Сайт о телевидении

Сайт о телевидении

» » Импеданс волны. Что такое волновое сопротивление

Импеданс волны. Что такое волновое сопротивление

Рассмотрим обтекание профиля при числах Маха . В этом диапазоне чисел возникают зоны местных сверхзвуковых скоростей, замыкающиеся скачками уплотнения, необратимые потери механической энергии в которых вызывают дополнительное волновое сопротивление.

Физическая природа волнового сопротивления. Рассмотрим схему обтекания профиля закритическим потоком (рис. 8.8). На верхней поверхности симметричного профиля при нулевом угле атаки приведена схема течения, а на нижней – соответствующая ей эпюра давления.

В передней критической точке скорость течения , а давление . При удалении от передней критической точки давление уменьшается, а скорость течения увеличивается. В точке А профиля и . Далее вниз по потоку скорость течения становится сверхзвуковой и продолжает расти, а давление уменьшается. Непосредственно перед скачком и . За скачком уплотнения скорость течения становится дозвуковой, давление , и при приближении к задней кромке скорость течения продолжает изоэнтропически уменьшаться до нуля, а давление возрастает до давления заторможенного за скачком уплотнения потока.

Если бы в рассмотренном диапазоне скоростей было возможно только изоэнтропическое обтекание (без скачков), то давление в кормовой части профиля было бы выше и равно . Скачок уплотнения приводит к понижению давления в кормовой части, что и обусловливает появление дополнительного, так называемого волнового, сопротивления.

Волновое сопротивление тем больше, чем больше потери полного давления в скачке. Величина коэффициента волнового сопротивления зависит от числа Маха перед скачком уплотнения. Чем больше , тем меньше коэффициент восстановления полного давления , т. е. больше потери и больше коэффициент волнового сопротивления.

Приближенный метод определения волнового сопротивления. Рассмотрим профиль со скачком на верхней поверхности (рис. 8.9). Выделим элементарную струйку, проходящую через скачок уплотнения. Проведем на расстоянии, достаточно удаленном от профиля, две контрольные поверхности I–I и II–II.

Параметры течения на поверхности I–I – , а на II–II – .

Из условия постоянства расхода следует: = , где dy – элемент длины вдоль контрольной поверхности. Применяя теорему о количестве движения к массе газа, заключенной между контрольными поверхностями, получаем следующее:

где – волновое сопротивление. С учетом уравнения неразрывности и принимая во внимание, что , выражение для запишем как

Во всех струйках, не пересекающих скачок уплотнения, и . Тогда для определения величины силы сопротивления интегрирование можно производить только по длине скачка. Считая , получаем: . Но так как , а также учитывая, что и , получаем . Поскольку , то , и при уменьшении величины коэффициента восстановления полного давления (с увеличением числа Маха и интенсивности скачка) сила волнового сопротивления возрастает.


После некоторых преобразований можно получить выражение для коэффициента волнового сопротивления профиля:

(8.2)

где А – постоянный коэффициент, который в общем случае зависит от формы профиля (для большинства современных профилей А ).

Формулой (8.2) можно пользоваться до . Из нее следует, что при заданном уменьшение возможно путем увеличения .

Особенности обтекания крыла конечного размаха

дозвуковым потоком

Аэродинамические характеристики крыла конечного размаха зависят как от формы сечения (профиля), так и от формы крыла в плане.

Рассмотрим крыло конечного размаха. Заметим, что характеристики сечений крыла различны из-за влияния перетекания воздуха через боковые кромки крыла. Профиль, а значит и крыло, создает подъемную силу только тогда, когда циркуляция вектора скорости вокруг профиля . То есть, по своему действию можно заменить систему профилей, составляющих крыло, присоединенным вихрем. Заменим крыло простейшей вихревой системой – одним П-об-разным присоединенным вихрем (рис. 8.10).

Циркуляцию скорости Г присоединенного вихря в данной задаче определим исходя из условия равенства подъемной силы крыла силе, создаваемой П-образным вихрем: , т. е.

где – расстояние между свободными полубесконечными вихрями, сбегающими с концов крыла. Это расстояние больше размаха крыла на некоторую величину: . Можно принять, что .

Каждый свободный концевой вихрь индуцирует вокруг себя поле скоростей. Профили скорости для левого и правого концевых вихрей, а также эпюра суммарной скорости приведены на рис. 8.10. При начале координат в центре крыла величина скорости, индуцируемой обоими вихрями и направленной вниз, может быть определена по формуле Био–Савара для полубесконечного вихря как

. (8.4)

Средняя по размаху крыла скорость или с учетом выражения (8.4) после интегрирования получим

. (8.5)

Подставив значение циркуляции из уравнения (8.3), учтем, что , и проведем замену (удлинение крыла). Тогда при получим , и из формулы (8.5) следует, что

Анализ формулы (8.6) показывает, что за появление индуцированной скорости ответственны подъемная сила и конечность крыла (для реального крыла ). Индуктивная скорость изменяет действительный угол атаки крыла (рис. 8.11), поскольку вблизи поверхности крыла скорость течения .

Скорость перпендикулярна вектору , и ее называют скоростью скоса потока . Действительный вектор скорости отклоняется от вектора скорости набегающего потока на угол скоса .

Ввиду малости угла скоса, . С учетом формулы (8.6)

Допустим, что крыло установлено под углом к вектору скорости набегающего потока (установочный угол атаки). Вследствие скоса потока истинный угол атаки крыла равен . Чем больше удлинение крыла , тем меньше скос потока и меньше различие между истинным и установочным углами атаки.

Создаваемая крылом подъемная сила , перпендикулярная вектору местной скорости , дает составляющую на направление скорости набегающего потока. Поскольку появление этой составляющей спровоцировано скосом потока за счет индуцированных концевыми вихрями скоростей, то ее принято называть силой индуктивного сопротивления . В соответствии с рис. 8.11 можно записать выражения для коэффициентов подъемной силы и индуктивного сопротивления: .

Ввиду малости и . С учетом выражения (8.7) для угла скоса потока, получим

Формула (8.8) показывает, что индуктивное сопротивление обязано своим появлением подъемной силе – главной цели создания крыльев – и конечности размаха крыла. Индуктивное сопротивление и коэффициент индуктивного сопротивления равны нулю при нулевой подъемной силе () или при .

Линеаризованная теория обтекания плоской пластинки

сверхзвуковым потоком

Рассмотренная ранее схема линеаризации течений разрежения и уплотнения (см. гл. 5) позволяет просто решить задачу обтекания плоской пластинки при малых углах атаки a.

Рассмотрим обтекание плоской пластинки, расположенной под малым углом атаки к вектору скорости набегающего потока (жидкость идеальная). В сверхзвуковом потоке малые возмущения против вектора скорости не распространяются, поэтому на плоскую пластинку набегает невозмущенный поток и обтекание ее верхней и нижней поверхностей можно рассматривать независимо друг от друга (рис. 8.12).

Линия тока, направленная вдоль верхней поверхности, испытывает в носовой части возмущение в виде разрежения , а в кормовой части – в виде сжатия . Для нижней поверхности порядок следования возмущений противоположный .

Так как между передней и задней кромками обеих поверхностей нет источников возмущения, то скорости потока и давления на этих поверхностях постоянны и равны и . Для нахождения давлений и коэффициентов давлений воспользуемся полученными ранее формулами (5.10) и (5.10а) для линеаризованного течения, подставляя в них и учитывая, что для верхней поверхности , а для нижней . Тогда

Строков Андрей.

Итак, вторая статья из цикла, про которую я уже неоднократно упоминал. Сегодня постараюсь упихать в головы читателей несколько ключевых моментов, без которых нельзя жить на свете. До сих пор я говорил про согласование, согласованную нагрузку. Что-то упоминал про ширину линии, которая вроде как должна быть строго определенной. Пришло время расставить точки. Вам потребуется пластиковая бутылка и ножницы бесконечная пара проводов и немного терпения, добро пожаловать под кат!


Зайдем издалека.
Возьмем генератор с внутренним сопротивлением R. И к нему подключим нагрузку R1. Обычная такая схема.

Вопрос в том, насколько эта схема эффективна? При каком сопротивлении на нагрузке можно получить максимальную мощность?

Немного расчетов:

Чтобы получить максимум мощности вспомним производную и приравняем к нулю.

и вот мы уже получаем, что максимальная мощность выделяется, когда R = R1 . В этом случае говорят, что система генератор-нагрузка согласована.

Ну а теперь пошли фокусы. Подаем в нашу схему большую частоту. В прошлый раз мы видели, что в разных частях линии напряжение может быть совсем разным. Вот пусть на нашей схеме будет вот так:

да, забудьте пока про узлы-пучности, стоячих волн нет, рассматриваем только падающую. В любом случае «в лоб» закон ома для этой картинки уже не применить. Вот когда начинается такая беда, значит мы имеем дело с длинной линией . Заодно можно вспомнить наши сопли из припоя и 1206 конденсаторы, которые начинают вести себя как попало на каких то частотах, опять же из-за того, что размеры сравнимы с длиной волны и там появляются всякие шлейфы, стоячие волны и резонансы. Все это называют устройствами с распределенными параметрами . Обычно говорят про распределенные параметры, когда размеры элементов хотя бы раз в 10 больше длины волны.
Так что же нам делать с нашей схемой? В прошлый раз мы говорили про длину линий, не затрагивая другие параметры. Пора исправить это недоразумение.
Представьте, что генератор (или выходной каскад, например), качает в линию мощность. Никакой отраженной волны (пока) нет, наш генератор вообще не знает, что с той стороны линии, качает в никуда. Это как будто берем динамик, подносим к трубе и в трубу уходят звуковые волны.

Параметры такой системы можно определить по-разному. Можно определить(пока, правда, не понятно, как) ток и напряжение. А можно определить мощность (произведение тока на напряжение) и отношение тока к напряжению в линии. Последняя величина имеет смысл сопротивления. Ее так и называют — волновое сопротивление. И величина эта для конкретно взятой линии (и на конкретной частоте, если быть точным) всегда одинаковая, от генератора не зависит.
Если вы возьмете бесконечную линию с каким-то заданным Z (так обычно обозначают волновое сопротивление) и подключите к ней ваш мультиметр, он это сопротивление и покажет. Хотя, казалось бы, просто пара проводов. А вот если пара будет конечной, как это обычно и бывает в нашей жизни, возникнет отражение на конце линии, стоячая волна. Поэтому ваш мультиметр покажет бесконечное сопротивление (это будет, в принципе, пучность).

Итак, по линии бежит волна. Волновое сопротивление линии не меняется (говорят, что линия регулярна ), отношение напряжения к току одинаковое. А теперь — бах! — сопротивление линии совершает скачок.

Так как дальше соотношения между током и напряжением будут уже другие, «лишний» или недостающий ток в точке скачка формирует отраженную волну. Для более подробного понимания процесса неплохо бы записать для точки телеграфные уравнения, но для начала достаточно помнить, что
При отражении от ХХ фаза не меняется
При отражении от КЗ фаза переворачивается на 180°

Ну и осталось сказать про подключение линии к нагрузке. В принципе, нагрузку, можно рассматривать как бесконечную линию с волновым сопротивлением равным сопротивлению нагрузки. Прошлый пример с мультиметром, я думаю, это показывает весьма наглядно тем, кто в начале поста запасся бесконечным проводом. Так что если сопротивление нагрузки равно сопротивлению линии, система согласована, ничего не отражается, КСВ равно единице. Ну а если сопротивления отличаются, справедливы все вышеописанные рассуждения про отражение.
Собственно, в прошлый раз мы рассматривали КЗ и ХХ, вот на эти вещи можно смотреть как на нагрузки с нулевым или бесконечным сопротивлением.

Используя переотражения на скачках волнового сопротивления и линии с разным волновым сопротивлением, можно получить множество разных вещей в СВЧ. Нужно рассказывать про диаграмму смита и комплексное волновое сопротивление, это не сегодня. Приведу только пару примеров:
1. Если отрезок линии имеет длину в половину длины волны, его волновое сопротивление не важно. Волновое сопротивление на входе равно волновому сопротивлению на выходе.

2. Для отрезка в четверть волны c волновым сопротивлением линии Z волновое сопротивление на входе рассчитывается по формуле

Так можно согласовывать линии с разным волновым сопротивлением в узком диапазоне (в котором одна-три-пять-… четвертей длины волны соответствует длине шлейфа)

А теперь посмотрим на линию передачи поближе.

Волновое сопротивление

Зная комплексные амплитуды электрического и магнитного полей в коаксиальной линии передачи, можно вычислить мощность электромагнитного поля, переносимую вдоль оси :

Подставляя сюда выражения для комплексных амплитуд поля и проводя интегрирование, получаем

, Вт

Эту формулу можно рассматривать как выражение для мощности, выделяемой на некотором резисторе при подаче на него синусоидального напряжения . Поскольку , можно записать

.

Величина носит название волнового сопротивления коаксиальной линии передачи и имеет большое значение при решении вопросов ее реализации. Это объясняется тем, что часто используют последовательное включение линий передачи, обладающих различающимися параметрами, например, диаметрами проводников. Естественным требованием, предъявляемым к стыку двух линий, является согласование, т. е. отсутствие отражений от данной сосредоточенной неоднородности. Поскольку в плоскости стыка напряжение есть непрерывная функция координаты , мощность может быть целиком передана из одной линии в другую лишь при условии согласования:

Данная формула во многих случаях служит критерием согласования с достаточной для инженерных целей точностью. Приближенность ее заключается в том, что здесь не учитывается изменения структуры поля в непосредственной близости от плоскости скачка геометрических размеров, происходящее за счет возбуждения нераспространяющихся колебаний высших типов.

Возможность использования понятия волнового сопротивления для линий передачи с волнами ТЕМ объясняется тем, что здесь напряжение , в отличие от волноводов, может быть введено однозначным образом. Поэтому волновое сопротивление полностью характеризуется геометрическими параметрами поперечного сечения, а также диэлектрической проницаемостью использованного материала.

Отметим также, что волновое сопротивление линии можно выразить через ее погонную емкость. В случае ТЕМ-волны в любой однородной идеальной линии текут только продольные поверхностные токи. Их плотность связана с плотностью поверхностных зарядов уравнением непрерывности

,

которое можно записать в виде

.

Интегрируя последнее равенство по контуру поперечного сечения проводника, по которому течет рассматриваемый ток, получим

где − комплексная амплитуда заряда на единицу длины проводника. Учитывая общее выражение для волнового сопротивления и определение понятия емкости конденсатора , получим

,

где − погонная емкость линии. В случае коаксиальной линии определяется выражением для емкости цилиндрического конденсатора, которое получается при рассмотрении задач электростатики в курсе общей физики.

Ещё не начав читать статью, попробуйте подумать над вопросом: побежит ли ток, если подключить к батарейке очень длинный провод(более чем 300 тысяч километров, сверхпроводник), если противоположные концы провода никуда не подключены? Сколько Ампер?

Прочитав эту статью, вы поймёте в чём смысл волнового сопротивления. Из лекций по теории волн я вынес только то, что волновое сопротивление - это сопротивление волнам. Большая часть студентов, кажется, поняла ровно то же самое. То есть ничего.

Эта статья - весьма вольный перевод этой книги: Lessons In Electric Circuits
Статьи по теме: На Хабре: Контакт есть, сигнала нет
Трэш в Википедии: Длинная линия

50-омный кабель?

В начале моего увлечения электроникой я часто слышал про волновое сопротивление коаксиального кабеля 50Ω. Коаксиальный кабель – это два провода. Центральный провод, изолятор, оплётка, изолятор. Оплётка полностью закрывает центральный проводник. Такой провод используется для передачи слабых сигналов, а оплётка защищает сигнал от помех.

Я был озадачен этой надписью – 50 Ω. Как могут два изолированных проводника иметь сопротивление друг с другом 50 Ω? Я измерил сопротивление между проводами и увидел, как и ожидалось, обрыв. Сопротивление кабеля с одной стороны до другой - ноль. Как бы я не подключал омметр, я так и не смог получить сопротивление 50 Ом.

То, что я не понимал в то время – так это как кабель реагирует на импульсы. Конечно, омметр работает с постоянным током, и показывает, что проводники не соединены друг с другом. Тем не менее, кабель, из-за влияния ёмкости и индуктивности, распределённой по всей длине, работает как резистор. И так же, как и в обычном резисторе, ток пропорционален напряжению. То, что мы видим как пара проводников – важный элемент цепи в присутствии высокочастотных сигналов.

В этот статье вы узнаете что такое линия связи. Многие эффекты линий связи не проявляются при работе с постоянным током или на сетевой частоте 50 Гц. Тем не менее, в высокочастотных схемах эти эффекты весьма значительны. Практическое применение линий передач – в радиосвязи, в компьютерных сетях, и в низкочастотных схемах для защиты от перепадов напряжения или ударов молний.

Провода и скорость света

Рассмотрим следующую схему. Цепь замкнута – лампа зажигается. Цепь разомкнута – лампа гаснет. На самом деле лампа зажигается не мгновенно. Ей как минимум надо раскалиться. Но я хочу заострить внимание не на этом. Хотя электроны двигаются очень медленно, они взаимодействуют друг с другом гораздо быстрее – со скоростью света.

Что произойдёт, если длина проводов будет 300 тысяч км? Так как электроэнергия передаётся с конечной скоростью, очень длинные провода внесут задержку.


Пренебрегая временем на разогрев лампы, и сопротивлением проводов, лампа зажжётся примерно через 1 секунду после включения выключателя. Несмотря на то, что строительство сверхпроводящих ЛЭП такой длины создаст огромные практические проблемы, теоретически это возможно, поэтому наш мысленный эксперимент реален. Когда переключатель выключается, лампа будет продолжать получать питание ещё 1 секунду.
Один из способов представить движение электронов в проводнике – это вагоны поезда. Сами вагоны движутся медленно, только начинают движение, и волна сцеплений передаётся гораздо быстрее.

Другая аналогия, возможно более подходящая – волны в воде. Объект начинает движение горизонтально вдоль поверхности. Создастся волна из-за взаимодействия молекул воды. Волна будет перемещаться гораздо быстрее, чем двигаются молекулы воды.

Электроны взаимодействуют со скоростью света, но движутся гораздо медленнее, подобно молекуле воды на рисунке выше. При очень длинной цепи становится заметна задержка между нажатием на выключатель и включением лампы.

Волновое сопротивление

Предположим, у нас есть два параллельных провода бесконечной длины, без лампочки в конце. Потечёт ли ток при замыкании выключателя?


Несмотря на то, что наш провод - сверхпроводник, мы не можем пренебречь ёмкостью между проводами:

Подключим питание к проводу. Ток заряда конденсатора определяется формулой: I = C(de/dt). Соответственно, мгновенный рост напряжения должен породить бесконечный ток.
Однако ток не может быть бесконечным, так как вдоль проводов есть индуктивность, ограничивающая рост тока. Падение напряжения в индуктивности подчиняется формуле: E = L(dI/dt). Это падение напряжения ограничивает максимальную величину тока.




Поскольку электроны взаимодействуют со скоростью света, волна будет распространяться с той же скоростью. Таким образом, нарастание тока в индуктивностях, и процесс зарядки конденсаторов будет выглядеть следующим образом:







В результате этих взаимодействий, ток через батарею будет ограничен. Так как провода бесконечны, распределённая емкость никогда не зарядится, а индуктивность не даст бесконечно нарастать току. Другими словами, провода будут вести себя как постоянная нагрузка.
Линия передачи ведёт себя как постоянная нагрузка так же, как и резистор. Для источника питания нет никакой разницы, куда бежит ток: в резистор, или в линию передачи. Импеданс (сопротивление) это линии называют волновым сопротивлением, и оно определяется лишь геометрией проводников. Для параллельных проводов с воздушной изоляцией волновое сопротивление рассчитывается так:


Для коаксиального провода формула расчёта волнового сопротивления выглядит несколько иначе:

Если изоляционный материал – не вакуум, скорость распространения будет меньше скорости света. Отношение реальной скорости к скорости света называется коэффициентом укорочения.
Коэффициент укорочения зависит только от свойств изолятора, и рассчитывается по следующей формуле:


Волновое сопротивление известно также как характеристическое сопротивление.
Из формулы видно, что волновое сопротивление увеличивается по мере увеличения расстояния между проводниками. Если проводники отдалить друг от друга, становится меньше их ёмкость, и увеличивается распределённая индуктивность (меньше эффект нейтрализации двух противоположных токов). Меньше ёмкость, больше индуктивность => меньше ток => больше сопротивление. И наоборот, сближение проводов приводит к большей ёмкости, меньшей индуктивности => больше ток => меньше волновое сопротивление.
Исключая эффекты утечки тока через диэлектрик, волновое сопротивление подчиняется следующей формуле:

Линии передачи конечной длины

Линии бесконечной длины – интересная абстракция, но они невозможны. Все линии имеют конечную длину. Если бы тот кусок 50 Ом кабеля RG-58/U, который я измерял с помощью омметра несколько лет назад, был бесконечной длины, я бы зафиксировал сопротивление 50 Ом между внутренним и внешним проводом. Но эта линия не была бесконечной, и она измерялась как открытая, с бесконечным сопротивлением.

Тем не менее, волновое сопротивление важно также и при работе с проводом ограниченной длины. Если к линии приложить переходное напряжение, потечёт ток, который равен отношению напряжения к волновому сопротивлению. Это всего лишь закон Ома. Но он будет действовать не бесконечно, а ограниченное время.

Если в конце линии будет обрыв, то в этой точке ток будет остановлен. И это резкое прекращение тока повлияет на всю линию. Представьте себе поезд, идущий вниз по рельсам, имеющий слабину в муфтах. Если он врежется в стенку, он остановится он не весь сразу: сначала первый, потом второй вагон, и т.д.

Сигнал, распространяющийся от источника, называют падающей волной. Распространение сигнала от нагрузки обратно к источнику называют отражённой волной.

Как только нагромождение электронов в конце линии распространяется обратно к батарее, ток в линии прекращается, и она ведёт себя как обычная открытая схема. Всё это происходит очень быстро для линий разумной длины так, что омметр не успевает померить сопротивление. Не успевает поймать тот промежуток времени, когда схема ведёт себя как резистор. Для километрового кабеля с коэффициентом укорочения 0,66 сигнал распространяется всего 5.05мкс. Отражённая волна идёт обратно к источнику ещё столько же, то есть в сумме 10,1 мкс.

Высокоскоростные приборы способны измерить это время между посылкой сигнала и приходом отражения для определения длины кабеля. Этот метод может быть применён также для определения обрыва одного или обоих проводов кабеля. Такие приборы называются рефлектометры для кабельных линий. Основной принцип тот же, что и у ультразвуковых гидролокаторов: генерация импульса и замер времени до эха.

Аналогичное явление происходит и в случае короткого замыкания: когда волна достигает конца линии, она отражается обратно, так как напряжение не может существовать между двумя соединёнными проводами. Когда отражённая волна достигает источника, источник видит, что произошло короткое замыкание. Всё это происходит за время распространения сигнала туда + время обратно.

Простой эксперимент иллюстрирует явление отражения волн. Возьмите верёвку, как показано на рисунке, и дёрните её. Начнёт распространяться волна, пока она полностью не погасится за счёт трения.

Это похоже на длинную линию с потерями. Уровень сигнала будет падать по мере продвижения по линии. Однако, если второй конец закрепить на твёрдую стенку, возникнет отражённая волна:

Как правило, назначением линии передачи является передача электрического сигнала от одной точки к другой.

Отражения могут быть исключены, если терминатор на линии в точности равен волновому сопротивлению. Например, разомкнутая или короткозамкнутая линия будет отражать весь сигнал обратно к источнику. Но если на конце линии включить резистор 50 Ом, то вся энергия будет поглощена на резисторе.

Это всё имеет смысл, если мы вернёмся к нашей гипотетической бесконечной линии. Она ведёт себя как постоянный резистор. Если мы ограничим длину провода, то он будет себя вести как резистор лишь некоторое время, а потом – как короткое замыкание, или открытая цепь. Однако, если мы поставим резистор 50 Ом на конец линии, она вновь будет себя вести как бесконечная линия.






В сущности, резистор на конце линии, равный волновому сопротивлению, делает линию бесконечной с точки зрения источника, потому что резистор может вечно рассеивать энергию так же, как и бесконечные линии могут поглощать энергию.

Отражённая волна, вернувшись обратно к источнику, может вновь отразиться, если волновое сопротивление источника не равно в точности волновому сопротивлению. Этот тип отражений особенно опасен, он делает вид, что источник передал импульс.

Короткие и длинные линии передачи

В цепях постоянного тока волновое сопротивление, как правило, игнорируется. Даже коаксиальный кабель в таких цепях применяется лишь для защиты от помех. Это связано с короткими промежутками времени распространения по сравнению с периодом сигнала. Как мы узнали в предыдущей главе, линия передачи ведёт себя как резистор до тех пор, пока отражённая волна на вернётся обратно к источнику. По истечении этого времени (10,1 мкс для километрового кабеля), источник видит полное сопротивление цепи.

В случае, если цепь передаётся низкочастотный сигнал, источник на какое-то время видит волновое сопротвление, а потом – полное сопротивление линии. Мы знаем, что величина сигнала не равна по всей длине линии из-за распространения со скоростью света(почти). Но фаза низкочастотного сигнала изменяется незначительно за время распространения сигнала. Так, мы можем считать, что напряжение и фаза сигнала во всех точках линии равна.

В этом случае мы можем считать что линия является короткой, потому что время распространения гораздо меньше периода сигнала. В противовес, длинная линия это такая, где за время распространения форма сигнала успевает измениться на большую часть фазы, либо даже передать несколько периодов сигнала. Длинными линиями считаются такие, когда фаза сигнала меняется более чем на 90 градусов за время распространения. До этого в данной книге мы рассматривали лишь короткие линии.

Чтобы определить тип линии(длинная, короткая), мы должны сравнить её длину и частоту сигнала. Например, период сигнала с частотой 60Гц равен 16,66мс. При распространении со скоростью света(300 тысяч км/с) сигнал пройдёт 5000км. Если коэффициент укорочения будет меньше 1, то и скорость будет меньше 300 тысяч км/с, и расстояние меньше во столько же раз. Но даже если использовать коэффициент укорочения коаксиального кабеля(0,66), расстояние всё равно будет велико - 3300км! Независимо от длины кабеля это называется длиной волны.

Простая формула позволяет вычислить длину волны:


Длинная линия – такая, где хотя бы умещается ¼ длины волны в длину. И теперь вы можете понять, почему все линии прежде относятся к коротким. Для систем питания переменного тока 60Гц длина кабеля должна превышать 825 км, чтобы эффекты распространения сигнала стали значительными. Кабели от аудио усилителя к колонкам должны быть более 7,5 км в длину, чтобы существенно повлиять на 10кГц звуковой сигнал!

Когда имеешь дело с радиочастотными системами, задача с длиной линии передачи является далеко не такой тривиальной. Рассмотрим 100МГц радиосигнал: его длина волны 3 метра даже на скорости света. Линия передачи должна быть более 75 см в длину, чтобы считаться длинной. С коэффициентом укорочения 0,66 эта критическая длина составит всего 50 см.

Когда электрический источник подключен к нагрузке через короткую линию передачи, доминирует импеданс нагрузки. То есть, когда линия короткая, волновое сопротивление не влияет на поведение схемы. Мы можем это увидеть при тестировании коаксиального кабеля омметром: мы видит разрыв. Хотя линия ведёт себя как резистор 50Ом (RG/58U кабель) на короткое время, после этого времени мы увидим обрыв. Так как время реакции омметра значительно больше времени распространения сигнала, мы видим обрыв. Эта очень большая скорость распространения сигнала не позволяет нам обнаружить 50Ом переходное сопротивление омметром.

Если мы будем использовать коаксиальный кабель для передачи постоянного тока, кабель будет считаться коротким, и его волновое сопротивление не будет влиять на работу схемы. Обратите внимание, что короткой линией будет называться любая линия, где изменение сигнала происходит медленнее, чем сигнал распространяется по линии. Почти любая физическая длина кабеля может являться короткой с точки зрения волнового сопротивления и отражённых волн. Используя же кабель для передачи высокочастотного сигнала, можно по разному оценивать длину линии.

Если источник подключен к нагрузке через длинные линии передачи, собственное волновое сопротивление доминирует над сопротивлением нагрузки. Иными словами, электрически длинная линия выступает в качестве основного компонента в цепи, и её свойства доминируют над свойствами нагрузки. С источник, подключенным к одному концу кабеля и передаёт ток на нагрузку, но ток в первую очередь идёт не в нагрузку, а в линию. Это становиться всё более верным, чем длиннее у нас линия. Рассмотрим наш гипотетический 50Ом бесконечный кабель. Независимо от того, какую нагрузку мы подключаем на другой конец, источник будет видеть лишь 50Ом. В этом случае сопротивление линии является определяющим, а сопротивление нагрузки не будет иметь значения.

Наиболее эффективный способ свести к минимуму влияние длины линии передачи – нагрузить линию сопротивлением. Если сопротивление нагрузки равно волновому сопротивлению, то любой источник будет видеть то же самое сопротивление, независимо от длины линии. Таким образом, длина линии будет влиять только на задержку сигнала. Тем не менее, полное совпадение сопротивления нагрузки и волнового сопротивления не всегда возможно.

В следующем разделе рассматриваются линии передачи, особенно когда длина линии равна дробной части волны.

Надеюсь, вы прояснили для себя основные физические принципы работы кабелей
К сожалению, следующая глава очень большая. Книга читается на одном дыхании, и в какой-то момент надо остановиться. Для первого поста, думаю, этого хватит. Спасибо за внимание.

Особенности распространения ультразвука в тканях тела человека.

Диапазоне частот.

Человеческого уха воспринимать упругие колебания среды только в ограниченном

Деление на ультразвук, звук и инфразвук условно. В основе такого деления - свойство

Инфразвуковых волн, имеющих частоту ниже нижней границы слышимого звука.

Но своей природе ультразвуковые волны не отличаются от звуковых, а также

Границу слышимого звука.

Физически тело человека представляет собой неоднородную среду с участками различной плотности и акустических свойств, разделёнными фазовыми поверхностями на различные области.

При прохождении ультразвука в теле человека имеются следующие особенности:

1) Скорость ультразвука в тканях тела человека зависит от вида ткани и тканевой среды. Её значения (м/с) для отдельных тканей следующие:

печень 1570

2) Ткани тела человека сильно рассеивают и отражают ультразвук. Причина - морфологическая неоднородность тканей, наличие множественных поверхностей раздела,
различия в акустических сопротивлениях. Например, акустическое
сопротивление черепа и крови различаются в 3.5 раза.

3) В тканях тела человека происходит сильное ослабление ультразвуковой волны вследствие её поглощения. Пример: значение коэффициента поглощения черепа в 14 раз больше коэффициента поглощения мозга.

Волновое сопротивление - сопротивление, которое встречает электромагнитная волна при распространении вдоль однородной линии без отражения:

где U п и I п - напряжение и ток падающей волны;

U от и I от - то же отраженной волны.

Таким образом, величина волнового сопротивления не зависит от длины кабельной линии и постоянна в любой точке цепи.

В общем виде волновое сопротивление - комплексная величина и может быть выражена через действительную и мнимую части:

В табл. 3-1 приведены формулы для расчета Z в α θ β.

Волновое сопротивление коаксиального или одножильного кабеля в металлической оболочке

У изоляционных материалов, у которых диэлектрическая проницаемость почти не зависит от частоты,

где 3335,8 - постоянная, принятая МЭК;- коэффициент укорочения длины волны.

При расчете радиочастотных кабелей стремятся получить оптимальную конструкцию, обеспечивающую высокие электрические характеристики при наименьшем расходе материалов. Так, например, при использовании меди для внутреннего и внешнего проводников радиочастотного кабеля минимальное затухание достигается при отношении, ом, максимальная электрическая прочность - при, ом и максимум передаваемой мощности - при, ом.



Точность и стабильность параметров кабеля зависят от величины допусков диаметров внутреннего и внешнего проводников и стабильности ε.

Зависимость волнового сопротивления симметричного кабеля от частоты приведена на рис. 3-7. Модуль волнового сопротивления Z B с изменением частоты уменьшается отпри f = 0 дои остается неизменным во всей области высоких частот. Угол волнового сопротивления равен нулю при f = 0 и на высоких частотах. На тональных частотах (f ≈ 800 гц) угол волнового сопротивления - наибольший. В кабельных линиях преобладает емкостная составляющая волнового сопротивления, и поэтому угол волнового сопротивления всегда отрицателен, а по величине не превышает 45°.

В кабельной линии, однородной по электрическим характеристикам на всем протяжении от генератора до приемника, с нагрузкой по концам, имеющей сопротивление, равное волновому (Z r = Z n = Z B), вся передаваемая электромагнитная анергия полностью поглощается приемником без отражения.

В неоднородных линиях и при несогласованных нагрузках в местах электрических несогласованности возникают отраженные волны и часть энергии возвращается к началу линии. Передаваемая энергия при несогласованной нагрузке значительно меньше, чем при согласованной.

Отраженные волны искажают частотную характеристику собственного волнового сопротивления кабеля. В этом случае на входе линии не волновое, а входное сопротивление Z вх.

Соотношение между энергией, поступающей к приемнику, и энергией отраженной зависит от сопротивлений приемника Z B и волнового Z B и характеризуется коэффициентом отражения

При согласованной нагрузке (Z n = Z в) коэффициент отражения равен нулю, и энергия полностью поглощается приемником. При коротком замыкании (Z п = 0) и режиме холостого хода (Z n = ∞) коэффициенты отражения равны соответственно - 1 и + 1.

Для обеспечения хорошего качества связи и телевизионной передачи по коаксиальному кабелю необходимо, чтобы отклонение волнового сопротивления ΔZ не превышало 0,45 ом, что соответствует коэффициенту отражения

В результате деформаций или наличия эксцентриситета в расположении внутреннего проводника по отношению к внешнему параметры кабеля могут оказаться неравномерно распределенными по его длине. В местах неоднородностей происходят отклонения волнового сопротивления от номинального.

Волновое сопротивление спиральных кабелей (кабелей задержки)

Волновое сопротивление двухкоаксиальных кабелей (с индивидуальными экранами поверх изоляции) вычисляют по формулам для коаксиальных кабелей; оно равно сумме волновых сопротивлений обоих кабелей.

Волновое сопротивление симметричного кабеля в области частот f = 15 000 кгц и выше:

неэкранированного

экранированного

Входным сопротивлением Z вх называется сопротивление на входе линии при любом нагрузочном сопротивлении на ее конце и выражается отношением напряжения U 0 к току I o в начале линии:

где.

Таблица 3 - 1

Приближенные формулы для расчета вторичных параметров передачи кабелей связи

Область применения формул Соотношение между R и ωL Расчетные формулы
α, неп/км β, рад/км Z в, ом
Постоянный ток (f = 0) ωL = 0
Тональные частоты (f < 800 гц)
Высокие частоты и кабели с повышенной индуктивностью
Промежуточные частоты

Волново́е сопротивле́ние

в акустике, в газообразной или жидкой среде - отношение звукового давления р в бегущей плоской волне (См. Волны) к скорости v колебания частиц среды. В. с. характеризует степень жёсткости среды (т. е. способность среды сопротивляться образованию деформаций) в режиме бегущей волны. В. с. не зависит от формы волны и выражается формулой: p/v = ρc ,где ρ - плотность среды, с - скорость звука. В. с. представляет собой Импеданс акустический среды для плоских волн. Термин «В. с.» введён по аналогии с В. с. в теории электрических линий; при этом давление соответствует напряжению, а скорость смещения частиц - электрическому току.

В. с. - важнейшая характеристика среды, определяющая условия отражения и преломления волн на её границе. При нормальном падении плоской волны на плоскую границу раздела двух сред коэффициент отражения определяется только отношением В. с. этих сред; если В. с. сред равны, то волна проходит границу без отражения. Понятием В. с. можно пользоваться и для твёрдого тела (для продольных и поперечных упругих волн в неограниченном твёрдом теле и для продольных волн в стержне), определяя В. с. как отношение соответствующего механического напряжения (См. Напряжение), взятого с обратным знаком, к скорости частиц среды.

Отраже́ние - физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения).

В акустике отражение является причиной эха и используется в гидролокации. Вгеологии оно играет важную роль в изучении сейсмических волн. Отражение наблюдается на поверхностных волнах в водоёмах. Отражение наблюдается со многими типами электромагнитных волн, не только для видимого света. Отражение УКВ и радиоволн более высоких частот имеет важное значение для радиопередач и радиолокации. Даже жёсткое рентгеновское излучение и гамма-лучи могут быть отражены на малых углах к поверхности специально изготовленными зеркалами. В медицине отражение ультразвука на границах раздела тканей и органов используется при проведении УЗИ-диагностики.

Количественно коэффициент отражения равен отношению потока излучения, отраженного телом, к потоку, упавшему на тело :

Сумма коэффициента отражения и коэффициентов поглощения, пропускания и рассеяния равна единице. Это утверждение следует из закона сохранения энергии.

В тех случаях, когда спектр падающего излучения настолько узок, что его можно считать монохроматическим, говорят омонохроматическом коэффициенте отражения. Если спектр падающего на тело излучения широк, то соответствующий коэффициент отражения иногда называют интегральным .

В общем случае значение коэффициента отражения тела зависит как от свойств самого тела, так и от угла падения, спектрального состава и поляризации излучения. Вследствие зависимости коэффициента отражения поверхности тела от длины волны падающего на него света визуально тело воспринимается как окрашенное в тот или иной цвет.

1. Падающий луч, отраженный луч и перпендикуляр в точке падения лежат в одной плоскости

2. Угол падения равен углу отражения