Сайт о телевидении

Сайт о телевидении

» » Индекс частотной модуляции. Частотная и фазовая модуляции гармонической несущей

Индекс частотной модуляции. Частотная и фазовая модуляции гармонической несущей

Обратимся к модулированным сигналам, полученным путем изменения по закону передаваемого сообщения в несущем колебании частоты w 0 , или начальной фазы j 0 . Поскольку в обоих случаях аргумент гармонического колебания y(t ) = w 0 t + j 0 определяет мгновенное значение фазового угла, такие радиосигналы получили название сигналов с угловой модуляцией. Если в несущем колебании изменяется частота w 0 , то имеем дело с частотной модуляцией (ЧМ), если же изменяется фаза j 0 – фазовой модуляцией (ФМ).

Частотная модуляция. При частотной модуляции несущая частота w(t ) связана с модулирующим сигналом e (t ) зависимостью:

w(t ) = w 0 + k ч e (t ) (5.1)

здесь k ч - размерный коэффициент пропорциональности между частотой и напряжением, рад.

Рассмотрим однотональную частотную модуляцию, когда модулирующим сигналом является гармоническое колебание e (t ) = E 0 cosWt , у которого для упрощения начальная фаза q 0 = 0. Пусть также начальная фаза несущего колебания j 0 = 0. При необходимости начальные фазы q 0 и j 0 легко могут быть введены в окончательные соотношения. Полную фазу ЧМ – сигнала в любой момент времени t определим путем интегрирования частоты, выраженной через формулу (5.1):

где w дч = - максимальное отклонение частоты от значения w 0 , или девиация частоты при частотной модуляции.

Отношение m ч = w дч /W = k ч E 0 /W, (5.3)

являющееся девиацией фазы несущего колебания, называют индексом частотной модуляции.

С учетом (5.2) и (5.3) ЧМ – сигнал запишется в следующем виде:

На рис. 5.1 представлены временные диаграммы соответственно несущего колебания u н (t ) и модулирующего сигнала e (t ) с начальными фазами j 0 = q 0 = 90 o , и полученный в результате процесса частотной модуляции ЧМ – сигнал u чм (t ) . Нетрудно заметить, что по формуле ЧМ-сигнал напоминает сжатые и растянутые меха русской гармошки.

Фазовая модуляция. В ФМ – сигнале полная фаза несущего колебания изменяется пропорционально модулирующему напряжению

y (t ) = w 0 t + k ф e (t ), (5.5)

где k ф - размерный коэффициент пропорциональности, рад/В.

Рис. 5.1 Частотная однотональная модуляция:

а – несущее колебание; б – модулирующий сигнал; в – ЧМ – сигнал

При однотональной модуляции фаза несущего колебания:

y (t ) = w 0 t + k ф E 0 cosWt , (5.6)

Из (5.6) следует, что, как и в случае частотной модуляции, полная фаза несущего колебания изменяется по гармоническому закону. Максимальное отклонение фазы несущего колебания от начальной фазы характеризует индекс фазовой модуляции

m ф = k ф E 0 . (5.7)

Подставляя формулы (5.5) и (5.6) в (4.1), запишем ФМ - сигнал

Дифференцирование формулы (5.6) дает частоту ФМ – сигнала

w(t ) = w 0 - m ф W sinWt = w 0 - w дф sinWt , (5.9)

где w дф = m ф W = k ф E 0 W - максимальное отклонение частоты от значения несущей w 0 , т. е. девиация частоты при фазовой модуляции.

Выражения (5.4), (5.8) показывают, что при однотональной угловой модуляции нельзя определить, является ли сигнал частотно или фазо-модулированным. Различия между этими видами однотональной модуляции проявляется только при изменении амплитуды Е 0 или частоты W моду-лирующего сигнала e (t ).

В случае частотной модуляции девиации частоты w дч пропорциональна амплитуде Е 0 и не зависит от частоты W модулирующего сигнала e (t ) = E 0 cosWt . Индекс же модуляции m ч прямо пропорционален амплитуде Е 0 и обратно пропорционален частоте W модулирующего сигнала. При фазовой модуляции девиации частоты w дф изменяется пропорционально амплитуде Е 0 и частоте модулирующего сигнала. Индекс модуляции m ф пропорционален амплитуде Е 0 и нее зависит от частоты W модулирующего сигнала.

Спектр ЧМ – сигнала при однотональной модуляции. Используя тригонометрические преобразования, запишем соотношение (5.4) следующим образом:

= U н cos(m sinWt )cosw 0 t - U н sin(m sinWt )sinw 0 t . (5.10)

Проанализируем выражение (5.10) отдельно для малых (m << 1) и больших (m >1) индексов модуляции.

Спектр ЧМ – сигнала при m << 1. В этом случае имеют место приближенные равенства

cos(m sinWt ) » 1; sin(m sinWt ) » m sinWt . (5.11)

Подставив (5.11) в (5.10), получим

u ЧМ (t ) = U н cosw 0 t - U н m sinW sinw 0 t =

+ U н cosw 0 t + (mU н /2)cos(w 0 + W)t - (mU н /2) cos(w 0 - W)t . (5.12)

Рис.5.2. Диаграммы ЧМ – сигнала при m << 1:

а – спектральная; б - векторная

Сравнение соотношений (5.12) и (4.6) показывает, что спектр ЧМ – сигнала аналогичен спектру АМП – сигнала и также состоит из несущего колебания и двух боковых составляющих с частотами (w 0 + W) и (w 0 - W). Индекс модуляции m играет здесь ту же роль, что и коэффициент амплитудной модуляции М . Единственное и принципиальное отличие - знак минус перед нижней боковой составляющей в формуле для ЧМ – сигнала, который характеризирует поворот ее фазы на 180 0 , что аналитически приводит к превращению АМП – сигнала в ЧМ – сигнал.

На рис.5.2,а представлена спектральная диаграмма для ЧМ – сигнала при индексе модуляции m << 1. Отметим, что ширина спектра в данном случае равна 2W, как и при амплитудной модуляции.

На векторной диаграмме рис.5.2, б показано, как изменение фазы нижней боковой составляющей на 180 0 (вектор АД) влияет на вектор результирующего колебания ОВ. Направление вектора АД нижней боковой составляющей при АМ – сигнале обозначено штриховой линией. Изменение направления этого вектора на 180 0 не влияет на вектор модуляции АВ, который всегда перпендикулярен вектору несущей ОА. Вектор результирующего колебания ОВ изменяется как по фазе, так и по амплитуде, т.е. с течением времени «качается» вокруг центрального положения. Однако при m<< 1 изменения амплитуды настолько малы, что ими можно пренебречь и модуляцию рассматривать как чисто фазовую.

Теоретический спектр ЧМ – сигнала (аналогично и ФМ – сигнала) бесконечен по полосе частот, однако в реальных случаях он ограничен. Дело в том, что начиная с номера порядка n > m+1 , значения функций Бесселя становится весьма малыми. Поэтому считается, что практическая ширина спектра радиосигналов с угловой модуляцией

Dw ум = 2(m +1)W.

Рис. 5.3. Спектр ЧМ – сигнала.

ЧМ – и ФМ – сигналы, применяемые на практике, имеют индекс модуляции m >>1, поэтому

Dw ум = 2m W = 2w д.

Таким образом, полоса частот, занимаемая сигналами с однотональной частоты модуляцией, равна удвоенной величине девиации частоты и не зависит от частоты модуляции. Спектр сигналов с угловой модуляцией при негармоническом модулирующем сигнале определить достаточно трудно. Но он всегда сложнее, чем спектр АМ – сигнала при том же модулирующем сигнале. Ширина его спектра также значительно больше, чем при амплитудной модуляции.

Примерная структура спектра ЧМ– сигнала при индексе модуляции m =3 показана на рис. 5.3.

Следует отметить, что радиосигналы с частотой и фазовой модуляцией имеют ряд важных преимуществ перед амплитудно-модулированными колебаниями.

1.Поскольку при угловой модуляции амплитуда модулированных колебании не несет в себе никакой информации и не требуется ее постоянства (в отличие от амплитуды модуляции), то практически любые вредные нелинейные изменения амплитуды радиосигнала в процессе осуществления связи не приводят к искажению передаваемого сообщения.

2.Постоянство амплитуды радиосигнала при угловой модуляции позволяет полностью использовать энергетические возможности генератора несущей частоты, который работает в этом случае при неизменной колебательной мощности.

Литература: 1, 2; 6[ 46-61].

Контрольные вопросы:

1.Как осуществляется частотная модуляция?

2.Покажите индекс частотной модуляции.

3.Что такое девиация частоты?

4. Покажите индекс фазавой модуляции.

5. Нарисуйте вид колебания однотональной частотной модуляции.

6. Как изменяется индекс модуляции с ростом частоты?

7. Покажите спектр частотной модуляции.

Будем изучать модулированные радиосигналы, которые получаются за счет того, что в несущем гармоническом колебании и нес передаваемое сообщение изменяет либо частоту , либо начальную фазу ; амплитуда остается неизменной. Поскольку аргумент гармонического колебания называемый полной фазой, определяет текущее значение фазового угла, такие сигналы получили название сигналов с угловой модуляцией.

Виды угловой модуляции.

Предположим вначале, что полная фаза связана с сигналом s(t) зависимостью

где - значение частоты в отсутствие полезного сигнала; k - некоторый коэффициент пропорциональности. Модуляцию, отвечающую соотношению (4.19), называют фазовой модуляцией (ФМ):

Рис. 4.5. Фазовая модуляция: 1 - модулирующий низкочастотный сигнал; 2 - немодулироваиное гармоническое колебание; 3 - сигнал с фазовой модуляцией

Если сигнал то ФМ-колебание является простым гармоническим колебанием. С увеличением значений сигнала полная фаза растет во времени быстрее, чем по линейному закону. При уменьшении значений модулирующего сигнала происходит спад скорости роста во времени. На рис. 4.5 показано построение графика ФМ-сигнала.

В моменты времени, когда сигнал достигает экстремальных значений, абсолютный фазовый сдвиг между ФМ-сигналом и смодулированным гармоническим колебанием оказывается наибольшим. Предельное значение этого фазового сдвига называют девиацией фазы . В общем случае, когда сигнал изменяет знак, принято различать девиацию фазы вверх и девиацию фазы вниз

На векторной диаграмме изображающий вектор постоянной длины будет совершать вращение с непостоянной угловой скоростью. Мгновенная частота сигнала с угловой модуляцией определяется как первая производная от полной фазы по времени:

(4.22)

При частотной модуляции сигнала (ЧМ) между величинами имеется связь вида

Естественными параметрами ЧМ-сигнала общего вида в соответствии с формулой (4.23) являются девиация частоты вверх Асов - ksaaa и девиация частоты вниз .

Если - достаточно гладкая функция, то внешне осциллограммы ФМ- и ЧМ-сигналов не отличаются. Однако имеется принципиальная разница: фазовый сдвиг между ФМ-сигналом и немодулированным колебанием пропорционален s(t), в то время как для ЧМ-сигнала этот сдвиг пропорционален интегралу от передаваемого сообщения.

Однотональные сигналы с угловой модуляцией.

Анализ ФМ- и ЧМ-сигналов с математической точки зрения гораздо сложнее, чем исследование АМ-колебаний. Поэтому основное внимание будет уделено простейшим однотоиальиым сигналам.

В случае однотонального ЧМ-сигнала мгновенная частота

где - девиация частоты сигнала. На основании формулы (4.22) полная фаза такого сигнала

где - некоторый постоянный фазовый угол.

Отсюда видно, что величина

называемая индексом однотональной угловой модуляции, представляет собой девиацию фазы такого сигнала, выраженную в радианах.

Для краткости положим, что неизменные во времени фазовые углы и выразим мгновенное значение ЧМ-сигнала в виде

Аналитическая форма записи однотонального ФМ-сигнала будет аналогичной. Однако нужно иметь в виду следующее: ЧМ- и ФМ-сигналы ведут себя по-разному при изменении частоты модуляции и амплитуды модулирующего сигнала.

При частотной модуляции девиация частоты пропорциональна амплитуде низкочастотного сигнала. В то же время величина не зависит от частоты модулирующего сигнала. В случае фазовой модуляции ее индекс оказывается пропорциональным амплитуде низкочастотного сигнала независимо от его частоты. Как следствие этого, девиация частоты при фазовой модуляции в соответствии с формулой (4.25) линейно увеличивается с ростом частоты.

Пример 4.2. Радиостанция, работающая в УКВ-диапазоне с несущей частотой , излучает ФМ-сигнал, промодулированный частотой F = 15 кГц. Индекс модуляции Найти пределы, в которых изменяется мгновенная частота сигнала.

Математическая модель сигнала имеет вид

Девиация частоты составит

Таким образом, при модуляции мгновенная частота сигнала изменяется в пределах от до .

Спектральное разложение ЧМ- и ФМ-сигналов при малых индексах модуляции.

Задачу о представлении сигналов с угловой модуляцией посредством суммы гармонических колебаний несложно решить в случае, когда Для этого преобразуем формулу (4.26) следующим образом:

Поскольку индекс угловой модуляции мал, воспользуемся приближенными равенствами

На основании этого из равенства (4.27) получаем

Таким образом, показано, что при в спектре сигнала с угловой модуляцией содержатся несущее колебание и две боковые составляющие (верхняя и нижняя) на частотах Индекс играет здесь такую же роль, как коэффициент амплитудной модуляции [ср. с формулой (4.5)]. Однако можно обнаружить и существенное различие спектров АМ-сигнала и колебания с угловой модуляцией. Для спектральной диаграммы (рис. 4.6, а), построенной по формуле (4.28), характерно то, что нижнее боковое колебание имеет дополнительный фазовый сдвиг на 180°.

Как следствие этого, сумма векторов, отображающих оба боковых колебания (рис. 4.6,б), всегда перпендикулярна вектору . С течением времени вектор будет «качаться» вокруг центрального положения. Незначительные изменения длины этого вектора обусловлены прилиженным характером анализа, и при очень малых ими можно пренебречь.

Рис. 4.6. Диаграммы сигнала с угловой модуляцией при : а - спектральная; б - векторная

Более точный анализ спектрального состава сигналов с угловой модуляцией.

Можно попытаться уточнить полученный результат, воспользовавшись двумя членами ряда в разложении гармонических функций малого аргумента. При этом формула будет выглядеть так:

Несложные тригонометрические преобразования приводят к результату:

Эта формула свидетельствует о том, что в спектре сигнала с однотональной угловой модуляцией, помимо известных составляющих, содержатся также верхние и нижние боковые колебания, соответствующие гармоникам частоты модуляции. Поэтому спектр такого сигнала сложнее спектра аналогичного АМ-сигнала. Отметим также, что возникновение новых спектральных составляющих приводит к перераспределению энергии по спектру. Так, из формулы (4.29) видно, что с ростом амплитуда боковых составляющих увеличивается, в то время как амплитуда несущего колебания уменьшается пропорционально множителю ).

Спектр сигнала с угловой модуляцией при произвольном значении индекса.

Для простейшего случая однотонального ЧМ- или ФМ-сигнала можно найти общее выражение спектра, справедливое при любом значении индекса модуляции .

В разделе курса математики, посвященном специальным функциям, доказывается, что экспонента с мнимым показателем специального вида, периодическая на отрезке разлагается в комплексный ряд Фурье:

где - любое вещественное число; - функция Бесселя индекса от аргумента .

Сравнивая формулы (4.30) и (4.27), а также подставляя перепишем последнюю из указанных формул так:

Отсюда получаем следующую математическую модель ЧМ- или ФМ-сигнала с любым значением индекса модуляции:

Рис. 4.7. Графики функций Бесселя

Спектр одиотонального сигнала с угловой модуляцией в общем случае содержит бесконечное число составляющих, частоты которых равны амплитуды этих составляющих пропорциональны значениям

В теории функций Бесселя доказывается, что функции с положительными и отрицательными индексами связаны между собой:

Поэтому начальные фазы боковых колебаний с частотами совпадают, если к - четное число, и отличаются на 180°, если к - нечетное.

Для детального анализа и построения спектральных диаграмм необходимо знать поведение функций при различных в зависимости от к. На рис. 4.7 приведены графики двух функций Бесселя, существенно различающихся своими индексами.

Можно заметить следующее: чем больше индекс функции Бесселя, тем протяженнее область аргументов, при которых эта функция очень мала. Этот факт отображает табл. 4.1.

Табл. 4.1 совместно с формулой (4.32) позволяет построить типичные спектральные диаграммы сигнала с одиотональной угловой модуляцией при не слишком больших значениях индекса (рис. 4.8).

Важно отметить, что с ростом индекса модуляции расширяется полоса частот, занимаемая сигналом. Обычно полагают, что допустимо пренебречь всеми спектральными составляющими с номерами Отсюда следует оценка практической ширины спектра сигнала с угловой модуляцией

Как правило, реальные ЧМ- и ФМ-сигналы характеризуются условием . В этом случае

Таблица 4.1 Значения функций Бесселя

Таким образом, сигнал с угловой модуляцией занимает полосу частот, приблизительно равную удвоенной девиации частоты.

Как было выяснено, для передачи амплитудно-модулированного сигнала требуется полоса частот, равная т. е. в раз меньшая. Большая широкополосность ЧМ- и ФМ-сигналов обусловливает их применимость для целей радиосвязи лишь на очень высоких частотах, в диапазонах метровых и более коротких волн. Однако именно широкополое ность приводит к гораздо большей помехоустойчивости сигналов с угловой модуляцией по сравнению с АМ-сигналами. Сравнительный анализ помехоустойчивости различных видов модуляции будет детально проведен в гл. 16.

При частотной и фазовой модуляциях соответственно частота или фаза высокочастотного колебания изменяются по закону изменения амплитуды управляющего сигнала. При этих видах модуляции амплитуда высокочастотных модулированных колебаний остается неизменной, что обеспечивает постоянство энергетического баланса и одновременно высокий к. п. д. Однако спектр частот при частотно- и фазово-модулированных колебаниях значительно шире, чем при . Поэтому частотная и фазовая модуляции находят практическое применение лишь в диапазоне ультракоротких волн.

Анализируя модулированные колебания, нетрудно прийти к выводу, что графики частотно-модулированного (ЧМ) и фазово-модулированного (ФМ) колебаний ничем не отличаются друг от друга; поэтому на рис. 202 обоим случаям соответствует один и тот же график модулированных колебаний.

Действительно, если при осуществлении частотной модуляции меняется частота на величину Δω"= Δω sin Ωt, то при этом имеют место и отклонения фазы на величину Δφ" = Δφ sin Ωt. Во время положительного полупериода модулирующего напряжения частота частотно-модулированного колебания больше несущей (Т н >Т м); при этом возникает также и сдвиг по фазе в сторону опережения. Во время отрицательного полупериода частота частотно-модулированного колебания меньше несущей (Т н < Т м), но возникает сдвиг по фазе в сторону отставания, пропорциональный величине модулирующего напряжения.

i ω =I mн sin ω н t

где ωн - несущая частота высокочастотного колебания.

Угловая частота частотно-модулированного колебания

ω" = ω н + Δω" = ω н + Δω cos Ωt, (391)

где Δω" = Δω cos Ωt - мгновенное значение приращения несущей частоты, если модулирующий сигнал изменяется по косинусоидальному закону; Δω - девиация частоты, или максимальное отклонение частоты, которое соответствует наибольшему (амплитудному) значению модулирующего напряжения.

Тогда уравнение частотно-модулированного колебания можно записать так:

i чм = I mн sin (ωн + Δω cos Ωt) t. (392)

Известно, что частота является первой производной фазы по времени:

Точно так же фаза равна интегралу от частоты по времени:

(394)

Воспользовавшись уравнением (391) и формулой (394), можно определить закон изменения фазы при частотной модуляции

(395)

Отношение девиации частоты к частоте модулирующего сигнала представляет собой девиацию фазы Δφ при частотной модуляции. Это отношение, обозначаемое буквой М, называется индексом модуляции:

Индекс модуляции численно равен амплитуде отклонения фазы Δφ при частотной модуляции. Поэтому

φ = ω н t + М sin Ωt. (397)

Уравнение для частотно-модулированного колебания (392) можно выразить через индекс модуляции

i чм = I mн sin (ω н t + M sin Ωt). (398)

Рассуждая аналогичным образом, нетрудно получить выражение, позволяющее определить закон изменения фазы фазово-модулированных колебаний:

φ = ω н t + Δφ sin Ωt, (399)

где Δφ - девиация фазы при фазово-модулированных колебаниях, соответствующая наибольшему (амплитудному) значению модулирующего сигнала.

При фазовой модуляции меняется и частота модулированного колебания:

Произведение ΔφΩ представляет собой девиацию частоты при фазовой модуляции:

Следовательно, девиация фазы при фазовой модуляции равна индексу модуляции при частотной модуляции:

Тогда уравнение фазово-модулированного колебания приобретает тот же вид, что уравнение (398), т. е.

i фм = I mн sin (ω н t + М sin Ωt). (400)

Сопоставляя уравнения, соответствующие частотной и фазовой модуляциям , можно сделать следующие выводы:

  1. При частотной модуляции имеют место как девиации частоты, так и девиация фазы. Последняя пропорциональна амплитуде модулирующего колебания и обратно пропорциональна частоте модулирующего сигнала.
  2. При фазовой модуляции также имеют место девиация фазы и девиация частоты. Последняя пропорциональна как амплитуде, так и частоте модулирующего колебания.
  3. Если модуляция осуществляется сигналом одной частоты, то нельзя установить разницу между частотно-модулированным и фазово-модулированным колебаниями. Они определяются одними и теми же уравнениями (398) и (400).
  4. При модуляции спектром частот частотная и фазовая модуляции существенно различаются между собой. В первом случае девиация частоты не зависит от частоты модулирующего сигнала, во втором - девиация фазы не зависит от частоты модулирующего сигнала.

Частотно- и фазово-модулированные колебания можно представить бесконечным рядом гармоник, отличающихся друг от друга не только частотой, но и амплитудой. В состав частотно- и фазово-модулированных колебаний при модуляции одним тоном (одной частотой Ω) входит бесконечно большое число пар боковых частот ω н ± Ω, ω н ± 2Ω, ω н ± 3Ω и т. д. С увеличением порядкового номера боковой частоты ее амплитуда уменьшается. Чем меньше индекс модуляции, тем быстрее убывают амплитуды боковых составляющих модулированного сигнала; ширина полосы модулированного сигнала при этом получается равной 2F макс (как и при амплитудной модуляции). За ширину полосы частот частотно-модулированного колебания принимают интервал частот, в пределах которого амплитуды боковых составляющих составляют не менее 5- 10% амплитуды несущей частоты.

На практике системы ЧМ связи разделяют на узкополосные и широкополосные. Узкополосные системы ЧМ связи находят применение в служебной радиосвязи. Ширина полосы частот при этом не превышает 6-8 кгц при максимальном индексе модуляции. Широкополосные системы ЧМ связи используются при высококачественном радиовещании (звуковом сопровождении телевизионных программ). Полоса частот, занимаемая модулированным сигналом при широкополосной частотной модуляции, доходит до 200-300 кгц.

Частотные спектры частотной и фазовой модуляции имеют и некоторые различия. Сущность этих различий заключается в следующем. Ширина полосы частот ЧМ колебания почти не зависит от частоты модуляции, но с ростом частоты модуляции уменьшается индекс модуляции и число боковых частот, меняется соотношение между их амплитудами. Частотный состав ФМ колебания по мере увеличения частоты модуляции расширяется за счет увеличения интервалов между боковыми частотами.

Следует помнить, что при фазовой модуляции ширина полосы зависит не только от амплитуды, но и от частоты модулирующего сигнала. Последнее является существенным недостатком фазовой модуляции по сравнению с частотной.

Другим распространенным типом модуляции, применяемым в радиосвя­зи, является частотная модуляция (ЧМ), при которой частота несущей изменяется в соответствии с модулирующим сигналом (рис. 15.1).


Рис. 15.1. Частотная модуляция.

Обратите внимание, что амплитуда несущей остается постоянной, а частота изменяется.

Девиация частоты

Девиация частоты есть степень изменения частоты несущей при измене­нии уровня сигнала на 1 В. Девиация частоты измеряется в килогер­цах на вольт (кГц/В). Предположим, например, что несущая с частотой 1000 кГц должна быть промодулирована сигналом в виде меандра с ам­плитудой 5 В (рис. 15.2). Предположим также, что девиация частоты равна 10 кГц/В. Тогда во временном интервале от А до В частота не­сущей увеличится на 5 · 10 = 50 кГц (произведение амплитуды сигнала на девиацию частоты) и станет равной 1000 кГц + 50 кГц = 1050 кГц. Во временном интервале от В до С частота несущей изменится на ту же величину, а именно на 5 · 10 = 50 кГц, но на этот раз в отрицательную сторону с уменьшением частоты несущей до 1000 – 50 = 950 кГц.


Рис. 15.2.

Максимальная девиация

Изменение частоты несущей при изменении уровня сигнала должно быть ограничено некоторой максимальной величиной, превышение которой не­допустимо. Эта величина называется максимальной девиацией. Напри­мер, при ЧМ-передачах радиостанции Би-би-си используется девиация частоты 15 кГц/В и максимальная девиация 75 кГц. Максимальная ве­личина модулирующего сигнала определяется максимальной допустимой девиацией.

Максимальная девиация ±75

Максимальный сигнал = -------------- = -- = ±5 В

Девиация частоты 15

или, другими словами, 5 В в положительную или отрицательную область.

Боковые частоты и ширина полосы

Если несущая промодулирована по частоте гармоническим сигналом, образуется неограниченное число боковых частот. Амплитуды боковых Компонент постепенно уменьшаются по мере отдаления частоты этих ком­понент от частоты несущей.

Таким образом, для размещения всех боковых частот ширина полосы частот ЧМ-системы должна быть бесконечной. На практике малые по амплитуде боковые компоненты ЧМ-сигнала могут быть отброшены без внесения каких-либо заметных искажений. Например, ЧМ-передачи ра­диостанции Би-би-си ведутся с использованием полосы частот шириной 250 кГц.

Сравнение AM - и ЧМ-систем модуляции

Амплитудная Частотная

модуляция модуляция

1. Амплитуда несущей Изменяется вместе Остается

С сигналом постоянной

2. Боковые частоты Две для каждой Бесконечное

Частоты в спектре число

Сигнала

3. Ширина занимаемой 9 кГц 250 кГц полосы частот

4. Диапазон частот ДВ, СВ. KB УКВ

Преимущества частотной модуляции

Радиовещание с использованием ЧМ имеет следующие преимущества по сравнению с АМ-передачей программ.

1. В системе с ЧМ обеспечивается лучшее качество звучания. Это свя­зано с большой шириной полосы частот ЧМ-сигнала, охватывающей гораздо большее число гармоник.

2. При ЧМ-передаче достигается очень низкий уровень шума. Шум - это нежелательные сигналы, которые появляются на выходе обычно в форме изменения амплитуды несущей. В ЧМ-системе эти сигналы легко устраняются путем двустороннего ограничения амплитуды не­сущей. Информация, которую несет изменяющаяся частота, при этом полностью сохраняется.

В этом видео рассказывается о частотной модуляции:

Лекция № 6 Модулированные сигналы

Под модуляцией понимают процесс (медленный по сравнению с периодом несущего колебания), при котором один или несколько параметров несущего колебания изменяют по закону передаваемого сообщения. Получаемые в процессе модуляции колебания называют радиосигналами.В зависимости от того, какой из названных параметров несущего колебания подвергается изменению, различают два основных вида аналоговой модуляции: амплитудную и угловую. Последний вид модуляции, в свою очередь, разделяется на частотную и фазовую.В современных цифровых системах передачи информации широкое распространение получила квадратурная (амплитудно-фазовая, или фазоамплитуд- ная - ФАМ; amplitude phase modulation) модуляция, при которой одновременно изменяются и амплитуда и фаза сигнала. Этот тип модуляции относят как к аналоговым, так и цифровым видам.

В радиосистемах часто применяются и будут применяться различные виды импульсной и цифровой модуляции, при которой радиосигналы представляются в виде так называемых радиоимульсов.

Радиосигналы с аналоговыми видами модуляции В процессе амплитудной модуляции несущего колебания (1)

его амплитуда должна изменяться по закону: (2)

где U H - амплитуда несущей в отсутствие модуляции; ω 0 - угловая частота; φ 0 - начальная фаза; ψ(t) = ω 0 + φ 0 - полная (текущая или мгновенная) фаза несущей; k А - безразмерный коэффициент пропорциональности; e(t) - модулирующий сигнал. U H (t) в радиотехнике принято называть огибающей амплитудно-модулированного сигнала (АМ-сигнала).

Подставив (2) в (1) получим общую формулу АМ- сигнала (3)

Однотональная амплитудная модуляция если модулирующий сигнал - гармоническое колебание (4)

где Е 0 - амплитуда; Ω = 2π/Т 1 = 2πF - угловая частота модуляции; F -

циклическая частота модуляции; Т 1 - период модуляции; θ 0 - начальная фаза.

Подставив формулу (4) в соотношение (3), получим выражение для АМ-сигнала (5)

Обозначив через ∆U = k A E 0 - максимальное отклонение амплитуды АМ- сигнала от амплитуды несущей U H и проведя несложные выкладки, получим (6)

Коэффициент или глубина амплитудной модуляции.

Спектр АМ-сигнала . Применив в выражении (5) тригонометрическую формулу произведения косинусов, после несложных выкладок получим (7)

Из формулы (7) видно, что при однотональной амплитудной модуляции спектр АМ-сигнала состоит из трех высокочастотных составляющих. Первая из них представляет собой исходное несущее колебание с постоянной амплитудой U H и частотой с ω 0 . Вторая и третья составляющие характеризуют новые гармонические колебания, появляющиеся в процессе амплитудной модуляции и отражающие передаваемый сигнал. Колебания с частотами ω 0 + Ω и ω 0 - Ω называются соответственно верхней (upper sideband - USB) и нижней (lower sideband - LSB) боковыми составляющими.

Реальная ширина спектра АМ-сигнала при однотональной модуляции (8)

На практике однотональные АМ-сигналы используются либо для учебных, либо для исследовательских целей. Реальный же модулирующий сигнал имеет сложный спектральный состав. Математически такой сигнал, состоящий из N гармоник, можно представить тригонометрическим рядом N (10)

Здесь амплитуды гармоник сложного модулирующего сигнала E i произвольны, а их частоты образуют упорядоченный спектр Ω 1 < Ω 2 < ...< Ω i < ...< Ω N . В отличие от ряда Фурье частоты Ω i не обязательно кратны друг другу. Подставляя (10) в (3), после несложных преобразований, получим выражение АМ-сигнала с начальной фазой несущего ф0 = О (11)

(12)

Совокупность парциальных (частичных) коэффициентов модуляции.Эти коэффициенты характеризуют влияние гармонических составляющих модулирующего сигнала на общее изменение амплитуды высокочастотного колебания. Воспользовавшись тригонометрической формулой произведения двух косинусов и проделав несложные преобразования, запишем (11) в виде (13)

Рис. 2. Спектральные диаграммы при модуляции сложным сигналом:

а - модулирующего сигнала; б - АМ-сигнала

Ширина спектра сложного АМ-сигнала равна удвоенному значению наивысшей частоты в спектре модулирующего сигнала Ω N , т. е. (14)

Частотная модуляция

При частотной модуляции (frequency modulation; FM) мгновенное значение несущей частоты ω(t) связано с модулирующим сигналом e(t) зависимостью (15)

здесь k Ч - размерный коэффициент пропорциональности между частотой и напряжением, рад/(В-с).

Полную фазу ЧМ-сигнала в любой момент времени t определим путем интегрирования мгновенной частоты, выраженной через формулу (15),

Рис. 3. Частотная однотональная модуляция:

а - несущее колебание; б - модулирующий сигнал; в - ЧМ-сигнал

Максимальное отклонение частоты от значения ω 0 , или девиация частоты (frequency deviation) при частотной модуляции;

Максимальное отклонение от текущей фазы ω 0 t или девиация фазы несущего колебания называется индексом частотной модуляции (index of frequency modulation). Данный парамер определяет интенсивность колебаний начальной фазы радиосигнала.

С учетом полученных соотношений (1) и (16) частотно-модулированный сигнал запишется в следующем виде:

Спектр ЧМ-сигнала при однотональной модуляции. Преобразуем полученное выражение (17)

Спектр ЧМ-сигнала при m«1 (такую угловую модуляцию называют узкополосной). В этом случае имеют место приближенные равенства: (18)

Подставив формулы (18) в выражение (17), после несложных математических преобразований получим (при начальных фазах модулирующего и несущего колебаний θ 0 = 0 и φ 0 = 0): (19)

Видим, что по аналитической записи спектр ЧМ-сигнала при однотональной модуляции напоминает спектр АМ- сигнала и также состоит из несущего колебания и двух боковых составляющих с частотами (ω 0 + Ω) и (ω 0 - Ω) причем и амплитуды их рассчитываются аналогично (только вместо коэффициента амплитудной модуляции М в формуле для ЧМ-сигнала фигурирует индекс угловой модуляции m). Но есть и принципиальное отличие, превращающее амплитудную модуляцию в частотную, знак минус перед одной из боковых составляющих.

Спектр ЧМ-сигнала при m > 1 . Из математики известно (20) (21)

где J n (m) - функция Бесселя 1 -го рода n-го порядка.

В
теории функций Бесселя доказывается, что функции с положительными и отрицательными индексами связаны между собой формулой (22)

Ряды (20) и (21) подставим в формулу (17), а затем заменим произведение косинусов и синусов полусуммами косинусов соответствующих аргументов. Тогда, с учетом (22), получим следующее выражение для ЧМ-сигнала (23)

Итак, спектр ЧМ-сигнала с однотональной модуляцией при индексе

модуляции m > 1 состоит из множества высокочастотных гармоник: несущего колебания и бесконечного числа боковых составляющих с частотами ω 0 + nΩ. и ω 0 -nΩ, расположенными попарно и симметрично относительно несущей частоты ω 0 .

При этом, исходя из (22), можно отметить, что начальные фазы боковых колебаний с частотами ω 0 + nΩ. и ω 0 -nΩ совпадают, если m - четное число, и отличаются на 180°, если m - нечетное. Теоретически спектр ЧМ- сигнала (так же и ФМ-сигнала) бесконечен, однако в реальных случаях он ограничен. Практическая ширина спектра сигналов с угловой модуляцией

ЧМ- и ФМ-сигналы, применяемые на практике в радиотехнике и связи, имеют индекс модуляции m>> 1, поэтому

Полоса частот ЧМ-сигнала с однотональной модуляцией равна удвоенной девиации частоты и не зависит от частоты модуляции.

Сравнение помехоустойчивости радиосистем с амплитудной и угловой модуляцией. Следует отметить, что радиосигналы с угловой модуляцией имеют ряд важных преимуществ перед амплитудно-модулированными колебаниями.

1. Поскольку при угловой модуляции амплитуда модулированных колебаний не несет в себе никакой информации и не требуется ее постоянства (в отличие от амплитудной модуляции), то практически любые вредные нелинейные изменения амплитуды радиосигнала в процессе осуществления связи не приводят к заметному искажению передаваемого сообщения.

2. Постоянство амплитуды радиосигнала при угловой модуляции позволяет полностью использовать энергетические возможности генератора несущей частоты, который работает при неизменной средней мощности колебаний.