Сайт о телевидении

Сайт о телевидении

» » Изобразить линии уровня функции z xy. Функции нескольких переменных область определения линии уровня

Изобразить линии уровня функции z xy. Функции нескольких переменных область определения линии уровня

Инструкция

При построении линий уровня исходите из того, что они являются проекциями на плоскость с нулевой аппликатой линий пересечения графика заданной функции с некоторой горизонтальной плоскостью. Аппликата этой плоскости сечения и является константой, к которой нужно приравнять уравнение функции, чтобы получить координаты точек линии. Она может меняется с заданным в условиях задачи шагом, если построить требуется набор линий. А если построить нужно всего одну линию уровней, в условиях могут быть даны координаты точки лежащей на ней. Графики с этой страницы можно сохранить или отредактировать в интерактивном режиме.

Приведите заданную в условиях задачи функцию к виду f(x,y) = const. Например, если дана z = x² + y² - 4*y, ее можно записать в альтернативной форме, чтобы лучше представить форму графика функции, и приравнять к константе c: c+4 = x²+(y-2)². Объемный график такой функции представляет собой бесконечный , а все его сечения горизонтальной плоскостью, поднятой на разные , (т.е. искомые линии уровней) будут концентрическими кругами с радиусом, определяемым по формуле √(c+4).

Подставьте вместо константы c заданное в условиях значение для линии уровня. Если оно не дано - выберите сами, исходя из области значений функции. Например, для приведенного выше примера минимальным значением константы может быть число -4. Константу можно приравнять к 5 и в этом случае графиком функции будет круг с радиусом √(5+4) = 3 и центром в точке с абсциссой, равной 0 и ординатой, равной 2.

Если нужно построить несколько линий уровней, повторите предыдущий шаг нужное число раз.

В интернете можно найти сервисы, которые помогут с построением линий уровней. Например, ниже приведена ссылка на сервис WolframAlpha. В поле ввода на его странице введите формулу функции и щелкните по кнопке со значком равенства. Использованную в примере функцию z = x² + y² - 4*y надо вводить в таком виде: x^2+y^2-4*y. Через несколько секунд на странице появятся двух- и трехмерные цветные графики с линиями уровней, а также фигуры, описываемой формулой, альтернативные формы ее записи и другие функции, которые можно использовать при построении линий уровней.

Источники:

  • Сервис WolframAlpha

Не каждому хочется быть семейным деспотом, но даже самые робкие и самодостаточные люди нуждаются в том, чтобы к их мнению хотя бы прислушивались. Как правильно выстроить линии влияния ? Влиять можно только на того, кто в чем-либо нуждается, поэтому рассмотрим, как использовать потребности партнера для получения от него желаемого, используя пирамиду Маслоу.

Инструкция

В основе сферы потребностей человека лежат потребности , это в первую очередь жажда, голод и половое влечение. Партнеров дрессируют как собаку Павлова при использовании всех методов, но этот метод наименее тонкий. Так, некоторые жены в молодости лишают мужа близких отношений за малейшую провинность, то же делают мужья в более по отношению к , которые не угодили. Однако гораздо эффективнее использовать этот метод положительно, то есть в ответ на уступки дарить любимому пьянящую, феерическую близость.

Выше в иерархии стоит потребность в безопасности. Каждый человек хочет жить комфортно, со стабильным укладом жизни, ничего не опасаясь. Когда обиженная жена вдруг отказывается готовить для мужа, она неосознанно ломает его бытовые привычки, причиняя боль. Это не всегда разумная политика, в негативных ситуациях лучше вести себя нейтрально, а малейшие позитивные изменения вознаграждать любимым блюдом мужа или тем, с которым у вас связаны романтические ассоциации.

Следующие два уровня рассмотрим вместе, потому что они близки по смыслу – это потребности в уважении и любви. Оскорбления больно ранят, а известный вопрос «Ты меня ?» с последующими попытками манипулировать изрядно портят кровь и мужчинам, и женщинам. А ведь на этом уровне многие люди очень зависимы и уязвимы. Поощрение правильного поведения достигается путем искренних похвал, особенно при посторонних, нежных прикосновений и влюбленных взглядов.

Венчает пирамиду потребность в самореализации. Неправильное поведение здесь – высмеивание вкусов, духовных нужд и стремлений любимого. После каждого нужного Вам решения не скупитесь на знаки внимания к творчеству партнера. Это может проявляться в мелочах, например,вы смеетесь над его удачными шутками и пересказываете их другим людям со ссылкой на автора. Также хорошо создавать любимому человеку условия для творчества в той сфере, где он действительно талантлив.

Конечно, можно добиваться поставленных задач путем лишения партнера необходимого. Но по-настоящему укрепить и обогатить отношения можно только стараясь удовлетворить потребности близкого человека по высшему классу. Беззаветная и неэгоистичная любовь поможет Вам угадать, в отдельно взятой ситуации.

Видео по теме

Обратите внимание

Пользуясь свойством линейности задачи, соединяем эти точки так называемой переходной прямой. Линия влияния, составленная из двух построенных ветвей графика S3−4 (x) и переходной прямой образуют линию влияния усилия S3−4 , означающую зависимость этого усилия от места положения единичной нагрузки (рис. 97). Строим линию влияния усилия в стойке 3-8 при движении единичного груза понизу.

Источники:

  • Кинематический метод построения линий влияния в балке в 2019

Мир, который нас всех окружает, имеет три измерения, а вот лист бумаги или холст, на котором мы пытаемся изобразить окружающую реальность, увы, всего-навсего двухмерный. Для того, чтобы изображаемые нами объекты казались максимально объёмными и реалистичными, нужно соблюдать определенные правила и верно выстраивать перспективу .

Вам понадобится

  • лист бумаги, карандаш, линейка

Инструкция

Далее определяем, где относительно линии горизонта будет располагаться предмет. Если он находится на уровне глаз (то есть на линии горизонта), то мы смотрим на предмет прямо. Если предмет выше линии горизонта, мы смотрим на него снизу, соответственно, в этом случае становится видно нижнюю часть . Если же предмет поместить ниже линии горизонта, то видимой окажется верхняя часть. Строим предмет, проверяем при помощи линейки, чтобы все параллельные линии сходились в одной точке.

Видео по теме

Обратите внимание

Также при построении преспективы нужно помнить не только о том, что все параллельные прямые сходятся в одной точке, но и о том, что по мере удаления все изображаемые предметы уменьшаются. Сильно удаленные предметы и вовсе превращаются в точки.

В последнее время кровельные материалы с прозрачным покрытием все чаще используются при строительстве гаражей. Преимущество прозрачной крыши состоит в том, что она пропускает большое количество дневного света, а уровень освещения позволяет работать без дополнительного искусственного освещения.

Вам понадобится

  • - рулетка;
  • - фломастер;
  • - дрель;
  • - шурупы;
  • - шуруповерт;
  • - прозрачный пластик;
  • - уплотнительные кольца;
  • - герметик;
  • - профилированный пенопласт.

Инструкция

Замерьте крыши с помощью рулетки. Разметьте кровельное покрытие так, чтобы его листы ложились внахлест. Ширина нахлеста – полтора сантиметра. Отметьте линию среза цветным фломастером. Учтите, что торец должен примыкать к кромке под углом 90 градусов.

Просверлите в листах пластика отверстия под шурупы. Диаметр отверстия должен быть больше диаметра метизов на 4 мм. Закрепите на с помощью шурупов. Крепления должны находиться на каждом втором гребне рельефного листа. Пластик – достаточно хрупкий материал, поэтому в процессе его крепления ограничьте механическое воздействие. Рекомендуется использовать – шуруповерт.

При монтаже кровельного покрытия необходимо установить уплотнительные кольца и пластмассовые колпачки между и стенами. В качестве дополнительного уплотнителя можно использовать профилированный , который крепится с помощью шурупов в сквозных отверстиях.

Видео по теме

Обратите внимание

Крыша гаража будет смотреться правильно и красиво лишь в том случае, если стропильные рамы имеют одинаковую форму и правильно выставлены. Поэтому при производстве подготовительных и кровельных работ следует использовать шаблоны. В качестве такого шаблона используется первая сборная рама.

Полезный совет

Чтобы в процессе резки прозрачное покрытие не смещалось, его нужно зажать инструментом, используя деревянные дощечки в качестве прокладок. Пластиковое кровельное покрытие лучше резать пилой с мелкими зубьями. Инструмент нужно слегка наклонить и работать им без нажима. В противном случае ножовочное полотно заклинит.

Источники:

С наступлением лета хочется изменить свой гардероб, добавить в него новые краски и фасоны. Не обязательно для этого идти в магазин - некоторые модели одежды можно сшить самостоятельно. Одним из самых простых в изготовлении предметов одежды по праву считается сарафан. Достаточно выбрать хорошую легкую ткань, сделать выкройку и сшить все детали вместе.

Вам понадобится

  • - бумага;
  • - карандаш;
  • - сантиметровая лента;
  • - линейка;
  • - ножницы.

Инструкция

Возьмите сантиметровую ленту и измерьте следующие расстояния: ДСП – длина спины до талии, ДСБ – длина спины до бедер, ПГ – расстояние от плеча до верхней точки груди, ОТ – объем талии, ОБ – объем бедер, ОГ – объем груди, ВТ – расстояние между верхними точками груди, ДИ – длина изделия (от плеча до подола).

Возьмите большой лист бумаги (лучше специальной бумаги для выкроек с миллиметровой разметкой) и начертите прямоугольник, длина которого равна ДИ, а ширина равна четверти ОГ. Если ваш объем бедер больше, чем объем груди, ширина прямоугольника должна быть равна четверти ОБ. Это будет половинка переда. Cразу отметьте одну из вертикальных сторон как середину.

Найдите линию талии, груди и бедер. Для этого от верхней границы прямоугольника отмерьте расстояния, равные ПГ, ДСТ, и ДСБ и проведите на этом уровне горизонтальные линии.

Найдите верхнюю точку груди. Для этого по линии груди от середины переда отмерьте половину ВТ. Проведите от этой точки вертикальную черту через весь прямоугольник.

В месте пересечения этой черты с линией талии сделайте вытачку, для этого вправо и влево от точки пересечения отложите по 2 – 4 см. Соедините эти две точки с верхней точкой груди и с линией бедер. У вас должен получиться длинный вертикальный ромб. Вторую вытачку сделайте вдоль бокового шва (получится половина ромба).

Оформите верхнюю часть сарафана по своему желанию в виде буквы «Л». Можете сделать круглый, треугольный или прямой вырез. Пройму сделайте низкую или высокую, в зависимости от вашей фигуры. На вершине буквы «Л» (на пересечении проймы и выреза) закрепите бретели.

Таким же образом постройте выкройку спинки. Отличие спинки от переда в том, что верхняя часть будет просто горизонтально срезана, по высоте пересечения линии проймы с боковой линией.

Вырежьте детали выкройки сарафана и приступайте к шитью.

Подмостки – это площадки возле береговой линии, как будто парящие над водой.

Обычно они деревянные и представляют собой продолжение садовой тропинки. На подмостки можно поставить деревянную беседку или скамейку, сидя на которой приятно ловить рыбу или просто любоваться прудом. А если в водоеме можно купаться, то более удобного места для ныряний не найти.

Проектирование и установка подмостков – интересная и творческая задача:

1. Сначала устанавливаются сваи, их можно сделать из металлической трубы (100х100 мм),

2. Затем к ним крепится деревянная или металлическая рама, к которой уже крепятся доски настила. Между ними для вентиляции древесины оставляются зазоры.

3. На берегу через каждые три метра, сооружаются фундаментные столбы, на которые опирается настил. Они должны возвышаться над водой на 20-30 см., учитывая то, что в периоды дождей уровень воды повышается. По мнению специалистов, подмостки делаются не больше 25% от зеркала воды.

Чтобы

нескольких функций

скачать график

Построение графика функции онлайн

моментально .

Онлайн сервис моментально рисует график

Поддерживаются абсолютно все математические функции

Тригонометрические функции

Косеканс

Котангенс

Арксинус

Арккосинус

Арктангенс

Арксеканс

Арккосеканс

Арккотангенс

Гиперболические функции

Прочее

Натуральный логарифм

Логарифм

Квадратный корень

Округление в меньшую сторону

Округление в большую сторону

Минимум

Максимум

min(выражение1,выражение2,…)

max(выражение1,выражение2,…)

Построить график функции

Построение поверхности 3D

Введите уравнение

Построим поверхность, заданную уравнением f(x, y, z) = 0, где a < x < b, c < y < d, m < z < n.

Другие примеры:

  • y = x^2
  • z = x^2 + y^2
  • 0.3 * z^2 + x^2 + y^2 = 1
  • z = sin((x^2 + y^2)^(1/2))
  • x^4+y^4+z^4-5.0*(x^2+y^2+z^2)+11.8=0

Канонический вид кривой и поверхности

Вы можете определить вид кривой и поверхности 2-го порядка онлайн с подробным решением:

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке):

absolute(x) Абсолютное значение x
(модуль x или |x| ) arccos(x) Функция — арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция — арктангенс от x arctgh(x) Арктангенс гиперболический от x e e число, которое примерно равно 2.7 exp(x) Функция — экспонента от x (что и e ^x ) log(x) or ln(x) Натуральный логарифм от x
(Чтобы получить log7(x) , надо ввести log(x)/log(7) (или, например для log10(x) =log(x)/log(10)) pi Число — "Пи", которое примерно равно 3.14 sin(x) Функция — Синус от x cos(x) Функция — Косинус от x sinh(x) Функция — Синус гиперболический от x cosh(x) Функция — Косинус гиперболический от x sqrt(x) Функция — квадратный корень из x sqr(x) или x^2 Функция — Квадрат x tg(x) Функция — Тангенс от x tgh(x) Функция — Тангенс гиперболический от x cbrt(x) Функция — кубический корень из x floor(x) Функция — округление x в меньшую сторону (пример floor(4.5)==4.0) sign(x) Функция — Знак x erf(x) Функция ошибок (Лапласа или интеграл вероятности)

В выражениях можно применять следующие операции:

Действительные числа вводить в виде 7.5 , не 7,5 2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание

Как построить график функции онлайн на этом сайте?

Чтобы построить график функции онлайн , нужно просто ввести свою функцию в специальное поле и кликнуть куда-нибудь вне его. После этого график введенной функции нарисуется автоматически. Допустим, вам требуется построить классический график функции «икс в квадрате». Соответственно, нужно ввести в поле «x^2».

Если вам нужно построить график нескольких функций одновременно, то нажмите на синюю кнопку «Добавить еще». После этого откроется еще одно поле, в которое надо будет вписать вторую функцию. Ее график также будет построен автоматически.

Цвет линий графика вы можете настроить с помощью нажатия на квадратик, расположенный справа от поля ввода функции. Остальные настройки находятся прямо над областью графика. С их помощью вы можете установить цвет фона, наличие и цвет сетки, наличие и цвет осей, наличие рисок, а также наличие и цвет нумерации отрезков графика. Если необходимо, вы можете масштабировать график функции с помощью колесика мыши или специальных иконок в правом нижнем углу области рисунка.

После построения графика и внесения необходимых изменений в настройки, вы можете скачать график с помощью большой зеленой кнопки «Скачать» в самом низу. Вам будет предложено сохранить график функции в виде картинки формата PNG.

Зачем нужно строить график функции?

На этой странице вы можете построить интерактивный график функции онлайн .

Построить график функции онлайн

Построение графика функции позволяет увидеть геометрический образ той или иной математической функции. Для того чтобы вам было удобнее строить такой график, мы создали специальное онлайн приложение. Оно абсолютно бесплатно, не требует регистрации и доступно для использования прямо в браузере без каких-либо дополнительных настроек и манипуляций. Строить графики для разнообразных функций чаще всего требуется школьникам средних и старших классов, изучающим алгебру и геометрию, а также студентам первых и вторых курсов в рамках прохождения курсов высшей математики. Как правило, данный процесс занимает много времени и требует кучу канцелярских принадлежностей, чтобы начертить оси графика на бумаге, проставить точки координат, объединить их ровной линией и т.д. С помощью данного онлайн сервиса вы сможете рассчитать и создать графическое изображение функции моментально .

Как работает графический калькулятор для графиков функций?

Онлайн сервис работает очень просто. В поле на самом верху вписывается функция (т.е. само уравнение, график которого необходимо построить). Сразу после ввода приложение моментально рисует график в области под этим полем. Все происходит без обновления страницы. Далее, можно внести различные цветовые настройки, а также скрыть/показать некоторые элементы графика функции. После этого, готовый график можно скачать, нажав на соответствующую кнопку в самом низу приложения. На ваш компьютер будет загружен рисунок в формате.png, который вы сможете распечатать или перенести в бумажную тетрадь.

Какие функции поддерживает построитель графиков?

Поддерживаются абсолютно все математические функции , которые могут пригодиться при построении графиков. Тут важно подчеркнуть, что в отличии от классического языка математики принятого в школах и ВУЗах, знак степени в рамках приложения обозначается международным знаком «^». Это обусловлено отсутствием на клавиатуре компьютера возможности прописать степень в привычном формате. Далее приведена таблица с полным списком поддерживаемых функций.

Приложением поддерживаются следующие функции:

Тригонометрические функции

Косеканс

Котангенс

Арксинус

Арккосинус

Арктангенс

Арксеканс

Арккосеканс

Арккотангенс

Гиперболические функции

Прочее

Натуральный логарифм

Логарифм

Квадратный корень

Округление в меньшую сторону

Округление в большую сторону

Минимум

Максимум

min(выражение1,выражение2,…)

max(выражение1,выражение2,…)

Примеры. Построить линии уровня функций, соответствующие значениям

Построить линии уровня функций, соответствующие значениям .

Полагая , получим уравнения соответствующих линий уровня:

Построив эти линии в декартовой системе координат хОу, получим прямые, параллельные биссектрисе второго и четвертого координатных углов (рис.1)

Напишем уравнения линий уровня:

, , , и .

Построив их в плоскости хОу, получим концентрические окружности с центром в начале координат (рис.2)

Линии уровня этой функции , , , и представляют собой параболы, симметричные относительно Оу с общей вершиной в начале координат (рис. 3).

2. Производная по направлению

Важной характеристикой скалярного поля является скорость изменения поля в данном направлении.

Для характеристики скорости изменения поля в направлении вектора вводят понятие производной поля по направлению.

Рассмотрим функцию в точке и точке .

Проведем через точки и вектор . Углы наклона этого вектора к направлению координатных осей х, у, z обозначим соответственно a, b, g. Косинусы этих углов называются направляющими косинусами вектора .

проходит через одну точку на плоскости параллельно прямой, параллельной этой плоскости.

Пример построения прямой на плоскости (Рис. 3.12):

Рис. 3.12 Задача: построить на плоскости АВС прямую, заданную

фронтальной проекцией

3.4 Главные линии плоскости

Для решения многих задач начертательной геометрии используют линии частного положения – линии уровня .

Линии уровня , это линии на плоскости, параллельные ПП. Линия, параллельная горизонтальной ПП –горизонтал ь, Фронтальной –фронталь , Профильной ПП –профильная лин ия.

Так как линии уровня параллельны своим плоскостям проекций, на других ПП их проекции будут параллельны осям координат. Например, фронтальная проекция горизонтали параллельна оси х 12 .

Примеры построения линий уровня: ∙ Горизонталь h (Рис. 3.13);

h 11 1

Рис. 3.13 Горизонталь на плоскости

Если плоскость задана следами, линии уровня h иf будут параллельны следам на своих плоскостях проекции: горизонтали горизонтальным следам, фронтали фронтальным следам и т.д. (Рис. 3.14). По сути, след плоскости является линией уровня, бесконечно близкой плоскости проекции.

f 1≡ h 2

Рис. 3.14 Линии уровня плоскости, заданной следами

3.5 Точка на плоскости

Точка лежит на плоскости, если она принадлежит любой прямой на этой плоскости. Таким образом, для построения точи на плоскости необходимо сначала построить вспомогательную прямую на плоскости такую, чтобы она проходила через заданную проекцию искомой точки и, затем, найти точку на построенной вспомогательной линии вдоль линии связи.

Примеры построения точки на плоскости (Рис. 3.15):

D1 - ?

D1 - ?

Рис. 3.15 Точка на плоскости

Построение точки на плоскости, заданной следами.

Если плоскость задан следами, в качестве линий, принадлежащих плоскости, с помощью которых проверяется принадлежность точки плоскости, используются линии уровня, которые легко строить, проводя параллельно заданным следам (Рис. 3.16). При этом следует помнить, что проекция точки, принадлежащей следу плоскости, на другой плоскости проекций окажется на оси, разделяющей плоскости проекций (см. (.)1 ).

f 1≡ h 2

Рис. 3.16 Использование линий уровня для построения очки на плоскости, заданной следами

Тема 4 Взаимное положение геометрических фигур: прямая и плоскость, две плоскости.

Прямая и плоскость, а также две плоскости могут быть:

параллельны друг другу,

∙ пересекаться,

перпендикулярны друг другу.

4.1 Параллельные фигуры

4.1.1 Прямая, параллельная плоскости

Пример 1 (Рис. 4.1). Есть плоскость Σ(a Ç b).

Задана (.)A и фронтальная проекцияl 2 прямой. Провести через(.)A прямую, параллельную плоскостиΣ

A 2l 2

Рис. 4.1 Построение прямой, параллельной плоскости

Пример 2. Через (.)А провести горизонталь, параллельную плоскости

Σ(ABC) (Рис. 4.2).

Рис. 4.2 Горизонталь, параллельная плоскости

4.1.2 Взаимно параллельные плоскости

Две плоскости взаимно параллельны, если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости (Рис. 4.3).

a // d

ý Þ a // d

a 2// d 2þ

b // c

Þ b// c

b 2// c 2þ

пл .Q (a Ç b ) //пл .D (с //в )

Рис. 4.3 Взаимно параллельные плоскости

В качестве пересекающихся линий могут быть выбраны линии

частного положения. Отсюда:

Если одноименные следы двух плоскостей параллельны. То

параллельны сами плоскости.

пл .S (f Ç h ) //пл .T (f "Ç h ")

h ′

Рис. 4.4 Параллельные плоскости,

заданные следами

Пример 4.3: Через (.)А провести плоскостьΘ параллельно плоскости

Γ , заданной двумя параллельными прямыми (Рис. 4.5).

Рис. 4.5 Параллельные плоскости

Техника построения:

1. На плоскости Г, используя прямуюа выбирается произвольная вспомогательная точка1 .

2. Через (.) 1 проводятся две произвольные прямыеl иk так, чтобы они пересекли другую прямую, задающую плоскость – линиюb .

3. Через заданную точку А проводят две прямыеm иn , параллельные соответственно вспомогательным прямымl иk . Эти две

пересекающиеся прямые l иk зададут искомую плоскостьQ , параллельную заданной плоскостиГ .

Пример 4.4: Через (.)А провести

плоскость

параллельно

фронтально-проектирующей плоскостиΣ (m ||n ) (Рис. 4.6).

≡ l 2

Рис. 4.6 Параллельные плоскости

Техника построения:

1. На фронтальной ПП через фронтальную проекцию А 2 заданной точкиА проводится прямаяА 2 С 2 ||m 2 ≡ n 2 . Эта прямая будет фронтальным следом искомой плоскостиD . Плоскость, параллельная фронтально-проектирующей плоскости должна быть сама фронтально-проектирующей плоскостью!

2. На горизонтальной ПП выбираются произвольно две точки В 1 и

С1 .

3. Фронтальные проекции В 2 иС 2 точекВ иС ищутся вдоль линий связи на построенном следе искомой плоскостиD .

NB ! Несмотря на то, что точкиВ иС были выбраны на горизонтальной ПП произвольно, плоскость, задаваемая точкамиАВС будет параллельной заданной фронтально-проектирующей плоскости потому, что на фронтальной ПП точкиАВС располагаются на одной линии, параллельной фронтальному следу заданной плоскостиΣ .

4.2 Пересечение прямой и плоскости. Точка пересечения

Рассмотрим частный случай, когда необходимо найти (.)K пересечения прямой общего положенияl и горизонтальнопроектирующей плоскостиΣ .

Пример 4.9: Построить точку пересечения прямой l c горизонтальнопроектирующей плоскостьюΣ (Рис. 4.7):

å ^ П 1

Рис. 4.7 Пересечение прямой с проектирующей плоскостью

Построение весьма простое. Так как проектирующая плоскость Σ обладает собирательным свойством, точка ее пересечения с линиейl

находится как точка пересечения горизонтального следа Σ 1 плоскости и горизонтальной проекцииl 1 линии. Фронтальная проекция точки пересечение найдена вдоль линии связи.

Для построения точки пересечения произвольной прямой с плоскостью общего положения в качестве вспомогательного элемента следует использовать вспомогательные проектирующие плоскости.

Пример 4.10: Построить точку пересечения прямой m с плоскостью

(a Ç b) (Рис. 4.8).

å ^ П 2 ; å º m

å Ç D(aÇb) => l

l1 11

Рис. 4.8 Пересечения прямой с плоскостью

Для построения использована вспомогательная фронтальнопроектирующая плоскость Σ , проходящая через линиюm .

Линия l пересечения плоскостейΣ Ç лежит в одной плоскости с прямойm , так как вспомогательная плоскость специально была проведена через прямуюm . Следовательно, находясь в одной плоскости, прямыеl иm , если они пересекутся, дадут точку, которая будет искомой точкой пересечения заданных прямойm и плоскости

Если прямые l иm окажутся параллельными, это будет означать, что заданные прямаяm и плоскость – параллельны.

Пересечение двух плоскостей.

Для построения линии пересечения двух плоскостей достаточно

найти две любые точки этой линии, либо одну точку и направление

линии пересечения.

Если ищется линия пересечения двух плоскостей, одна из которых

проектирующая, линия пересечения определяется простейшими

построениями.

Пример 4.5: Построить линию пересечения плоскости

Заданной

двумя прямыми l ||m и горизонтальной плоскостью уровняΣ (Рис.

S 2≡ S 2

Рис. 4.9 Пересечение плоскостей

NB ! Линия пересечения принадлежит горизонтальной плоскости уровняΣ , поэтому является горизонталью.

Простота построения линии пересечения плоскостей общего положения с плоскостями частного положения дает удобный инструмент построения линии пересечения двух плоскостей общего положения.

Рис. 4.10 Вспомогательные секущие плоскости

Таким инструментом являются вспомогательные секущие плоскости частного положения, например, плоскости уровня (Рис. 4.10).

Для построения линии пересечения плоскостей Φ иΘ использованы две горизонтальные плоскостиГ" иГ"" . Точки пересеченияM иN

пар линий a"

S "X lX m

Рис. 4.11 Построение линии пересечения плоскостей

Для построения использованы горизонтальные плоскости Σ" иΣ"".

Пример 4.7: Построить линию пересечения плоскости Φ(ABC) 6

5 1X 6 1

Рис. 4.12 Построение линии пересечения плоскостей

Для построения используются вспомогательные фронтально проектирующие плоскости " и"" , которые на фронтальной ПП проходят по фронтальным проекциям параллельных прямыхl иm , задающих плоскостьТ . Вспомогательная плоскость" пересекает заданную плоскостьΦ(ABC) по линии12 . Горизонтальная проекция этой прямой пересекает горизонтальную проекцию прямойl в точкеЕ 1 . Эта точка ищется на фронтальной ПП вдоль линии связи. ТочкаЕ является общей для плоскостиΦ(ABC) иΤ(l ||m ). Таким образом, эта точка является одной из точек линии пересечения плоскостейΦ(ABC) иΤ(l ||m ). Также найдена точкаF пересечения плоскости"" с прямойm . ТочкаF также является точкой линии пересечения плоскостейΦ(ABC) иΤ(l ||m ). Соединение полученных точекЕ и

h"1 M 1 h 1

Рис. 4.13 Построение линии пересечения плоскостей

Точки линии пересечения, это (.)M пересечения горизонтальных следовh иh" заданных плоскостей и (.)N пересечения фронтальных следовf иf" . Соединение этих точек на соответствующих плоскостях проекций дает проекции линии пересечения заданных плоскостей.

Если каждой точке X = (х 1 , х 2 , …х n) из множества {X} точек n–мерного пространства ставится в соответствие одно вполне определенное значение переменной величины z, то говорят, что задана функция n переменных z = f(х 1 , х 2 , …х n) = f (X).

При этом переменные х 1 , х 2 , …х n называют независимыми переменными или аргументами функции, z - зависимой переменной , а символ f обозначает закон соответствия . Множество {X} называют областью определения функции (это некое подмножество n-мерного пространства).

Например, функция z = 1/(х 1 х 2) представляет собой функцию двух переменных. Ее аргументы – переменные х 1 и х 2 , а z – зависимая переменная. Область определения – вся координатная плоскость, за исключением прямых х 1 = 0 и х 2 = 0, т.е. без осей абсцисс и ординат. Подставив в функцию любую точку из области определения, по закону соответствия получим определенное число. Например, взяв точку (2; 5), т.е. х 1 = 2, х 2 = 5, получим
z = 1/(2*5) = 0,1 (т.е. z(2; 5) = 0,1).

Функция вида z = а 1 х 1 + а 2 х 2 + … + а n х n + b, где а 1 , а 2 ,…, а n , b - по стоянные числа, называют линейной . Ее можно рассматривать как сумму n линейных функций от переменных х 1 , х 2 , …х n . Все остальные функции называют нелинейными .

Например, функция z = 1/(х 1 х 2) – нелинейная, а функция z =
= х 1 + 7х 2 - 5 – линейная.

Любой функции z = f (X) = f(х 1 , х 2 , …х n) можно поставить в соответствие n функций одной переменной, если зафиксировать значения всех переменных, кроме одной.

Например, функции трех переменных z = 1/(х 1 х 2 х 3) можно поставить в соответствие три функции одной переменной. Если зафиксировать х 2 = а и х 3 = b то функция примет вид z = 1/(аbх 1); если зафиксировать х 1 = а и х 3 = b, то она примет вид z = 1/(аbх 2); если зафиксировать х 1 = а и х 2 = b, то она примет вид z = 1/(аbх 3). В данном случае все три функции имеют одинаковый вид. Это не всегда так. Например, если для функции двух переменных зафиксировать х 2 = а, то она примет вид z = 5х 1 а, т.е. степенной функции, а если зафиксировать х 1 = а, то она примет вид , т.е. показательной функции.

Графиком функции двух переменных z = f(x, у) называется множество точек трёхмерного пространства (х, у, z), аппликата z которых связана с абсциссой х и ординатой у функциональным соотношением
z = f (x, у). Этот график представляет собой некоторую поверхность в трехмерном пространстве (например, как на рисунке 5.3).

Можно доказать, что если функция – линейная (т.е. z = ax + by + c), то ее график представляет собой плоскость в трехмерном пространстве. Другие примеры трехмерных графиков рекомендуется изучить самостоятельно по учебнику Кремера (стр. 405-406).

Если переменных больше двух (n переменных), то график функции представляет собой множество точек (n+1)-мерного пространства, для которых координата х n+1 вычисляется в соответствии с заданным функциональным законом. Такой график называют гиперповерхностью (для линейной функциигиперплоскостью ), и он также представляет собой научную абстракцию (изобразить его невозможно).

Рисунок 5.3 – График функции двух переменных в трехмерном пространстве

Поверхностью уровня функции n переменных называется множество точек в n–мерном пространстве, таких, что во всех этих точках значение функции одно и то же и равно С. Само число С в этом случае называется уровнем .

Обычно для одной и той же функции можно построить бесконечно много поверхностей уровня (соответствующих различным уровням).

Для функции двух переменных поверхность уровня принимает вид линии уровня .

Например, рассмотрим z = 1/(х 1 х 2). Возьмем С = 10, т.е. 1/(х 1 х 2) = 10. Тогда х 2 = 1/(10х 1), т.е. на плоскости линия уровня примет вид, представленный на рисунке 5.4 сплошной линией. Взяв другой уровень, например, С = 5, получим линию уровня в виде графика функции х 2 = 1/(5х 1) (на рисунке 5.4 показана пунктиром).

Рисунок 5.4 - Линии уровня функции z = 1/(х 1 х 2)

Рассмотрим еще один пример. Пусть z = 2х 1 + х 2 . Возьмем С = 2, т.е. 2х 1 + х 2 = 2. Тогда х 2 = 2 - 2х 1 , т.е. на плоскости линия уровня примет вид прямой, представленный на рисунке 5.5 сплошной линией. Взяв другой уровень, например, С = 4, получим линию уровня в виде прямой х 2 = 4 - 2х 1 (на рисунке 5.5 показана пунктиром). Линия уровня для 2х 1 + х 2 = 3 показана на рисунке 5.5 точечной линией.

Легко убедиться, что для линейной функции двух переменных любая линия уровня будет представлять собой прямую на плоскости, причем все линии уровня будут параллельны между собой.

Рисунок 5.5 - Линии уровня функции z = 2х 1 + х 2

Определение функции нескольких переменных

Рассматривая функции одной переменной, мы указывали, что при изучении многих явления приходится встречаться с функциями двух и более независимых переменных. Приведем несколько примеров.

Пример 1. Площадь S прямоугольника со сторонами, длины которых равны х и у , выражается формулой S = ху . Каждой паре значений х и у соответствует определенное значение площади S ; S есть функция двух переменных.

Пример 2. Объем V прямоугольного параллелепипеда с ребрами, длины которых равны х , у , z , выражается формулой V = xyz . Здесь V есть функция трех переменных х , у , z .

Пример 3. Дальность R полета снаряды, выпущенного с начальной скоростью v 0 из орудия, ствол которого наклонен к горизонту под углом , выражается формулой
(если пренебречь сопротивлением воздуха). Здесьg – ускорение силы тяжести. Для каждой пары значений v 0 и  эта формула дает определенное значение R , т.е. R является функцией двух переменных v 0 и .

Пример 4.
. Здесьи есть функция четырех переменных х , у , z , t .

Определение 1. Если каждой паре (х , у ) значений двух независимых друг от друга переменных величин х и у из некоторой области их изменения D , соответствует определенное значение величины z , то мы говорим, что z есть функция двух независимых переменных х и у , определенная в области D .

Символически функция двух переменных обозначается так:

z = f (x , y ), z = F (x , y ) и т.д.

Функция двух переменных может быть задана, например, с помощью таблицы или аналитически – с помощью формулы, как это сделано в рассмотренных выше примерах. На основании формулы можно составить таблицу значений функции для некоторых пар значений независимых переменных. Так, для первого примера можно составить следующую таблицу:

S = ху

В этой таблице на пересечении строки и столбца, соответствующих определенным значениям х и у , проставлено соответствующее значение функции S . Если функциональная зависимость z = f (x , y ) получается в результате измерений величины z при экспериментальном изучении какого-либо явления, то сразу получается таблица, определяющая z как функцию двух переменных. В этом случае функция задается только таблицей.

Как и в случае одной независимой переменной, функция двух переменных существует, вообще говоря, не при любых значениях х и у .

Определение 2. Совокупность пар (х , у ) значений х и у , при которых определяется функция z = f (x , y ), называется областью определения или областью существования этой функции.

Область определения функции наглядно иллюстрируется геометрически. Если каждую пару значений х и у мы будем изображать точкой М (х , у ) в плоскости Оху , то область определения функции изобразится в виде некоторой совокупности точек на плоскости. Эту совокупность точек будем также называть областью определения функции. В частности, областью определения может быть и вся плоскость. В дальнейшем мы будем главным образом иметь дело с такими областями, которые представляют собой части плоскости , ограниченные линиями . Линию, ограничивающую данную область, будем называть границей области. Точки области, не лежащие на границе, будем называть внутренними точками области. Область, состоящая из одних внутренних точек, называется открытой или незамкнутой . Если же к области относятся и точки границы, то область называется замкнутой . Область называется ограниченной, если существует такая постоянная С , что расстояние любой точки М области от начала координат О меньше С , т.е. |OM | < С .

Пример 5. Определить естественную область определения функции

z = 2х у .

Аналитическое выражение 2х у имеет смысл при любых значениях х и у . Следовательно, естественной областью определения функции является вся плоскость Оху .

Пример 6.
.

Для того чтобы z имело действительное значение, нужно, чтобы под корнем стояло неотрицательное число, т.е. х и у должны удовлетворять неравенству 1 – х 2 – у 2  0, или х 2 + у 2  1.

Все точки М (х , у ), координаты которых удовлетворяют указанному неравенству, лежат в круге радиуса 1 с центром в начале координат и на границе этого круга.

Пример 7.
.

Так как логарифмы определены только для положительных чисел, то должно удовлетворяться неравенство х + у > 0, или у >  х .

Это значит, что областью определения функции z является половина плоскости, расположенная над прямой у =  х , не включая самой прямой.

Пример 8. Площадь треугольника S представляет собой функцию основания х и высоты у : S = xy /2.

Областью определения этой функции является область х  0, у  0 (так как основание треугольника и его высота не могут быть ни отрицательны, ни нулем). Заметим, что область определения рассматриваемой функции не совпадает с естественной областью определения того аналитического выражения, с помощью которого задается функция, так как естественной областью определения выражения ху/ 2 является, очевидно, вся плоскость Оху .

Определение функции двух переменных легко обобщить на случай трех или более переменных.

Определение 3. Если каждой рассматриваемой совокупности значений переменных х , у , z , …, u , t соответствует определенное значение переменной w , то будем называть w функцией независимых переменных х , у , z , …, u , t и писать w = F (х , у , z , …, u , t ) или w = f (х , у , z , …, u , t ) и т.п.

Так же как и для функции двух переменных, можно говорить об области определения функции трех, четырех и более переменных.

Так, например, для функции трех переменных областью определения является некоторая совокупность троек чисел (х , у , z ). Заметим тут же, что каждая тройка чисел задает некоторую точку М (х , у , z ) в пространстве Оху z . Следовательно, областью определения функции трех переменных является некоторая совокупность точек пространства.

Аналогично этому можно говорить об области определения функции четырех переменных u = f (x , y , z , t ) как о некоторой совокупности четверок чисел (x , y , z , t ). Однако область определения функции четырех или большего числа переменных уже не допускает простого геометрического истолкования.

В примере 2 приведена функция трех переменных, определенная при всех значениях х , у , z .

В примере 4 приведена функция четырех переменных.

Пример 9. .

Здесь w – функция четырех переменных х , у , z , и , определенная при значениях переменных, удовлетворяющих соотношению:

Понятие функции нескольких переменных

Введем понятие функции нескольких переменных.

Определение 1. Пусть каждой точке М из множества точек {М } евклидова пространства E m по какому-либо закону ста­вится в соответствие некоторое число и из числового множес­тва U. Тогда будем говорить, что на множестве {М } задана функция и = f(M). При этом множества {М } и U называют­ся соответственно областью определения (задания) и областью изменения функции f(M).

Как известно, функция одной переменной у = f (x ) изобра­жается на плоскости в виде линии. В случае двух переменных область определения {М п } функции z = f(x, y) представляет собой некоторое множество точек на координатной плоскости Оху (рис. 8.1). Координата z называется аппликатой, и тогда сама функция изображается в виде некоторой поверхности в пространстве E 3 . Аналогичным образом функция от т пере­менных

определенная на множестве {М } евклидова пространства Е m , представляет собой гиперповерхность в евклидовом простран­стве Е m+1 .

Некоторые виды функций нескольких переменных

Рассмотрим примеры функций нескольких переменных и найдем их области определения.

Е 3 . Областью определения этой функции является все множест­во точек плоскости Оху. Область значений этой функции - промежуток }