Сайт о телевидении

Сайт о телевидении

» » Как подключить rgb светодиод к arduino nano. Подключение RGB ленты через Arduino для управления с телефона. Управление RGB светодиодами с помощью Arduino

Как подключить rgb светодиод к arduino nano. Подключение RGB ленты через Arduino для управления с телефона. Управление RGB светодиодами с помощью Arduino

В этой статье рассмотрены основы использования RGB (Red Green Blue (красный, зеленый, синий)) светодиода с Arduino.

Мы используем функцию analogWrite для управления цветом RGB светодиода.

На первый взгляд, RGB светодиоды выглядят так же, как и обычные светодиоды, но на самом деле у них внутри установлено три светодиода: один красный, один зеленый и да, один синий. Управляя яркостью каждого из них, вы можете управлять цветом светодиода.

То есть, мы будем регулировать яркость каждого светодиода и получать нужный цвет на выходе, как будто это палитра художника или словно вы настраиваете частоты на своем плеере. Для этого можно использовать переменные резисторы . Но в результате схема будет достаточно сложной. К счастью, Arduino предлагает нам функцию analogWrite. Если задействовать на плате контакты, отмеченные символом «~», мы можем регулировать напряжение, которое подается на соответствующий светодиод.

Необходимые узлы

Для того, чтобы реализовать наш небольшой проект, нам понадобятся:

1 RGB светодиод 10 мм

3 резистора на 270 Ω (красная, фиолетовая, коричневая полоски). Вы можете использовать резистор с сопротивлением до 1 кОм, но не забывайте, что с повышением сопротивления, светодиод начинает светить не так ярко.


Шесть цифр номера соответствуют трем парам номеров; первая пара – красная составляющая цвета, следующие две цифры – зеленая составляющая, а последняя пара – синяя составляющая. То есть, красному цвету соответствует выражение #FF0000, так как это будет максимальная яркость красного светодиода (FF - это 255 в шестнадцатеричной системе), а красная и синяя компоненты равны 0.

Попробуйте зажечь светодиод, используя, например, оттенок индиго: #4B0082.

Красная, зеленая и синяя компоненты цвета индиго – это 4B, 00 и 82 соответственно. Мы можем использовать их в пределах функции "setColor" с помощью следующей строки кода:

setColor(0x4B, 0x0, 0x82); // индиго

Для трех компонент мы используем запись, в которой перед каждой из них ставится символ "0x" в начале.

Когда будете играться с разными оттенками RGB светодиода, не забывайте после использования каждого из них устанавливать задержку ‘delay’.

ШИМ и Arduino

Широтно импульсная модуляция (ШИМ (PWM на английском)) – это один из методов управления питанием. В нашем случае ШИМ используется для управления яркостью каждого отдельного светодиода.

На рисунке ниже схематично изображен сигнал с одного из ШИМ пинов Arduino.


Каждую 1/500 секунды ШИМ выход генерирует импульс. Длина этого импульса контролируется функцией "analogWrite". То есть, "analogWrite(0)" не будет генерировать никакого импульса, а "analogWrite(255)" сгенерирует сигнал, который будет длится до самого начала следующего. То есть, будет создаваться впечатление, что подается один непрерывный импульс.

Когда в пределах функции analogWrite мы указываем значение в диапазоне от 0 до 255, мы генерируем импульс определенной длительности. Если длина импульса составляет 5%, мы подадим на указанный выход Arduino 5% от максимально доступного питания и создается впечатление, что светодиод горит не на максимальную яркость.

Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!

Во многих приложениях, как любительских, так и профессиональных, иногда бывает необходимым генерировать цвета различных оттенков. Использование отдельных одноцветных светодиодов в таких случаях неоправданно конструктивно и экономически. Поэтому для таких целей были разработаны RGB-светодиоды.



RGB-светодиод (аббревиатура означает RED, GREEN, BLUE) является сочетанием кристаллов, способных генерировать красный, зеленый и синий цвета. Благодаря такому сочетанию данные светодиоды могут воспроизводить 16 миллионов оттенков света. Управлять RGB-светодиодами несложно, и они без проблем могут использоваться в проектах с Arduino. В данном материале будет показан пример управления RGB-светодиодом с помощью Arduino.


Поскольку RGB-светодиод, как было отмечено выше, является сочетанием кристаллов трех разных базовых цветов, то схемотехнически он изображается как три светодиода. Конструктивно такой светодиод имеет один общий вывод и три вывода для каждого цвета. Ниже показана схема подключения RGB-светодиода к Arduino. Также на схеме имеется буквенно-числовой ЖК-дисплей 16×2, потенциометры и последовательно соединенные с линиями RGB-светодиода резисторы. Эти резисторы (R1 = 100 Ом, R2 = 270 Ом, R3 = 330 Ом) ограничивают ток светодиодов, чтобы они не вышли из строя. Переменные резисторы (потенциометры) VR1-VR3 сопротивлением 10 КОм используются для управления интенсивностью свечения RGB-светодиода, то есть с помощью них можно задавать цвет светодиода, меняя интенсивность красного, зеленого и синего кристаллов. Потенциометр VR1 соединен с аналоговым входом A0, VR2 с аналоговым входом A1, а VR3 с аналоговым входом A2.



ЖК-дисплей в данном случае используется для отображения значения цвета и шестнадцатеричного значения цветового кода. Значение цветового кода отображается в 1-й строке ЖК-дисплея (в виде Rxxx Gxxx Bxxx, где xxx представляет собой числовое значение), а шестнадцатеричный код отображается во 2-й строке ЖК-дисплея (в виде HEXxxxxxx). Резистор R4 сопротивлением 100 Ом применяется для ограничения тока, прикладываемого к подсветке ЖК-дисплея, а для регулировки контрастности ЖК-дисплея используется переменный резистор VR4 сопротивлением 10 КОм.


Ниже приведен код (скетч), позволяющий управлять изменением цвета RGB-светодиода с помощью платы Arduino и подключенными к ней потенциометрами.


#include // библиотека для ЖК-дисплея LiquidCrystal lcd(7, 6, 5, 4, 3, 2); // линии Arduino для подключения ЖК-дисплея int Radj; int Gadj; int Badj; int Rval=0; int Gval=0; int Bval=0; int R = 9; int G = 10; int B = 11; void setup() { pinMode(R, OUTPUT); // Линия 9 направлена на выход pinMode(G, OUTPUT); // Линия 10 направлена на выход pinMode(B, OUTPUT); // Линия 11 направлена на выход lcd.begin(16,2); // Инициализация дисплея delay(1); lcd.setCursor(0,0); lcd.print("RGB COLOUR"); lcd.setCursor(4,1); lcd.print("GENERATOR"); delay(2000); lcd.setCursor(0, 0); lcd.print(" R G B "); lcd.setCursor(3,1); lcd.print("HEX= "); } void loop() { Radj = analogRead(0); Gadj = analogRead(1); Badj = analogRead(2); Rval=Radj/4; // Convert the range from (0-1023) to (0-255) Gval=Gadj/4; // Convert the range from (0-1023) to (0-255) Bval=Badj/4; // Convert the range from (0-1023) to (0-255) lcd.setCursor(2,0); if (Rval<10) { lcd.setCursor(2,0); lcd.print("00"); lcd.print(Rval); } else if(Rval<100) { lcd.setCursor(2,0); lcd.print("0"); lcd.print(Rval); } else { lcd.setCursor(2,0); lcd.print(Rval); } lcd.setCursor(8,1); if (Rval<16) { lcd.print("0"); lcd.print(Rval, 16); } else { lcd.print(Rval, 16); } lcd.setCursor(7,0); if (Gval<10) { lcd.setCursor(7,0); lcd.print("00"); lcd.print(Gval); } else if(Gval<100) { lcd.setCursor(7,0); lcd.print("0"); lcd.print(Gval); } else { lcd.setCursor(7,0); lcd.print(Gval); } lcd.setCursor(10,1); if (Gval<16) { lcd.print("0"); lcd.print(Gval, 16); } else { lcd.print(Gval, 16); } lcd.setCursor(12,0); if (Bval<10) { lcd.setCursor(12,0); lcd.print("00"); lcd.print(Bval); } else if(Bval<100) { lcd.setCursor(12,0); lcd.print("0"); lcd.print(Bval); } else { lcd.setCursor(12,0); lcd.print(Bval); } lcd.setCursor(12,1); if (Bval<16) { lcd.print("0"); lcd.print(Bval, 16); } else { lcd.print(Bval, 16); } analogWrite(R, Rval); // ШИМ-выход для красного цвета analogWrite(G, Gval); // ШИМ-выход для зеленого цвета analogWrite(B, Bval); // ШИМ-выход для синего цвета }
  • 3 резистора по 220 Ом (вот отличный набор резисторов самых распространённых номиналов);
  • соединительные провода (рекомендую вот такой набор);
  • макетная плата (breadboard);
  • персональный компьютер со средой разработки Arduino IDE.
  • 1 Отличие RGB светодиодов с общим анодом и с общим катодом

    RGB светодиоды бывают двух типов: с общим анодом («плюсом») и общим катодом («минусом») . На рисунке приведены принципиальные схемы эти двух типов светодиодов. Длинная ножка светодиода - это всегда общий вывод питания. Отдельно расположен вывод красного светодиода (R ), зелёный (G ) и синий (B ) располагаются по другую сторону от общего вывода, как показано на рисунке. В данной статье мы рассмотрим подключение RGB светодиода как с общим анодом, так и с общим катодом.

    2 Подключение RGB светодиода с общим анодом к Arduino

    Схема подключения RGB светодиода с общим анодом показана на рисунке. Анод подключаем к "+5 В" на плате Arduino, три другие вывода - к произвольным цифровым пинам.


    Обратите внимание, что мы подключаем каждый из светодиодов через свой резистор, а не используем один общий. Желательно делать именно так, потому что каждый из светодиодов имеет свой КПД. И если подключить их все через один резистор, светодиоды будут светиться с разной яркостью.

    Для быстрого расчёта номинала резистора, подходящего к выбранному вами светодиоду, можно воспользоваться онлайн-калькулятором расчёта светодиодов .

    3 Управление RGB светодиодами с помощью Arduino

    Перепишем классический скетч blink . Будем включать и отключать по очереди каждый из трёх цветов. Обратите внимание, что светодиод загорается, когда мы подаём низкий уровень (LOW) на соответствующий вывод Arduino.

    // задаём номера выводов: const int pinR = 12; const int pinG = 10; const int pinB = 9; void setup() { // задаём назначение выводов: pinMode(pinR, OUTPUT); pinMode(pinG, OUTPUT); pinMode(pinB, OUTPUT); } void loop() { digitalWrite(pinR, LOW); //зажигаем канал Red delay(100); digitalWrite(pinR, HIGH); //выключаем Red delay(200); digitalWrite(pinG, LOW); //зажигаем канал Green delay(100); digitalWrite(pinG, HIGH); //выключаем Green delay(200); digitalWrite(pinB, LOW); //зажигаем канал Blue delay(100); digitalWrite(pinB, HIGH); //выключаем Blue delay(200); }

    4 Собрать схему на макетной плате

    Посмотрим в действии на мигание RGB светодиодом. Светодиод по очереди зажигается красным, зелёным и синим цветами. Каждый цвет горит 0,1 секунду, а затем гаснет на 0,2 секунды, и включается следующий. Можно зажигать каждый канал отдельно, можно все одновременно, тогда цвет свечения будет меняться.


    RGB светодиод подключён к Arduino. Схема собрана на макетной плате

    5 к Arduino

    Если вы используете RGB светодиод с общим катодом , то подключите длинный вывод светодиода к GND платы Arduino, а каналы R, G и B - к цифровым портам Arduino. При этом нужно помнить, что светодиоды загораются при подаче на каналы R, G, B высокого уровня (HIGH), в отличие от светодиода с общим анодом.


    Схема подключения RGB светодиода с общим катодом к Arduino

    Если не менять вышеприведённый скетч, то каждый цвет светодиода в этом случае будет гореть 0,2 секунды, а пауза между ними составит 0,1 секунду.

    Если вы хотите управлять яркостью светодиода, то подключайте RGB светодиод к цифровым выводам Arduino, которые имеют функцию ШИМ (PWM). Такие выводы на плате Arduino обычно помечены знаком тильда (волнистая линия), звёздочкой или обведены кружочками.

    Многоцветные светодиоды, или как их еще называют RGB, используются для индикации и создания динамически изменяющейся по цвету подсветки. Фактически ничего особенного в них нет, давайте разберемся, как они работают и что такое RGB-светодиоды.

    Внутреннее устройство

    На самом деле RGB-светодиод - это три одноцветных кристалла совмещенные в одном корпусе. Название RGB расшифровывается, как Red - красный, Green - зеленый, Blue - синий соответственно цветам, которые излучает каждый из кристаллов.

    Эти три цвета являются базовыми, и на их смешении формируется любой цвет, такая технология давно применяется в телевидении и фотографии. На картинке, что расположена выше, видно свечение каждого кристалла по отдельности.

    На этой картинке вы видите принцип смешивания цветов, для получения всех оттенков.

    Кристаллы в RGB-светодиоды могут быть соединены по схеме:

    С общим анодом;

    С общим катодом;

    Не соединены.

    В первых двух вариантах вы увидите, что у светодиода есть 4 вывода:

    Или 6-тью выводами в последнем случае:

    Вы можете видеть на фотографии под линзой четко видны три кристалла.

    Для таких светодиодов продаются специальные монтажные площадки, на них даже указывают назначение выводов.

    Нельзя оставить без внимания и RGBW - светодиоды, их отличие состоит в том, что в их корпусе есть еще один кристалл излучающий свет белого цвета.

    Естественно не обошлось и без лент с такими светодиодами.

    На этой картинке изображена лента с RGB-светодиодами , собранные по схеме с общим анодом, регулировка интенсивности свечения осуществляется путем управления «-» (минусом) источника питания.

    Для изменения цвета RGB-ленты используются специальные RGB-контроллеры - устройства для коммутации напряжения подаваемого на ленту.

    Вот цоколевка RGB SMD5050:

    И ленты, особенностей работы с RGB-лентами нет, всё остается также как и с одноцветными моделями.

    Для них есть и коннекторы для подсоединения светодиодной ленты без пайки.

    Вот распиновка 5-ти мм РГБ-светодиода:

    Как изменяется цвет свечения

    Регулировка цвета осуществляется путем регулировки яркости излучения каждым из кристаллов. Мы уже рассматривали .

    RGB-контроллер для ленты работает по такому же принципу, в нём стоит микропроцессор, который управляет минусовым выводом источника питания - подключает и отключает его от цепи соответствующего цвета. Обычно в комплекте с контроллером идёт пульт дистанционного управления. Контроллеры бывают разной мощности, от этого зависит их размер, начиная от такого миниатюрного.

    Да такого мощного устройства в корпусе размером с блок питания.

    Они подключаются к ленте по такой схеме:

    Так как сечение дорожек на ленте не позволяет подключать последовательно с ней следующий отрезок ленты, если длина первого превышает 5м, нужно подключать второй отрезок проводами напрямую от РГБ-контроллера.

    Но можно выйти из положения, и не тянуть дополнительных 4 провода на 5 метров от контроллера и использовать RGB-усилитель. Для его работы нужно протянуть всего 2 провода (плюс и минус 12В) или запитать еще один блок питания от ближайшего источника 220В, а также 4 «информационных» провода от предыдущего отрезка (R, G и B) они нужны для получения команд от контроллера, чтобы вся конструкция светилась одинаково.

    А к усилителю уже подключают следующий отрезок, т.е. он использует сигнал с предыдущего куска ленты. То есть вы можете запитать ленту от усилителя, который будет расположен непосредственно возле неё, тем самым сэкономив деньги и время на прокладку проводов от первичного RGB-контроллера.

    Регулируем RGB-led своими руками

    Итак, есть два варианта для управления RGB-светодиодами:

    Вот вариант схемы без использования ардуин и других микроконтроллеров, с помощью трёх драйверов CAT4101, способных выдавать ток до 1А.

    Однако сейчас достаточно дешево стоят контроллеры и если нужно регулировать светодиодную ленту - то лучше приобрести готовый вариант. Схемы с ардуино гораздо проще, тем более вы можете написать скетч, с которым вы будете либо вручную задавать цвет, либо перебор цветов будет автоматическим в соответствии с заданным алгоритмом.

    Заключение

    RGB-светодиоды позволяют сделать интересные световые эффекты используются в дизайне интерьеров, как подсветка для бытовой техники, для эффекта расширения экрана телевизора. Особых отличий при работе с ними от обычных светодиодов - нет.

    Трехцветный светодиод может переливаться всеми цветами радуги! Согласитесь, это намного интереснее, чем просто мигать обычным светодиодом
    Начнем третий урок знакомства с Arduino.

    Подключение оборудования:
    На самом деле, трехцветный светодиод, это три светодиода (красный, зеленый и синий) в одном корпусе. Когда мы запускаем его с разной степенью яркости и интенсивности красного, зеленого и синего, мы получаем на выходе новые цвета.

    На кромке светодиода есть небольшой скос, это ключ, он указывает на ножку красного светодиода, дальше идет общая, дальше зеленый и синий.

    Подключите ногу КРАСНОГО светодиода к резистору 330 Ом. Подключите другой конец резистора в порт Arduino pin9.

    Подключите Общий вывод к земле GND .

    Подключите ногу ЗЕЛЕНОГО к резистору 330 Ом.

    Подключите другой конец резистора в порт Arduino pin10.

    Подключите ногу СИНЕГО к резистору 330 Ом.

    Подключите другой конец резистора в порт Arduino pin11.

    Следующий рисунок показывает внешний вид макетной платы с собранной схемой, и плату Arduino с проводами идущими от макетной платы.

    Набор для экспериментов ArduinoKit
    Код программы для опыта №3:

    Остается загрузить программу в Arduino через USB шнур. Скачать скетч с третьим уроком LED RGB — выше в статье.