздействия.

И наконец, третье поколение - интеллектуальные роботы, которые способны:

  • Обобщать и анализировать информацию,
  • Совершенствоваться и самообучаться, накапливать навыки и знания,
  • Распознавать образы и изменения ситуации, и в соответствии с этим выстраивать работу своей исполнительной системы.

В основе искусственного интеллекта лежит алгоритмическое и программное обеспечение.

Общая классификация

На любой представительной современной выставке роботов многообразие "умных" машин способно поразить не только простых обывателей, но и специалистов. А какие бывают роботы? Наиболее общую и содержательную классификацию предложил советский ученый А. Е. Кобринский.

По назначению и выполняемым функциям роботов подразделяют на производственно-промышленные и исследовательские. Первые, в соответствии с характером выполняемых работ, могут быть технологическими, подъемно-транспортными, универсальными или специализированными. Исследовательские предназначены для изучения областей и сфер, опасных или недоступных для человека (космическое пространство, земные недра и вулканы, глубоководные слои мирового океана).

По типу управления можно выделить биотехнические (копирующие, командные, киборги, интерактивные и автоматические), по принципу - жестко программируемые, адаптивные и гибко программируемые. Бурное развитие современной предоставляет разработчикам практически безграничные возможности при проектировании интеллектуальных машин. Но отличное схемное и конструктивное решение будет служить лишь дорогостоящей оболочкой без соответствующего программного и алгоритмического обеспечения.

Чтобы кремний микропроцессора смог взять на себя функции мозга робота, необходимо "залить" в кристалл соответствующую программу. Обычный человеческий язык не способен обеспечить четкую формализацию задач, точность и надежность их логической оценки. Поэтому требуемая информация представляется в определенном виде с помощью языков программирования роботов.

В соответствии с решаемыми задачами управления выделяют четыре уровня такого специально созданного языка:

  • Низший уровень используется для управления исполнительными приводами в виде точных значений линейного или углового перемещения отдельных звеньев интеллектуальной системы,
  • Уровень манипулятора позволяет осуществлять общее управление всей системой, позиционируя рабочий орган робота в координатном пространстве,
  • Уровень операций служит для формирования рабочей программы, путем указания последовательности необходимых действий для достижения конкретного результата.
  • На высшем уровне - заданий - программа без детализации указывает что надо сделать.

Робототехники стремятся свести программирование роботов к общению с ними на языках высшего уровня. В идеале оператор ставит задачу: "Произвести сборку двигателя внутреннего сгорания автомобиля" и ожидает от робота полного выполнения задания.

Языковые нюансы

В современной робототехнике программирование роботов развивается по двум векторам: роботоориентированное и проблемно ориентированное программирование.

Наиболее распространенные роботоориентированные языки - AML и AL. Первый разработан фирмой IBM только для управления интеллектуальными механизмами собственного производства. Второй - продукт специалистов Стэндфордского университета (США) - активно развивается и оказывает существенное влияние на формирование новых языков этого класса. Профессионал легко разглядит в языке характерные черты Паскаля и Алгола. Все языки, ориентированные на роботов, описывают алгоритм, как последовательность действий "умного" механизма. В связи с этим программа зачастую выходит очень громоздкой и неудобной в практической реализации.

При программировании роботов на проблемно ориентированных языках, в программе указывается последовательность не действий, а целей или промежуточных позиций объекта. Наиболее популярным в этом сегменте является язык AUTOPASS (IBM), в котором состояние рабочей среды представлено в виде графов (вершины - объекты, дуги - связи).

Обучение роботов

Любой современный робот представляет собой обучаемую и адаптивную систему. Вся необходимая информация, включающая знания и умения, передается ей в процессе обучения. Это осуществляется, как непосредственным занесением в память процессора соответствующих данных (детальное программирование - семплинг), так и с использованием сенсоров робота (методом наглядной демонстрации) - все движения и перемещения механизмов робота заносятся в память и затем воспроизводятся в рабочем цикле. Обучаясь, система перестраивает свои параметры и структуру, формирует информационную модель внешнего мира. Это и есть основное отличие роботов от автоматизированных линий, промышленных автоматов с жесткой структурой и других традиционных средств автоматизации. Перечисленные методы обучения обладают существенными недостатками. Например, при семплинге перенастройка требует определенного времени и труда квалифицированного специалиста.

Весьма перспективной выглядит программа для программирования роботов, представленная разработчиками Лаборатории информационных технологий при Массачусетском технологическом институте (CSAIL MIT) на международной конференции промышленной автоматизации и робототехники ICRA-2017 (Сингапур). Созданная ими платформа C-LEARN обладает достоинствами обоих методов. Она предоставляет роботу библиотеку элементарных движений с заданными ограничениями (например, усилие хвата для манипулятора в соответствии с формой и жесткостью детали). В то же время, оператор демонстрирует роботу ключевые движения в трехмерном интерфейсе. Система, исходя из поставленной задачи, формирует последовательность операций для выполнения рабочего цикла. C-LEARN позволяет переписать существующую программу для робота другой конструкции. Оператору при этом не требуются углубленные знания в области программирования.

Робототехника и искусственный интеллект

Специалисты Оксфордского университета предупреждают, что в ближайшие два десятилетия машинные технологии заменят более половины сегодняшних рабочих мест. Действительно, роботы давно уже трудятся не только на опасных и трудных участках. Например, программирование значительно потеснило брокеров-людей на мировых биржах. Несколько слов об искусственном интеллекте.

В представлении обывателя это антропоморфный робот, способный заменить человека во многих сферах жизни. Отчасти так и есть, но в большей степени искусственный интеллект - это самостоятельная отрасль науки и технологии, с помощью компьютерных программ, моделирующая мышление "Homo sapiens", работу его мозга. На сегодняшнем этапе развития ИИ больше помогает людям, развлекает их. Но, по прогнозам экспертов, дальнейший прогресс в области робототехники и искусственного интеллекта может поставить перед человечеством целый ряд морально-этических и юридических вопросов.

В этом году на выставке роботов в Женеве самый совершенный андроид София заявила, что учится быть человеком. В октябре София впервые в истории искусственного интеллекта была признана гражданкой Саудовской Аравии с полноценными правами. Первая ласточка?

Основные тенденции робототехники

В 2017 году специалисты цифровой индустрии отметили несколько выдающихся решений в области технологий виртуальной реальности. Не осталась в стороне и робототехника. Очень перспективным выглядит направление совершенствующее управление сложным робомеханизмом через виртуальный шлем (VR). Эксперты пророчат востребованность такой технологии в бизнесе и промышленности. Вероятные сценарии использования:

  • Управление беспилотной техникой (складскими погрузчиками и манипуляторами, дронами, трейлерами),
  • Проведение медицинских исследований и хирургических операций,
  • Освоение труднодоступных объектов и областей (дно океана, полярные области). Кроме того, программирование роботов позволяет им осуществлять и автономную работу.

Еще один популярный тренд - connected car. Совсем недавно представители гиганта Apple заявили о старте разработок собственного "беспилотника". Все больше фирм выражают свою заинтересованность в создании машин, способных самостоятельно перемещаться по пересеченным трассам, сохраняя грузы и оборудование.

Возрастающая сложность алгоритмов программирования роботов и машинного обучения предъявляет повышенные требования к вычислительным ресурсам и, следовательно, к "железу". По-видимому, оптимальным выходом в этом случае будет подключение устройств к облачной инфраструктуре.

Важное направление - когнитивная робототехника. Стремительный рост количества "умных" машин заставляет разработчиков все чаще задумываться о том, как научить роботов слаженно взаимодействовать.

Согласно последним опросам родителей, проведенным социологами в нашей стране, все большую популярность завоевывают конструкторы по робототехнике для детей, причем не только среди школьников старших классов, но и среди 4-5-летних малышей.

Сейчас на отечественном рынке представлен огромный выбор комплектов, которые рассчитаны на детей самых разных возрастов, с разным уровнем подготовки и знаний.

Особенности конструкторов

Все объединяет не только функция игры, но и обучения. Конструкторы для школьников зачастую сопровождаются рабочими тетрадями, учебниками, глоссариями, методическими материалами для учителя. Комплекты для младших групп, в частности для дошкольников, не рассчитаны на использование серьезных педагогических материалов, однако, и в этом случае ребенок не просто играет, а изучает в доступной форме механизмы, физические законы.

Бесспорно, робот-конструктор для детей четырех - шести лет не предлагает сбор и программирование человекоподобного андроида. На начальных этапах робототехника - это изучение моделей, работа с простейшими моторами и т. д.

Возрастные группы

Сегодня роботы-конструкторы выпускаются для детей в возрасте от четырех до пятнадцати лет. Продуманный набор соответствует уровню знаний юного конструктора или инженера: чем старше ребенок, тем сложнее ему предлагаются модели. Большинство производителей предлагают модели для следующих возрастных групп:

От 4 до 6 лет

Простые модели с яркими и крупными деталями и увлекательным содержанием. Обычно, в этом случае малышу предлагают собрать самолетики, машинки, животных, чтобы получить первое представление о том, что такое механизм. Задача таких конструкторов для малышей состоит в том, чтобы развить мелкую моторику ребенка, усидчивость, внимание, изобретательность, обучить работе в команде.

От 7 до 9 лет

Робот-конструктор по робототехнике для младших школьников становится более сложным. Это можно сказать как о самих моделях, так и об изучаемых темах. Дети более подробно знакомятся с физическими законами и явлениями, начинают изучать работу различных датчиков. По этой причине такие наборы с успехом используются на уроках физики. Многие комплекты предлагают не только построить машинку, но и заставить ее двигаться: ехать по линии, отъезжать от края стола.

От 10 до 15 лет

Программируемый робот для старших школьников, подразумевает практически полное погружение в робототехнику (исключая моделирование и печать деталей, хотя набор от Fischertechnik позволяет собрать настоящий 3D-принтер). Работа с механизмами в этом случае сочетается с программированием - комплекты могут поставляться с программируемыми платами, чтобы будущий инженер мог увидеть, как они функционируют, и попробовать задать команды самостоятельно.

LEGO

Один из самых популярных и известных в мире брендов является и признанным лидером в образовательном роботостроении. Во многих школах на занятиях используются именно его комплекты, которые отличаются универсальностью, широким набором материалов для педагогов, наличием рабочих тетрадей.

Известный бренд предлагает несколько линеек для детей разных возрастов. Для самых маленьких подойдут «Первые механизмы» (5+) или «Простые механизмы» (7+). Занятия с этими конструкторами не требуют серьезных знаний в роботостроении, наборы лишь знакомят детей с тем, что такое и как функционирует механизм. Будущий инженер-конструктор узнает, как работают рычаги, зубчатые колеса и многое другое.

Линейки WeDo и WeDo 2

Эта игрушка робот программируемый, позволит ребятам от 7 до 10 лет собрать первый настоящий механизм. Комплекты состоят из множества деталей для тела робота, а также самые разные датчики (наклона, движения), дидактические материалы, программное обеспечение.

В отдельную группу следует выделить конструкторы, в которых подробно разбираются темы, связанные не только с физическими явлениями, но и с некоторыми другими дисциплинами, технологией, к примеру. К таким наборам можно отнести «Возобновляемые источники энергии», «Пневматику» и другие.

MINDSTORMS Education EV3

Это самые сложные из предлагаемых LEGO конструкторов, которые предназначены для учащихся средней школы. Комплекты позволяют создать полноценного сборного программируемого робота, имеющего различные датчики, который способен взаимодействовать с другими роботами от этого производителя.

Huna

Южнокорейские специалисты, разрабатывая программируемые конструкторы для детей, придерживаются правила — «От простого к сложному». Уже детям с шести — восьмилетнего возраста бренд предлагает собрать несложные механизмы с двигателем, датчиками, которые определяют расстояние, звуковым сопровождением. В основу таких комплектов заложены знакомые всем малышам модели: герои сказок (к примеру, Паровозик Томас или персонажи из «Трех поросят»), машинки, животные. Каждый комплект оснащен понятной инструкцией, которая поможет ребенку (конечно, с помощью взрослых) собрать интересную движущуюся модель.

MRT (My Robot Time)

Ребят постарше заинтересует эта линейка, в которой можно подобрать комплекты посложнее. Во все наборы входит мотор, датчики и прочие необходимые элементы. Главной особенностью программируемых роботов от Huna является возможность соединения деталей по всем шести сторонам.

Интересной разработкой компании стали наборы для совместной, групповой работы: ребята могут построить зоопарк и даже город или пофантазировать на темы «Новый год и Рождество», «Мечты и реальность».

Fischertechnik (Германия)

Не уступает конкурентам и этот немецкий производитель, который подготовил наборы для детей разных возрастных групп. К примеру, для начинающих изобретателей в возрасте от пяти лет создан «Набор для малышей», а также «Супернабор для малышей».

Каждый такой комплект позволит ребенку построить несколько моделей самолетов, машинок, подъемный кран и другие понятные и знакомые объекты.

Младшим школьникам компания Fischertechnik предлагает решить более сложные задачи. К примеру, построить машину, двигающуюся от солнечных батарей или трактор с дистанционным управлением. Бренд разработал наборы для изучения оптических явлений, пневматики, топливных элементов, законов динамики, различных двигателей. Эти и другие подобные образовательные конструкторы помогут ребятам в игровой форме ознакомиться с различными сторонами школьного курса физики, но, главное, - применить теоретические знания на практике.

Engino (Кипр)

Бренд, известный огромным ассортиментом самых различных образовательных интерактивных программируемых роботов. Кроме того, компания Engino предлагает оригинальную серию для девочек: детали конструкторов выполнены в пастельных тонах, а сами модели ближе прекрасной половине человечества.

Mechanical Science и Discovering Stem

Нельзя не отметить и эти серии от компании Engino. С их помощью ребенок наглядно изучит различные физические явления — работу рычагов, кривошипов, клиньев, познакомится с законами Ньютона и солнечной энергии. Stem расшифровывается как Science (наука), Technology (технология), Engineering (инженерное дело) и Mathematics (математика). Этим областям и посвящены конструкторы.

Makeblock (Германия)

Самые интересные конструкторы-роботы, производимые этой компанией, - это, бесспорно, те, что можно использовать по назначению после сборки. К примеру, Airblock Drone или Laserbot гравировщик, которые позволяют собрать катер или дрон на воздушной подушке. Наборы укомплектованы всем необходимым для полноценной работы устройства. Например, юному гравировщику потребуется лазерная головка, программное обеспечение, кронштейны и многое другое.

Silverlit — программируемый робот (36 функций)

Эта технологичная уникальная игрушка от китайских производителей является настоящим чудом. Программируемый робот обладает тридцатью шестью функциями, а в комплекте с ним идет еще и небольшой робот. Основной герой комплекта умеет:

  • выполнять последовательные действия (не более тридцати шести за один цикл), из которых наиболее интересны повороты, удар ногой, ходьба вперед и назад, выражение обеспокоенности, танцы, обхождение препятствий;
  • реагировать на громкие звуки. При хлопке в стороне от робота Silverlit, он издает звук;
  • охранять помещение: робот предупреждает знаками ребенка о том, что перед ним появилось какое-то препятствие;
  • общаться со своей мини-копией Maxi Pals, подавая световые сигналы;
  • сверкать глазами, поворачивать голову, шевелить суставами ног и рук;
  • удерживать нетяжелые предметы в руках.

Роботы от Silverlit изготовлены из качественных материалов. В комплект входит дистанционный пульт управления, который для удобства можно закрепить на спине робота. Программируемый робот Silverlit небольшого размера. В комплект поставляются батарейки, но только к основному, большому роботу Maxi Pals.

Эта игрушка заинтересует детей с пяти лет. Выглядят роботы очень симпатично — оригинальные космонавты, одетые в оригинальные скафандры. Игрушка имеет особый датчик, позволяющий обходить препятствия и сканировать пространство.

Конструкторы-роботы человекоподобные, программируемые

Наверное, совсем скоро роботы-андроиды станут незаменимыми помощниками домашних хозяек: они смогут готовить пищу и убирать в доме. Пока такие модели используют лишь в развлекательных или образовательных целях.

Darwin-mini

Элементы робота от компании Robotic совместимы с конструктором серии Dream, того же бренда. Рост робота составляет 26,95 см, семнадцать сервомоторов используется для движений. Передвигается он со скоростью 24 см/сек, аккумулятор рассчитан на полчаса непрерывной работы.

В комплект набора входит модуль Bluetooth. А вот гироскопического и других датчиков в этом комплекте нет. Контроллер с открытой платформой управляет роботом. Она оборудована четырьмя портами, к которым подключаются дополнительные датчики-светодиоды, которые в комплект не входят, но могут понадобиться для выполнения некоторых дополнительных задач.

Для сборного программированного робота применяется бесплатное ПО RoboPlus. Поведение робота можно запрограммировать с помощью редактора RoboPlus Task, а более сложные движения — используя программу RoboPlus Motion.

Bioloid Premium Kit

Комплект от известной корейской компании Robotics. Помимо трех можно собрать из предлагаемого комплекта 26 различных механизмов. Комплект рассчитан на детей старшего и среднего школьного возраста.
Собранный робот имеет: гироскоп, два инфракрасных датчика препятствий, 18 сервомоторов, инфракрасный датчик расстояния. Кроме того, в конструкцию включены датчики напряжения, температуры, микрофон. В комплекте входит пульт дистанционного управления.

Программирование виртуальных роботов на языке Java

Робототехника давным давно вышла за пределы научно-фантастических романов и в настоящее время является одной из движущих сил, определяющих прогресс во многих областях, таких как автоматизация производства, медицина, космос и т.д. Важную роль в робототехнике играют программные симуляторы, т.к. они не только упрощают работу инженеров, но и позволяют исследователям испытывать новейшие алгоритмы искусственного интеллекта (AI) и машинного обучения. Одним из таких симуляторов является Simbad – проект с открытым кодом, разработанный на основе технологии Java 3D (см. ). В данной статье мы расскажем, как программировать виртуальных роботов, используя инструментарий Simbad, для получения лучшего представления об одной из философий проектирования роботов – архитектуре поглощения (subsumption architecture ).

Начало статьи посвящено краткому обзору робототехники и концепции архитектуры поглощения. Затем мы перейдем к инструментарию Simbad и расскажем, как, используя его, можно реализовать данную архитектуру. После этого придет время создания простого робота в соответствии с описанной архитектурой. В конце концов, вы окунетесь в занимательный мир лабиринтов и создадите второго робота, который, подобно Гомеру из Симпсонов (см. ), сможет самостоятельно из них выбираться. Разумеется, созданные роботы будут “виртуальными”, т.е. будут жить в виртуальной среде Simbad.

Программирование роботов

На данный момент не существует единого, всеми признаваемого определения термина “робот”. В нашей статье, под роботом мы будем подразумевать нечто, состоящее как минимум из следуюших компонентов:

  • Набора сенсоров
  • Программы, определяющей поведение робота
  • Набора приводов и эффекторов

Традиционная робототехника

Под традиционной робототехникой обычно понимается период развития данной области вплоть до 1986 года. Для того времени было характерно представление о роботе, как о механизме, управляемом центральным контроллером (мозгом), который постоянно обновляет свое представление об окружающем мире и вырабатывает план поведения, исходя из этого представления. Новая информация о мире поступает от сенсоров, например, осязания, света, ультразвука и т.д. Мозг анализирует всю информацию от сенсоров и обновляет представление об окружающей среде, а затем принимает решение о том или ином действии. Все действия выполняются с помощью приводов и эффекторов. Первые обычно представляют собой некие двигатели, подсоединенные к устройствам, непосредственно взаимодействующим с окружающим миром — эффекторам. Примерами последних могут служить колеса или руки. При этом иногда под приводами (actuators) понимаются как сами приводы, так и эффекторы.

Таким образом, традиционный робот получает данные от множества сенсоров, комбинирует эти данные в процессе обновления картины мира, затем вырабатывает план действий на основе данной картины, и наконец, приводит его в исполнение. К сожалению, данный подход сопряжен с определенными трудностями. Во-первых, он требует большого объема вычислений. Во-вторых, поддержка актуальной картины окружающего мира – задача очень сложная, т.к. мир меняется постоянно. При этом известно, что многие организмы, например, насекомые, благополучно существуют и без поддержки полной картины мира, более того, даже не имея памяти как таковой. Так может стоит попробовать перенять их подход к функционированию? Подобные размышления стали отправной точкой нового течения в робототехнике, доминирующего в настоящее время. Оно получило название “поведенческая робототехника” (behavior-based robotics - BBR).

Архитектура поглощения

Одним из способов организации BBR-роботов является архитектура поглощения, предложенная в 1986 г. Родни Бруксом (Rodney A. Brooks) — в настоящее время главой лаборатории искусственного интеллекта в Массачусетском Технологическом Институте (MIT) — в его фундаментальной статье под названием “Слоны не играют в шахматы” (см. ). Согласно Бруксу, поведенческие роботы можно рассматривать как набор простых и независимых поведенческих узлов (behaviors), каждый из которых определяется двумя вещами – тем, что вызывает данное поведение (как правило, информация, поступающая от сенсоров), и тем действием, что является его результатом (как правило, выполненным с помощью эффектора). Поведения могут наслаиваться друг на друга, а также конфликтовать между собой. В этом случае, в действие вступает специальный механизм арбитража , который решает, какое поведение в данный момент является приоритетным. Ключевым моментом является то, что поведение робота, как единого целого, не закладывается заранее, а вырисовывается из взаимодействия его поведенческих узлов. Более того, по мнению сторонников BBR, глобальное поведение является чем-то большим, чем просто суперпозицией его частей. Оно поглощает каждое из локальных, низкоуровневых поведений. В целом, идея заключается в том, что вместо проектирования робота и точного описания его поведения во всех ситуациях, можно просто добавлять поведенческие узлы и смотреть, что получится в результате.

Simbad: среда для моделирования роботов

LEGO Mindstorms

В данной статье рассматривается создание программных агентов (ботов), но если вас интересуют реальные физические роботы, то обратите внимание на LEGO Mindstorms – замечательный инструментарий для робототехника.

Слоган в штаб-квартире LEGO Mindstorms гласит: “Мы сделаем для робототехники то, что iPod сделал для музыки” ("We will do for robotics what iPod did for music"). Первая версия Mindstorms была представлена в 1998 г. и сразу же превзошла ожидания LEGO по объему продаж. Цена комплекта ($250) может показаться слегка завышенной, но не забывайте, что столько же стоит iPod Classic, а он есть практически у каждого .

При этом iPod не предоставляет собой такого интереса для взлома как Mindstorms. Стоило выйти первому релизу Mindstorms, как различного рода хакеры начали взламывать и анализировать блоки RCX, являющиеся “мозгами” роботов. LEGO пребывала в некотором недоумении и сначала не могла решить, оставить ли все как есть или же выпустить официальное требование прекратить подобные действия. К чести руководства компании, они решили предоставить хакерам полную свободу действий в отношении Mindstorms.

Это привело к расцвету сообщества Mindstorms (см. ). Одним из следствий стало стороннее портирование платформы Mindstorms под другие языки, такие как C и Java, в то время, как сам инструментарий изначально поставлялся только вместе с графическим языком программирования NXT-G. В итоге, более половины пользователей инструментария – это взрослые специалисты.

Simbad предназначен для программного моделирования роботов. Согласно Web-странице проекта, Simbad “предоставляет программные средства для разработки роботов, описания их воздействия на окружающий мир, а так же использования сенсоров. Simbad был в первую очередь разработан для исследователей, которым необходим простой инструментарий для изучения ситуационного искусственного интеллекта, машинного обучения и алгоритмов AI вообще, особенно применительно к автономным роботам и агентам”.

Simbad был разработан на Java Луи Уге (Louis Hugue) и Николя Бредешем (Nicolas Bredeche). Проект размещен на сервере SourceForge.net и может свободно использоваться или модифицироваться в соответствии с лицензией GNU GPL (General Public License).

Технические подробности

Мир в среде Simbad может содержать как агентов (роботов), так и различные неодушевленные предметы, такие как, ящики, стены, источники света и т.д. Время в этом мире дискретно, т.е. разбито на интервалы. Simbad включает в себя планировщик, распределяющий время между агентами. Аналогично реальным роботам, агенты Simbad имеют как сенсоры (датчики расстояния, осязания, света и т.д.), так и приводы (как правило, колеса). В любой отведенный ему момент времени, робот может выполнять какое-то действие.

Классы, реализующие агентов, должны переопределять метод performBehavior() , который описывает их поведение. Внутри этого метода робот может анализировать поступающую от сенсоров информацию и изменять вращательную и поступательную составляющие скорости движения. На исполнение метода performBehavior() отводится короткий промежуток времени, поэтому нельзя отдавать такие команды, как, например, “продвинуться вперед на один метр”. Для того чтобы обойти это ограничение как правило приходится постоянно контролировать состояние, в котором находится робот. Кроме этого можно использовать таймер для отслеживания количества временных интервалов, в течение которых робот находился в текущем состоянии.

Simbad API

В примерах к данной статье в основном затрагиваются вопросы, связанные со следующими двумя пакетами, входящими в состав Simbad API:

  • simbad.sim : Классы данного пакета описывают как самих роботов, так и окружающий их мир. Основными классами являются:
    • Agent: Сами роботы.
    • Arch: Арки, которые роботы могут объезжать либо проезжать под ними.
    • Box: Описывают препятствия на пути робота.
    • CameraSensor: Позволяет получать доступ к картине окружающего мира с точки зрения робота.
    • EnvironmentDescription: Описывает среду, в которую можно добавлять как роботов, так и неодушевленные объекты, например, стены и другие препятствия.
    • LampActuator: Фары, которые можно добавлять к своему роботу.
    • LightSensor: Сенсоры света.
    • RangeSensorBelt: Набор датчиков расстояния, которые могут быть расположены по периметру робота.
    • RobotFactory: Используется для добавления различных сенсоров к роботу.
    • Wall: Еще один тип препятствия для движения робота.
  • simbad.gui : Классы из данного пакета отображают самого робота и позволяют его контролировать. Основным классом являются следующий:
    • Simbad: Окно, отображающее картину мира робота, информацию, поступающую с его сенсоров, а так же управляющие элементы.

Реализация архитектуры поглощения с помощью Simbad

Румба

В то время как я пишу эти строки, Румба (Roomba) пылесосит ковер у меня под ногами (при этом периодически наталкиваясь на котенка). Румба – это робот, разработанный компанией iRobot, основанной тремя выпускниками MIT: Родни Бруксом, Колином Энглом (Colin Angle) и Хелен Грейнер (Helen Greiner). Он был создан в согласии с принципами архитектуры поглощения и предоставляет открытый интерфейс, позволяющий менять его поведение самым произвольным образом. Книга Тода Курта (Tod E. Kurt) “Взламывая Румбу” рассказывает о множестве таких возможностей (см. ).

Реализовывать архитектуру поглощения на основе Simbad мы начнем с объявления класса-потомка Agent под названием BehaviorBasedAgent . Каждый экземпляр данного класса будет содержать массив поведений (объектов типа Behavior), а так же булеву матрицу, хранящую информацию об их попарном поглощении.

private Behavior behaviors; private boolean suppresses;

Класс BehaviorBasedAgent выступает в роли планировщика поведений. В листинге 1 приведен фрагмент кода, итерирующего по массиву поведений и регулирующего их запуск. При этом переменная currentBehaviorIndex используется для хранения ссылки на поведение, которое должно быть активировано на следующем шаге алгоритма.

Листинг 1. Цикл для поочередной активации поведений и разрешения конфликтов
protected void performBehavior() { boolean isActive = new boolean; for (int i = 0; i < isActive.length; i++) { isActive[i] = behaviors[i].isActive(); } boolean ranABehavior = false; while (!ranABehavior) { boolean runCurrentBehavior = isActive; if (runCurrentBehavior) { for (int i = 0; i < suppresses.length; i++) { if (isActive[i] && suppresses[i]) { runCurrentBehavior = false; break; } } } if (runCurrentBehavior) { if (currentBehaviorIndex < behaviors.length) { Velocities newVelocities = behaviors.act(); this.setTranslationalVelocity(newVelocities .getTranslationalVelocity()); this .setRotationalVelocity(newVelocities .getRotationalVelocity()); } ranABehavior = true; } if (behaviors.length > 0) { currentBehaviorIndex = (currentBehaviorIndex + 1) % behaviors.length; } } }

Отметьте, что метод performBehavior() перегружает аналогичный метод в классе simbad.sim.Agent .

В классе поведения Behavior объявлено два абстрактных (abstract) метода:

  • isActive() : Метод возвращает булево значение, показывающее, должно ли данное поведение быть активировано в данный момент времени, учитывая информацию, поступающую от сенсоров. При этом все экземпляры класса Behavior имеют доступ к общему набору сенсоров.
  • act() : Метод возвращает новые значения поступательной и вращательной скорости (именно в таком порядке), являющиеся результатом активации поведения.

Пример блуждающего робота, притягивающегося к источникам света

Теперь пришло время создать программного робота (или бота), который будет включать 4 нижеперечисленных поведения, хранящихся в порядке убывания приоритета. Код бота показан в листингах со второго по пятый (код примеров к данной статье доступен для ).

  • Avoidance: Изменяет направление движения после столкновения или в попытке предотвратить столкновение.
  • LightSeeking: Направляет движение в сторону источника света.
  • Wandering: Периодически меняет направление движения произвольным образом.
  • StraightLine: Направляет движение по прямой.
Листинг 2. Класс Avoidance (на основе демонстрационного примера SingleAvoiderDemo.java из поставки Simbad)
public boolean isActive() { return getSensors().getBumpers().oneHasHit() || getSensors().getSonars().oneHasHit(); } public Velocities act() { double translationalVelocity = 0.8; double rotationalVelocity = 0; RangeSensorBelt sonars = getSensors().getSonars(); double rotationalVelocityFactor = Math.PI / 32; if (getSensors().getBumpers().oneHasHit()) { // Произошло столкновение translationalVelocity = -0.1; rotationalVelocity = Math.PI / 8 - (rotationalVelocityFactor * Math.random()); } else if (sonars.oneHasHit()) { // Считывание показаний эхолокаторов double left = sonars.getFrontLeftQuadrantMeasurement(); double right = sonars.getFrontRightQuadrantMeasurement(); double front = sonars.getFrontQuadrantMeasurement(); // Препятствие близко if ((front < 0.7) || (left < 0.7) || (right < 0.7)) { double maxRotationalVelocity = Math.PI / 4; if (left < right) rotationalVelocity = -maxRotationalVelocity - (rotationalVelocityFactor * Math.random()); else rotationalVelocity = maxRotationalVelocity - (rotationalVelocityFactor * Math.random()); translationalVelocity = 0; } else { rotationalVelocity = 0; translationalVelocity = 0.6; } } return new Velocities(translationalVelocity, rotationalVelocity); }
Листинг 3. Класс LightSeeking (на основе демонстрационного примера LightSearchDemo.java из поставки Simbad)
public boolean isActive() { float llum = getSensors().getLightSensorLeft().getAverageLuminance(); float rlum = getSensors().getLightSensorRight().getAverageLuminance(); double luminance = (llum + rlum) / 2.0; // Активизироваться если источник света неподалеку return luminance > LUMINANCE_SEEKING_MIN; } public Velocities act() { // Повернуть в сторону источника света float llum = getSensors().getLightSensorLeft().getAverageLuminance(); float rlum = getSensors().getLightSensorRight().getAverageLuminance(); double translationalVelocity = 0.5 / (llum + rlum); double rotationalVelocity = (llum - rlum) * Math.PI / 4; return new Velocities(translationalVelocity, rotationalVelocity); }
Листинг 4. Класс Wandering
public boolean isActive() { return random.nextDouble() < WANDERING_PROBABILITY; } public Velocities act() { return new Velocities(0.8, random.nextDouble() * 2 * Math.PI); }
Листинг 5. Класс StraightLine class
public boolean isActive() { return true; } public Velocities act() { return new Velocities(0.8, 0.0); }

В листинге 6 показано поглощение одних поведений другими.

Листинг 6. Объявление булевой матрицы, описывающей попарное поглощение поведений
private void initBehaviorBasedAgent(BehaviorBasedAgent behaviorBasedAgent) { Sensors sensors = behaviorBasedAgent.getSensors(); Behavior behaviors = { new Avoidance(sensors), new LightSeeking(sensors), new Wandering(sensors), new StraightLine(sensors), }; boolean subsumes = { { false, true, true, true }, { false, false, true, true }, { false, false, false, true }, { false, false, false, false } }; behaviorBasedAgent.initBehaviors(behaviors, subsumes); }

В данном примере набор поведений полностью упорядочен в соответствии с приоритетом. В общем случае, это необязательно.

В качестве упражнения вы можете попробовать реализовать следующие вещи:

  • Социальное поведение: движение навстречу друзьям и в сторону от врагов.
  • Избегание источников света.
  • Добавить фары к некоторым роботам, так, чтобы они начали притягиваться друг к другу.

Лабиринты

"Ну, наконец-то! Я так и знала, что из этого лабиринта можно выбраться, действуя по алгоритму Тремо!" — Лиза Симпсон

Из всей массы алгоритмов выхода из лабиринтов, два выделяются тем, что используют объем памяти, не зависящий от размера самого лабиринта. Они известны под названиями “следование вдоль стены” (wall-following) и алгоритм Пледжа . Последний был назван в честь Джона Пледжа (Jon Pledge) из Эксетера, который изобрел алгоритм в возрасте 12 лет. Кроме этого есть еще великолепный алгоритм Тремо (Tremaux algorithm) – любимый алгоритм Лизы Симпсон – но в целях упрощения мы рассмотрим только первые два.

Алгоритмы генерации лабиринтов

Интерес представляют не только алгоритмы выхода из лабиринтов, но и их генерации. Лабиринты, рассматриваемые в данной статье, называются совершенными (perfect), благодаря тому, что существует один и только один вариант прохода между любыми двумя точками лабиринта. Благодаря этому условию исключаются петли, острова, а так же изолированные участки. Большинство алгоритмов, генерирующих совершенные лабиринты, работают следующим образом: они начинают с простого лабиринта, представляющего собой только внешнюю стену и постепенно добавляют внутренние участки. При этом на каждом шаге необходимо исключать возможность появления петель, изолированных секций и т.д.

Следование вдоль стены

Этот алгоритм настолько прост, что многие обучаются ему еще в детстве. Все что требуется для выхода — это вести левой рукой по левой стене (или правой рукой по правой стене) пока не встретите выход. Несложно видеть, что данный алгоритм работает безупречно для лабиринтов, в которых вход и выход расположены на периметре. К сожалению, алгоритм нельзя применять в случае, если выход расположен на острове — части лабиринта, не соединенной с остальными стенами. В этой ситуации алгоритм не найдет выход, потому что нельзя перепрыгнуть пустое пространство до острова, не отрывая руку от стены.

Алгоритм Пледжа

Алгоритм Пледжа более сложен, но зато способен находить выход из большего числа лабиринтов за счет возможности переходов от одного острова к другому. Идея алгоритма заключается в том, что надо выбрать некое абсолютное направление (север, юг, запад или восток) и всегда стараться ему следовать. Назовем его предпочтительным направлением . В случае если вы упираетесь в стену, вы поворачиваете направо и движетесь в соответствии с алгоритмом “следование вдоль стены” до тех пор, пока не выполнится два условия. Первое – это поворот в предпочтительном направлении, а второе – сумма всех ранее сделанных поворотов равна нуля (при этом каждый поворот против часовой стрелки принимается за единицу, а по часовой стрелке, соответственно, за минус единицу). После этого вы продолжаете двигаться в предпочтительном направлении пока это возможно и так далее. Условие на нулевую сумму поворотов необходимо для избегания разного рода ловушек, например, участков лабиринтов, имеющих форму G (нарисуйте ее на бумаге и сразу поймете, о чем я).

Алгернон: робот, выбирающийся из лабиринтов

Пришло время удивить ваших друзей, создав робота по имени Алгернон (Algernon), задачей которого будет выход из лабиринтов.

Проектирование робота

Для реализации как алгоритма Пледжа, так и следования вдоль стены необходимо точно определять момент, когда робот подходит к разветвлению в лабиринте, а также иметь возможность указать, какое направление выбрать.

Наверняка это можно реализовать множеством способов, но мы будем использовать специальный сенсор — эхолокатор, расположенный на левой стороне робота. Этот сенсор будет посылать сигналы при пересечении ответвлений слева по ходу движения. Для того чтобы определять, что впереди тупик, мы добавим еще один сенсор — датчик касания, расположенный в лобовой части робота.

Реализация алгоритма следования вдоль стены

Весь код Алгернона будет размещен в пакете algernon.subsumption (весь код доступен для ). Алгернон — это достаточно простой робот и его вполне можно запрограммировать в процедурном стиле. В то же время, даже для такого простого робота, подход, основанный на поглощении поведений, делает код намного чище, легче для понимания, а также способствует лучшей организации модулей.

Мы сделаем еще одно допущение в целях упрощения примера: будем считать, что все стены пересекаются под прямыми углами. Другими словами, все повороты налево и направо осуществляются исключительно на 90 градусов.

Леворукий алгоритм следования вдоль стены можно декомпозировать на четыре различных поведения:

  • Идти прямо.
  • Упершись в стену, повернуть направо.
  • Встретив ответвление влево, повернуть.
  • Остановиться при нахождении выхода.

Поведениям необходимо присвоить приоритеты. В данном примере, мы их выберем в том же порядке, в каком они перечислены выше. В итоге нам понадобятся четыре класса-наследника Behavior:

  • GoStraight
  • TurnRight
  • TurnLeft
  • ReachGoal

В листинге 7 показан код класса GoStraight , в котором TRANSLATIONAL_VELOCITY – это константа, равная 0.4:

Листинг 7. Реализация поведения для движения по прямой
public boolean isActive() { return true; } public Velocities act() { double rotationalVelocity = 0.0; return new Velocities(TRANSLATIONAL_VELOCITY, rotationalVelocity); }

Код класса TurnRight показан в листинге 8. Метод getRotationCount() возвращает количество временных интервалов, необходимых для поворота на 90 градусов при данной скорости вращения.

Листинг 8. Реализация поведения для поворота направоBehavior code for turning right
public boolean isActive() { if (turningRightCount > 0) { return true; } RangeSensorBelt bumpers = getSensors().getBumpers(); // Проверка переднего бампера. if (bumpers.hasHit(0)) { backingUpCount = 10; turningRightCount = getRotationCount(); return true; } else { return false; } } public Velocities act() { if (backingUpCount > 0) { // Робот уперся в стену. Надо чуть отойти назад перед поворотом backingUpCount--; return new Velocities(-TRANSLATIONAL_VELOCITY, 0.0); } else { turningRightCount--; return new Velocities(0.0, -Math.PI / 2); } }

Для поворота налево, Алгернон должен сначала чуть продвинуться вперед так, что стена слева от него закончится. Затем он поворачивается налево и проходит еще немного вперед так что, по его левую сторону опять находится стена. Код показан в листинге 9.

Листинг 9. Реализация поведения для поворота налево
public boolean isActive() { if (postGoingForwardCount > 0) { return true; } RangeSensorBelt sonars = getSensors().getSonars(); // Проверка эхолокатора слева if (sonars.getMeasurement(1) > 1.0) { // Слева коридор preGoingForwardCount = 20; postGoingForwardCount = 40; turnLeftCount = getRotationCount(); return true; } else { return false; } } public Velocities act() { if (preGoingForwardCount > 0) { preGoingForwardCount--; return new Velocities(TRANSLATIONAL_VELOCITY, 0.0); } else if (turnLeftCount > 0) { turnLeftCount--; return new Velocities(0.0, Math.PI / 2); } else { postGoingForwardCount--; return new Velocities(TRANSLATIONAL_VELOCITY, 0.0); } }

Код класса ReachGoal показан в листинге 10.

Листинг 10. Поведение при обнаружении выхода из лабиринта
public boolean isActive() { RangeSensorBelt sonars = getSensors().getSonars(); // Впереди открытое пространство? Другими словами, нашли ли мы выход из лабиринта? double clearDistance = 1.2; return sonars.getMeasurement(0) > clearDistance && sonars.getMeasurement(1) > clearDistance && sonars.getMeasurement(3) > clearDistance && sonars.getMeasurement(2) > clearDistance; } public Velocities act() { // Остановка return new Velocities(0.0, 0.0); }

Главный метод, определяющий поведение Алгернона приведен в листинге 11.

Листинг 11. Код управления поведениями Алгернона
private void initBehaviorBasedAgent(algernon.subsumption.BehaviorBasedAgent behaviorBasedAgent) { algernon.subsumption.Sensors sensors = behaviorBasedAgent.getSensors(); algernon.subsumption.Behavior behaviors = { new ReachGoal(sensors), new TurnLeft(sensors), new TurnRight(sensors), new GoStraightAlways(sensors) }; boolean subsumes = { { false, true, true, true }, { false, false, true, true }, { false, false, false, true }, { false, false, false, false } }; behaviorBasedAgent.initBehaviors(behaviors, subsumes); }

На рисунке 1 показано, как Алгернон движется по лабиринту.

Рисунок 1. Алгернон, двигающийся по лабиринту

Заметим, что робот успешно решает задачу выхода, несмотря на то, что ни один из его компонентов ничего не знает не только о лабиринтах, но даже о стенах. Не существует никакого центрального узла, выступающего в роли мозга, просчитывающего путь выхода. В этом и заключается суть архитектуры поглощения: сложное поведение, будто бы специально спроектированное для решения конкретной задачи, вырисовывается при взаимодействии простых, наслоенных друг на друга поведений.

Заключение

В данной статье рассматривалось создание простого программного робота. Программирование реального, физически существующего робота представляет собой значительно более сложную задачу, в основном из-за того, что приходится учитывать все аспекты влияния окружающего мира. Например, в рассмотренном примере было достаточно просто заставить робота двигаться прямо вдоль стены. В реальном мире с его неровными поверхностями, весьма непросто реализовать движение робота таким образом, чтобы он не ударялся об стену и одновременно не удалялся от нее слишком далеко. Так что, даже если вы любите программировать, не факт, что программирование роботов доставит вам удовольствие, т.к. зачастую это требует больше механической, чем творческой работы.

Обратите внимание на инструментарий LEGO Mindstorms, если вы заинтересовались проектированием и программированием роботов. В качестве альтернативы, можно поработать с роботами BEAM (Biological Electronic Aesthetics Mechanics). BEAM далее развивает идею поведенческой робототехники, вообще убирая программирование как таковое. Глобальное поведение робота определяется жестко заданными соединениями поведенческих узлов, работающих на рефлексах. Заплатив не более $30 вы сможете построить своего первого BEAM-робота. Также можно спроектировать робота по чертежам, которые вы найдете в книге Гарета Бранвина (Gareth Branwyn) “Создание роботов для абсолютных новичков” (см. ). Ну и, наконец, всегда можно купить Румбу и взломать его.

Один из поразительных выводов, к которому я пришел, начав заниматься программированием роботов, а также после поверхностного знакомства с кодом других разработчиков, - это то, что необязательно писать длинные программы, чтобы создать робота, обладающего весьма обширной функциональностью. При этом, правда, зачастую приходится долго шлифовать программу и экспериментировать с константами, чтобы робот делал именно то, что нужно. Используя же инструментарий LEGO Mindstorms, вы вполне сможете создать простого робота за вечер.

Робототехника – это своего рода захватывающая субкультура, включающая в себя книги, соревнования, видео и т.д. Вполне возможно, что даже недалеко от вас есть клуб или кружок любителей роботов.