Сайт о телевидении

Сайт о телевидении

» » Генераторы с самовозбуждением. Принцип самовозбуждения генератора с параллельным возбуждением. Самовозбуждение генераторов

Генераторы с самовозбуждением. Принцип самовозбуждения генератора с параллельным возбуждением. Самовозбуждение генераторов

  • Автомобильный генератор — обороты, напряжение
  • Винт для генератора без переделки, мощность и обороты ветряка
  • Самовозбуждение генератора — схема и описание
  • Автомобильный генератор самый доступный генератор, и если планируется делать ветрогенератор, то сразу невольно при поиске генератора вспоминается именно автомобильный генератор. Но без переделки на магниты и перемотки статора он не подходит для ветряка так-как рабочие обороты автомобильных генераторов 1200-6000 об/м.

    По-этому чтобы избавится от катушки возбуждения ротор переделывают на неодимовые магниты, и чтобы поднять напряжение перематывают статор более тонким проводом. В итоге получается генератор мощностью при 10 м/с 150-300 ватт без использования мультипликатора (редуктора). Винт ставят на такой переделанный генератор диаметром 1.2-1.8 метра.

    Сам автомобильный генератор очень доступен и его можно легко купить Б/У или новый в магазине, стоят они не дорого. Но вот чтобы переделать генератор нужны неодимовые магниты, провод для перемотки, а это ещё дополнительные траты денег. Так-же конечно надо уметь это делать, иначе можно всё испортить и выкинуть в мусор. Без переделки генератор можно использовать если сделать мультипликатор, к примеру если передаточное соотношение сделать 1:10, то при 120 об/м начнётся зарядка аккумулятора 12 вольт. При этом катушка возбуждения (ротор) будет потреблять около 30-40 ватт, а всё что останется пойдёт в аккумулятор.

    Но если делать с мультипликатором, то конечно получится мощный и большой ветрогенератор, но при малом ветре катушка возбуждения будет потреблять свои 30-40 ватт и аккумулятору мало что достанется. Нормальная работа будет наверно на ветре от 5 м/с. При этом винт для такого ветряка должен быть диаметром около 3 метра. Получится сложная и тяжёлая конструкция. А самое сложное это найти готовый мультипликатор, подходящий с минимальными переделками, или изготовление самодельного. Мне кажется сделать мультипликатор сложнее и дороже чем переделать генератор на магниты и перемотать статор.

    Если авто-генератор использовать без переделки, то он начнёт заряжать АКБ 12 вольт при 1200 об/м. Сам я не проверял при каких оборотах начинается зарядка, но в интернете после долгих поисков нашёл некоторую информацию, которая указывает что при 1200 об/м начинается зарядка АКБ. Есть упоминания что генератор заряжает при 700-800 об/м, но проверить это не представляется возможным. Я по фотографиям статора определил что обмотка статора современных генераторов ВАЗ состоит из 18 катушек, а каждая катушка имеет по 5 витков. Посчитал какое должно получится напряжение по формуле из вот этой статьи Расчёт генератора. В результате у меня как-раз получилось что 14 вольт при 1200 об/м. Конечно генераторы не все одинаковые и я где-то читал про 7 витков в катушках вместо пяти, но в основном 5 витков в катушке, а значит всё-таки 14 вольт достигается при 1200 об/м, от этого будем исходить далее.

    Двух-лопастной винт на генератор без переделки

    В принципе если на генератор поставить скоростной двух-лопастной винт диаметром 1-1.2 метра, то такие обороты легко достигаются при ветре 7-8м/с. Значит можно сделать ветряк и не переделывая генератор, только работать он будет на ветре от 7м/с. Ниже скриншот с данными двух-лопастного винта. Как видно обороты такого винта при ветре 8м/с составляют 1339 об/м.

    >

    Так-как обороты винта растут линейно в зависимости от скорости ветра, то (1339:8*7=1171 об/м) при 7м/с начнётся зарядка АКБ. При 8 м/с ожидаемая мощность опять-же по расчёту должна быть (14:1200*1339=15.6 вольт) (15.6-13=2.6:0.4=6.5 ампер*13=84.5 ватт). Полезная мощность винта судя по скриншоту 100 ватт, по-этому он свободно потянет генератор и должен недогруженный выдать даже больше оборотов чем указано. В итоге 84 .5 ватт должно быть с генератора при 8 м/с, но катушка возбуждения потребляет около 30-40 ватт, значит в аккумулятор пойдёт всего 40-50 ватт энергии. Совсем мало конечно так-как переделанный на магниты генератор и перемотанный при этом-же ветре на оборотах 500-600 об/м выдаст в три раза больше мощности.

    При ветре 10 м/с обороты будут (1339:8*10=1673 об/м), напряжение в холостую (14:1200*1673=19.5 вольт), а под нагрузкой АКБ (19.5-13=6.5:0.4=16.2 ампер*13=210 ватт). В итоге получится 210 ватт мощности минус 40 ватт на катушку и полезной мощности останется 170 ватт. При 12 м/с будет примерно так 2008 об/м, напряжение без нагрузки 23.4 вольта, ток 26 ампер, минус 3 ампер на возбуждение, и того 23 ампер ток зарядки аккумулятора, мощность 300 ватт.

    Если сделать винт меньшего диаметра, то обороты ещё возрастут, но тогда винт не потянет генератор когда достигнет порог зарядки акб. Я посчитал разные варианты во время написания этой статьи и дву-лопастной винт оказался самым оптимальным для генератора без переделки.

    В принципе если рассчитывать на ветра от 7м/с и выше, то такой ветрогенератор будет хорошо работать и выдавать 300 ватт при 12 м/с.

    При этом стоимость ветряка будет совсем небольшой, по сути только цена генератора, а винт и остальное можно сделать из того что есть. Только винт нужно делать обязательно по расчётам.

    Переделанный правильно генератор начинает давать заряду уже с 4 м/с, при 5 м/с ток зарядки уже 2 ампера, при этом так-как ротор на магнитах, то весь ток идет в АКБ. При 7 м/с ток зарядки 4-5 ампер, а при 10 м/с уже 8-10 ампер. Получается что только при сильном ветре 10-12 м/с генератор без переделки может сравнится с переделанным, но он ничего не даст на ветре меньше 8 м/с.

    Самовозбуждение автомобильного генератора

    Чтобы генератор самовозбуждался без аккумулятора в ротор нужно поставить пару маленьких магнитиков. Если катушку возбуждения запитать от аккумулятора, то она постоянно и не зависимо от того вырабатывает энергию или нет ветрогенератор, будет потреблять свои 3 ампера и заряжать аккумулятор. Чтобы этого не происходило нужно поставить блокирующий диод, чтобы ток шол только в акб, а обратно не уходил.

    Катушку возбуждения можно запитать от самого генератора, минус на от корпуса, а плюс от плюсового болтика. А в зубы ротора нужно поставить пару маленьких магнитиков для самовозбуждения. Для этого можно просверлить сверлом дырочки и на клей посадить маленькие неодимовые магнитики. Если нет неодимовых магнитов то можно вставить обычные ферритовые от динамиков, если маленькие, то просверлится и вставить, или проложить между когтей и залить эпоксидной смолой.

    Так-же можно использовать так-называемую таблетку, то-есть реле-регулятор как в автомобиле, который будет отключать возбуждение если напряжение АКБ достигло14.2 вольта, чтобы не перезарядить.

    Ниже на рисунке схема самовозбуждения генератора. Вообще генератор сам возбуждается так-как ротор имеет остаточную намагниченность, но это происходит на высоких оборотах, лучше для надёжности добавить магниты. В схему включен реле-регулятор, но его можно исключить. Развязывающий диод нужен чтобы аккумулятор не разряжался так-как без диода ток будет течь в обмотку возбуждения (ротор).

    >

    Так-как ветрогенератор будет очень маленький с винтом диаметром всего 1 метр, то никакие защиты от сильного ветра не нужны и с ним ничего не случится если будет крепкая мачта и крепкий винт.

    Есть генераторы на 28 вольт, но если их использовать для зарядки 12 вольт АКБ, то оборотов нужно в два раза меньше, около 600 об/м. Но так-как напряжение будет не 28 вольт, а 14, то катушка возбуждения будет давать только половину мощности и напряжение генератора будет меньше, по-этому ничего не получится из этого. Можно конечно попробовать в генератор, статор которого намотан на 28 вольт, поставить ротор на 12 вольт, тогда должно быть получше и зарядка начнётся раньше, но тогда нужны два одинаковых генератора чтобы заменить ротор, или искать отдельно ротор или статор.

    § 35. Аккумуляторная батарея
    § 36. Генератор
    § 37. Стартер
    § 38. Приборы освещения и сигнализации
    § 39. Магнето и запальная свеча
    § 40. Техническое обслуживание электрооборудования

    § 36. Генератор

    Генератор служит для питания током электроприборов при работе двигателя при средней и большой частоте вращения, а также для подзарядки аккумуляторной батареи.

    Он превращает механическую энергию в электрическую на основе принципа электромагнитной индукции, т. е. возбуждении электрического тока в проводнике при пересечении его магнитными силовыми линиями.

    На тракторах ЮМЗ-6Л/М и МТЗ-50 новых выпусков устанавливают генератор переменного тока Г-306А (62). Он представляет собой закрытую бесконтактную трехфазную динамомашину с встроенным выпрямителем. Характерная особенность этого генератора - отсутствие щеточных контактов и вращающихся обмоток. Мощность генератора 400 Вт, номинальный выпрямленный ток 32 А.

    Генератор состоит из статора 3, ротора 4 и выпрямителя 5. Статор собран из электротехнической стали. Он имеет 9 зубцов, на которые надеты катушки обмотки 2. Каждая фаза обмотки состоит из трех катушек. В каждой из трех фаз катушки соединены последовательно, а фазы соединены в треугольник.

    С обеих сторон к статору закреплены крышки. На изоляционной колодке задней крышки 11 помещены зажимы 1 переменного тока, к которым выведены концы фаз обмотки статора. К этим же болтам присоединены выводы выпрямителя ВЛ. На задней крышке расположены также выводные зажимы М, В.

    62. Генератор:

    1-зажимы переменного тока, 2 - обмотка возбуждения, 3 - статор, 4 - ротор, 5 - выпрямитель, 6 - шкив привода генератора с крыльчаткой вентилятора, 7 - диод, 8 - передняя крышка, 9 - катушка обмотки возбуждения, 10- выводной зажим постоянного тока, 11 -задняя крышка

    Ш постоянного тока. С внутренней стороны передней крышки.V прикреплена катушка 9 обмотки возбуждения, начало обмотки соединено с массой генератора, а конец подведен к зажиму Ш.

    Ротор 4 генератора в поперечнике имеет вид шестилучевой звезды, которая изготовлена из листов электротехнической стали и жестко посажена на вал. Последний вращается на двух шарикоподшипниках, не требующих замены смазки, закрытой конструкции, установленных в крышках.

    Задняя крышка и прикрепленная к ней лапа отлиты из алюминиевого сплава. К передней стальной крышке приварены две лапы для крепления генератора и регулировки натяжения приводного ремня.

    Выпрямитель 5 закреплен на передней крышке. Он состоит из оребренного алюминиевого корпуса, теплопровода и шести полупроводниковых диодов «прямой» и «обратной» полярности. Теплопровод изолирован от корпуса тонкой изоляционной прокладкой. В корпус вмонтированы три диода «обратной» полярности, а в теплопровод - диоды «прямой» полярности. Выводы диодов соединены попарно с фазами генератора. Между корпусом выпрямителя и крышкой генератора установлено резиновое уплотнительное кольцо, которое предотвращает попадание пыли и грязи в выпрямитель.

    Для лучшего охлаждения корпус выпрямителя оребрен. Выпрямитель собран по трех-

    фазной мостовой схеме.

    Положительный полюс выпрямителя присоединен к зажиму В на колодке задней крышки генератора гибким проводом.

    Привод генератора осуществляется ремнем через шкив б, закрепленный на валу шпонкой и гайкой. К шкиву со стороны генератора прикреплен вентилятор, который служит для охлаждения генератора и выпрямителя.

    Принцип действия генератора известен из физики. При вращении ротора магнитное поле системы возбуждения пересекает трехфазную обмотку статора и индуктирует в ней переменную по величине и направлению электродвижущую силу (э. д. с). Под действием э. д. с. в цепи появляется переменный ток, который преобразуется выпрямителем в постоянный и подается к потребителям.

    Нормальная работа генератора возможна при условии соблюдения правил эксплуатации.

    Генератор нельзя мыть топливом и струей воды под давлением. Для возбуждения генератора необходимо включить включатель «массы», иначе он не будет вырабатывать электроэнергию. Если после пуска двигателя выключить «массу», то при исправном генераторе контрольная лампа «Включения массы» продолжает гореть. При остановке двигателя «массу» выключают во избежание разряда аккумуляторной батареи через обмотку возбуждения генератора.

    63. Реле-регулятор:

    а - устройство, б - включение в цепь; / - регулятор напряжения, 2 - реле защиты, 3 - крышка, 4 - транзистор, 5 - корпус, 6 - винт сезонной регулировки напряжения, 7 - включатель массы; Г - генератор, Р - реле-регул я тор, 6 - аккумуляторная батарея, М - масса, Ш - зажим, соединяющийся с обмоткой возбуждения регулятора (шунтом), 6 - зажим, соединяющийся с зажимом выпрямителя

    Генератор описанного типа работает в комплекте с контактно-транзисторным реле-регулятором РР-362Б (63). Реле-регулятор установлен под щитком приборов и включает в себя два элемента: регулятор напряжения / и реле 2 защиты.

    Регулятор напряжения поддерживает напряжение генератора в пределах 13,0-14,2 В. Он состоит из транзистора 4 и вибрационного реле, которое управляет транзистором, включенным в цепь обмотки возбуждения генератора.

    Реле 2 защиты служит для защиты транзистора от токов коротких замыканий цепи обмотки возбуждения на «массу».

    На панели реле-регулятора имеются три зажима: М - для присоединения «массы» генератора, Ш - для присоединения обмотки возбуждения генератора, В-для присоединения выпрямителя, нагрузки и аккумуляторной батареи. С внешней стороны реле-регулятора находится устройство ППР (переключатель посезонной регулировки напряжения), позволяющее посезонно регулировать разницу напряжения в пределах 0,8-1,0 В. Вскрывать и регулировать реле-регулятора может только мастер-наладчик в мастерской, располагающей необходимыми измерительными приборами. Запрещается даже кратковременное соединение (проверка «на искру») зажимов Ш и В генератора и реле-регулятора с «массой».

    Генератор Г-304А, устанавливаемый ранее на изучаемые тракторы, по принципу работы не отличается от генератора Г-306А,

    однако их схемы, конструкция и материалы не одинаковы.

    Генератор Г-306А более мощный, чем генератор Г-304А, имеет меньшую массу и габаритные размеры. Он одностороннего возбуждения, а Г-304А - двустороннего так как имеет две катушки обмотки возбуждения, помещенные каждая в одну из крышек и соединенные между собой параллельно. Оба генератора работают в паре с реле-регулятором РР-362Б.

    Строй-Техника.ру

    Строительные машины и оборудование, справочник

    К атегория:

    Тракторы МТЗ-100 и МТЗ-102

    Унифицированный тракторный генератор 46.3701

    Общие сведения. Генератор 46.3701 предназначен для тракторов и самоходных сельскохозяйственных машин. Его мощность 0,7 кВт, и выполнен он со встроенным регулятором напряжения.

    Наличие мощного источника электропитания на тракторе позволяет решить ряд задач по улучшению условий работы тракториста и повышения производительности ei о труда.

    Генератор 46.3701 имеет несколько модификаций, отличающихся размерами приводного шкива. Так, например, генератор модификации 54.3701 устанавливают взамен генератора Г306.

    На унифицированном генераторе, помимо основного выпрямителя, имеется дополнительный (вывод Д), с помощью которого предотвращается разряд батареи на обмотку возбуждения генератора при стоянках, а также подсоединяется реле блокировки стартера.

    Генератор 46.3701 обладает надежным самовозбуждением благодаря применению постоянных ма1нитов. Потеря остаточной намагниченности исключена. Обеспечено самовозбуждение с подключенной номинальной нагрузкой, что позволяет проводить сельхозработы и при отсутствии аккумуляторной батареи на тракторе.

    Уменьшение удельной металлоемкости или повышение удельной мощности в 1,75 раза получено в результате применения циркуляционного охлаждения по типу автомобильных генераторов. От попадания крупных частиц внутренняя полость генератора защищена сетчатой пластмассовой крышкой со стороны забора воздуха. Крышка легкосъемная, и ее нужно периодически (один раз в сезон) снимать для удаления скопившихся под ней частиц.

    Эффективное охлаждение подшипниковых узлов значительно повышает ресурс генератора.

    Устройство генератора показано на рисунке 1. Он представляет собой однополюсную индукторную трехфазную машину.

    Ротор состоит из вала с расположенными на нем шестилучевым пакетом-звездочкой из листовой стали, втулкой-магнитопроводом, шкивом и центробежным вентилятором. В специальном алюминиевом каркасе с шестью клювообразными выступами, размещенными между зубцами пакетов ротора, залиты магниты.

    Статор представляет собой пакет с девятью зубцами, на которых расположены катушки (по три в фазе). Крышка со стороны привода - стальная с приваренным фланцем со стороны вентилятора. На фланце имеются крепежная и натяжная лапы. В этой крышке находится втул-ка-магнитопровод с обмоткой возбуждения. В алюминиевой крышке со стороны, противоположной приводу, установлен выпрямительный блок с тремя дополнительными диодами. Пластмассовая сетчатая крышка с отверстиями под электрические выводы прикрывает торец алюминиевой крышки.

    Рис. 1. Генератор 46.3701:
    1- задняя крышка; 2 - втулка poropa; 3 - крышка регулирующего устройства; 4 - подшипник; 5 - блок; 6 - стяжной болг; 7 - ротор; 8 - статор; 9 - катушка возбуждения, 10 - вентилятор; 11 - крышка подшипника; 12 - шкив; 13 - подшипник; 14 - передняя крышка.

    В обеих крышках подшипника имеются окна для забора и выброса охлаждающего воздуха. В крышке со стороны привода установлен подшипник 6-180603, а с противоположной стороны - подшипник 6-180502. В полости между алюминиевой и пластмассовыми крышками расположен блок интегрального регулятора.

    Генератор стянут тремя болтами. В отличие от генератора 13.3701 (Г306) все электрические соединения находятся внутри. На рисунке 110 показана электрическая схема соединений генератора 46.3701, она практически не отличается от схемы генератора 13.3701.

    Установка генератора. Присоединительный размер между лапами-90 ±0,4 мм, что позволяет в случае необходимости устанавливать генератор вместо генератора 13.3701. Остальные габаритные и присоединительные размеры такие же, как у 13.3701 и Г306. Генератор 46:3701 при поставке в запчасти имеет размер между лапами 130 мм. Лапы задней крышки генератора закрепляют болтом большей длины с установкой на него гаек либо специальной разрезной втулки в отверстии задней лапы, которая может перемешаться в осевом направлении.

    На рисунке 3 показаны варианты креплений генератора на кронштейнах размером 90 и 130 мм.

    На литом кронштейне дизеля Д-245 генератор не устанавливают,

    так как боковая стенка кронштейна мешает повороту генератора при надевании ремня. Требуется либо доработка кронштейна, либо его замена на кронштейн другого размера.

    При техническом обслуживании генератора необходимо следить за надежностью всех креплений, натяжением приводного ремня, общей его исправностью и чистотой. Пыль и грязь удаляют щеткой или влажной тряпкой.

    Исправность генератора проверяют до начала работы с помощью контрольной лампы, установленной на щитке приборов. Если генератор исправен, лампа загорается при замыкании включателя «массы» перед пуском дизеля. После пуска контрольная лампа гаснет. Остановив дизель, нужно разомкнуть выключатель «массы» (контрольная лампа при этом гаснет).

    На тракторе исправность генератора проверяют только при неработающем дизеле, отъединив от всех клемм генератора провода.

    Проверку выполняют с помощью лампы напряжением 12 В и аккумуляторной батареи.

    Проверяя обмотку возбуждения, отрицательный вывод аккумуляторной батареи соединяют с клеммой М генератора, ее положительный вывод-через контрольную лампу с клеммой Ш генератора.

    Если обмотка возбуждения исправна, то лампа горит вполнакала (сила тока 3,0…3,5 А). Полный накал лампы (сила тока более 3,5 А) указывает на короткое замыкание _между обмоткой возбуждения и корпусом генератора. Если лампа не горит, имеется обрыв в обмотке возбуждения.

    Исправность выпрямителя и обмоток статора проверяют, соблюдая следующий порядок.

    Рис. 2. Электрическая схема генератора 46.3701.

    3. Схемы установки генератора. 54.3701:
    1 - генератор; 2 - регулировочные шайбы; 3 - болт М10 X 55; 4 - кронштейн; 5 - болт; 6 - гайка № 110.

    1. Отрицательный вывод аккумуляторной батареи соединяют с клеммой М генератора, а ее положительный вывод -через контрольную лампу с клеммой В. В этом случае лампа не должна гореть. Если же лампа горит, это свидетельствует о следующих неисправностях выпрямителя: короткое замыкание в одном или нескольких диодах обеих полярностей; пробой изоляции между теплоотводом и корпусом выпрямителя; замыкание положительного вывода на корпус генератора.

    2. Отрицательный вывод аккумуляторной батареи соединяют с одной из клемм переменного тока генератора, а ее положительный вывод - через контрольную лампу с клеммой В генератора. При этом лампа не должна гореть. В противном случае пробит один или несколько диодов прямой полярности.

    3. Положительный вывод аккумуляторной батареи через контрольную лампу соединяют с одной из клемм переменного тока генератора, а ее отрицательный вывод -с клеммой М генератора. Лампа также не должна гореть. Если же лампа загорается, значит, пробит один или несколько диодов обратной полярности или произошло короткое замыкание обмотки статора на корпус генератора.

    К атегория: — Тракторы МТЗ-100 и МТЗ-102

    Главная → Справочник → Статьи → Форум

    Неисправности и ремонт генератора трактора МТЗ

    Как быть, если вы обнаружили, что при номинальной частоте вращения коленвала двигателя амперметр отображает разрядный ток? Проверяем натяжение ремня генератора. Если натяжение нормально, ищем обрыв проводов в цепи питания обмотки возбуждения. Если они в порядке, наверное закислились контакты подсоединительных проводов.

    Кстати, при межвитковом замыкании или обрыве витков в обмотке возбуждения, замыкания обмотки статора на корпус, при пробое диодов обратной или прямой полярности выпрямителя возникает такая же ситуация.

    Почему может появится большой зарядный ток? Вполне вероятно короткое замыкание пластин аккумуляторной батареи, а это ведет к уменьшению внутреннего сопротивления аккумулятора и увеличению тока.

    Шум и стуки в генераторе могут возникнуть из-за ослабления крепления шкива привода генератора, разрушения подшипников или выработку их посадочных мест. Вот и получается шум из-за задевания ротора за статор.

    Как проверить работу генератора 464.3701 на тракторе? Подключаем потребителей электроэнергии, частоту вращения коленвала двигателя доводим до номинальной, вольтамперметром КИ-1093 замеряем между «+» и незакрашенным местом корпуса генератора (рис.

    2.2.1) и, плавно прибавляя ток нагрузки до 30 А, измеряем напряжение. Оно должно быть не менее 12,5 В.

    Рис. 2.2.1. Схема проверки напряжения отдачи генератора под нагрузкой на тракторе МТЗ-80, МТЗ-82:
    1 - генератор; 2 - вольтамперметр КИ-1003

    Что делать, если напряжение генератора сильно отличается от номинального или вообще его нет при отключении аккумуляторной батареи? Генератор нужно снять для проверки и, возможно, последующей замены. Как проверить генератор МТЗ-80, МТЗ-82? Вначале нужно проверить исправность основных элементов генератора с помощью контрольной лампы на 12 В.

    Последовательность действий следующая: снимаем заднюю пластмассовую крышку и интегральное устройство (ИУ); далее высвобождаем выводы катушки возбуждения и дополнительного выпрямителя с болтов панели выводов. Проверяем отсутствие короткого замыкания в диодах или между обмотками и корпусом генератора (см. рис. 2.2.2).

    Рис. 2.2.2. Схемы проверки генератора на отсутствие короткого замыкания МТЗ-80, МТЗ-82
    а - как проверить диоды выпрямительного блока; б - как проверить обмотки статора и диоды обратной полярности; в - как проверить диоды прямой полярности; г - как проверить диоды дополнительного выпрямителя; д - как проверить обмотки возбуждения на корпус генератора;
    1 - корпус генератора; 2 - клемма « + »; 3 - клемма « Ш »; 4 - выводы фаз выпрямительного блока; 5 - аккумуляторная батарея; 6 - клемма « Д »; 7 - клемма вывода конца обмотки возбуждения; 8 - клемма вывода начала обмотки возбуждения; 9 - контрольная лампа

    При коротком замыкании диодов, обмотки или пробоя на корпус контрольная лампа загорается. Так должно быть. При нарушении изоляции обмоток и неисправностях диодов генератор нужно менять. Выверку генератора осуществляют на контрольно-испытательных стендах КИ-968 или 532М.

    В первую очередь проверяют напряжение генератора без нагрузки. Оно должно быть не менее 12,5 В при частоте вращения ротора не более 1400 об/мин. Далее сверяют напряжение генератора под нагрузкой, при токе нагрузки 36 А и частоте вращения ротора 3000 об/мин. Оно также должно быть не менее 12,5 В.

    Для проверки интегрального устройства ток нагрузки снижают до 5 А, а частоту вращения ротора стараются держать в пределах 3000 об/мин. При «летнем режиме» (переключатель посезонной регулировки в положении «Л») напряжение на генераторе должно быть 13,2-14,1 В. В «зимнем режиме» (переключатель посезонной регулировки в положении «З») напряжение чуть больше, в пределах 14,3-15,2 В. При несоответствии этим параметрам, интегральное устройство нужно сменить.

    ГЕНЕРАТОРЫ С САМОВОЗБУЖДЕНИЕМ

    На практике, наиболее широко используемыми являются ультразвуковые генераторы, выполненные по схемам самовозбуждения, в которых весь тракт усилителя и колебательной системы охвачен положительной обратной связью так, что в нем возникают автоколебания на частоте максимальных механических колебаний рабочей колебательной системы.

    Примером генераторов с самовозбуждением могут служить генераторы технологических аппаратов фирмы "KLN Ultraschal GVBH" (ФРГ) для ультразвуковой сварки, генераторы аппаратов фирмы " Вranson " (Великобритания) для УЗ ванн очистки и отечественные аппараты типа УЗ01-01.

    Для формирования сигнала обратной связи в генераторах с самовозбуждением применяются мостовые схемы, схемы с дифференциальным трансформатором, а также различные индуктивные и емкостные схемы положительной обратной связи. Основным недостатком генераторов с самовозбуждением является необходимость его перенастройки при смене колебательной системы или рабочих инструментов для выполнения различных технологических операций. Кроме того, в генераторах с самовозбуждением невозможно осуществлять регулирование выходных параметров аппарата (например, интенсивности УЗ колебаний на рабочем инструменте колебательной системы), поскольку необходимыми условиями оптимальной работы аппарата с самовозбуждением являются баланс фаз и баланс амплитуд, нарушение которых ведет к срыву автоколебаний. Происходит это потому, что нарушение режимов работы ультразвуковой колебательной системы (изменение нагрузки, нагрев и т.п., а также изменение электрических и геометрических параметров самой колебательной системы) приводит к расстройке одновременно двух взаимосвязанных систем: системы выделения сигнала обратной связи и системы согласования колебательной системы с генератором. Поэтому перестройка аппарата требует изменения и взаимной увязки всех элементов, что представляет собой сложную техническую задачу, решение которой практически трудно осуществимо в процессе эксплуатации аппарата.

    На практике, при выполнении различных технологических операций, требуется быстрая настройка аппарата при изменении параметров колебательной системы путем изменения характеристик (регулирования) одного электронного элемента, а также осуществление регулирования выходных параметров аппарата в процессе выполнения технологических операций.

    По этой причине, для многофункционального УЗ аппарата необходимо использовать генераторы с самовозбуждением, позволяющие осуществлять широкий спектр операций с различными по конструкции рабочими инструментами колебательных систем и позволяющего легко осуществлять перестройку электронным способом характеристик аппарата в процессе его эксплуатации при обработке различных материалов, сред и объектов при различных уровнях нагрузки и т.п. Принципиальные схемы ультразвуковых генераторов для использования в составе многофункциональных УЗ аппаратов показаны на рис. 4.3. и рис. 4.4. Принципиальные схемы отличаются способами формирования сигнала обратной связи и перестройки характеристик аппарата, а также мощностными характеристиками. Генератор, показанный на рис. 4.3. более прост в реализации, имеет мощность 40 Вт и предназначен для комплектации многофункционального аппарата 2 типа. В нем обратная связь формируется с помощью перестраиваемого емкостного элемента. Генератор, принципиальная схема которого приведена на рис.4.4, более сложен, имеет электронные регулировки частоты и мощности. Такой генератор может использоваться для комплектации аппаратов второго и третьего типов.

    Ввиду большей универсальности этого генератора рассмотрим подробно его устройство и принцип работы.

    Схема ультразвукового генератора, показанная не рис. 4.4 содержит усилитель УЗ частоты, выполненный на транзисторах VT2, VT3, рабочую колебательную систему ZQ1, схему согласования усилителя с колебательной системой, содержащую дроссель L, трансформатор TR3, а также схему положительной обратной связи, выполненную на элементах С1, С2, С3, R1, TR1, схема обратной связи своим входом электрически соединена с выходом усилителя через комплексное сопротивление, включающее выходное сопротивление усилителя и разделительный конденсатор С4, и выполнена в виде последовательно включенных конденсатора и первичной обмотки дополнительного трансформатора TR1, вторичная обмотка которого соединена с механически или электрически перестраиваемым резистивным элементом R1, при этом схема согласования подключена параллельно схеме выделения сигнала обратной связи и выполнена в виде последовательно включенных компенсирующего дросселя L и выходного трансформатора TR3.

    Рис.4.3. Принципиальная схема генератора мощностью 40вт

    Рис.4.4.Принципиальная схема генератора с самовозбуждением мощностью 160 вт.

    УЗ аппарат содержит усилитель на транзисторах VT2 и VT3 , работающих в режиме переключения, что позволяет обеспечить максимальный коэффициент преобразования биполярного напряжения питания в электрические колебания УЗ частоты. Нагрузкой усилителя являются последовательно включенные через разделительный конденсатор С4, компенсирующий дроссель L и первичная обмотка выходного трансформатора TR3. Ко вторичной обмотке трансформатора TR3 подключена рабочая колебательная система ZQ1, содержащая пьезоэлектрический преобразователь, согласующий концентратор и рабочий орган, для ввода УЗ колебаний в обрабатываемые материалы, объекты и среды. Компенсирующий дроссель L и трансформатор TR3 обеспечивают согласование усилителя с рабочей колебательной системой. Схема выделения сигнала обратной связи, являющаяся одновременно схемой настройки и регулирования параметров аппарата, содержит последовательно включенные конденсаторы С1, С2, С3 и первичную обмотку трансформатора TR1. Выделенный сигнал подается на последовательно включенную со схемой выделения сигнала обратной связи первичную обмотку трансформатора TR2.

    Параллельно вторичной обмотке трансформатора TR1 подключен резистивный элемент R1, сопротивление которого может изменяться механическим или электронным способом (например, переменный резистор для ручной регулировки аппарата или электронная схема с перестраиваемым выходным сопротивлением для автоматизированной перестройки аппарата).

    Схема выделения сигнала обратной связи с последовательно подключенной к нему первичной обмоткой трансформатора TR2 соединена с выходом усилителя на транзисторах VT2 и VT3 через комплексное сопротивление, представляющее собой выходное сопротивление усилителя и разделительный конденсатор C4, т.е. подключена параллельно схеме согласования усилителя с рабочей колебательной системой. Обмотки трансформатора TR1 выполнены на общем магнитопроводе.



    Применение вторичной обмотки трансформатора TR1, расположенной на одном магнитопроводе с первичной обмоткой, позволяет за счет изменения величины нагрузочного сопротивления R1 (или выходного сопротивления перестраиваемых электронных схем) изменять индуктивность первичной обмотки трансформатора TR1 Изменение индуктивности первичной обмотки трансформатора TR1 обеспечивает перестройку схемы обратной связи.

    Для пояснения работы аппарата предположим, что при подключении рабочей колебательной системы, используемой для осуществления определенного технологического процесса, не обеспечивается режим самовозбуждения УЗ аппарата из-за отсутствия баланса фаз и амплитуд. В предложенном УЗ аппарате фазовые соотношения между напряжением в точке между конденсатором C4, и дросселем L и выходным током усилителя приводят к изменению формы напряжения обратной связи на входе усилителя за счет наличия конечного выходного сопротивления усилителя.

    В этом случае небаланс фаз и амплитуд приводит к тому, что нагрузка усилителя может носить индуктивный характер и тогда сигнал обратной связи на входе усилителя начинает опережать по фазе выходной сигнал, или может носить емкостной характер и тогда, выходной сигнал опережает сигнал обратной связи. В обоих случаях изменение сопротивления R1 обеспечивает изменение индуктивности первичной обмотки трансформатора TR1 и перестройку параметров схемы обратной связи. Перестройка обратной связи приводит к изменению фазовых соотношений на входе и выходе усилителя и при определенной величине сопротивления R1 обеспечивается условие самовозбуждения. При этом происходит изменение частоты генерации до величины, равной частоте механического резонанса рабочей колебательной системы, и УЗ генератор работает в режиме самовозбуждения. Таким образом, за счет изменения сопротивления R1 частотно зависимая обратная связь обеспечивает перестройку частоты генерации до частоты механического резонанса и в начальный момент обеспечивает работу с любой из необходимых рабочих колебательных систем. При этом на выходе усилителя можно установить определенный сдвиг фаз, обеспечив режим самовозбуждения на частоте, близкой к частоте механического резонанса. Поэтому, обеспечив работу аппарата на частоте, близкой к резонансной, можно снизить интенсивность УЗ колебаний, возбуждаемых в обрабатываемой среде или объекте, т.е. установить оптимальный режим ведения процесса. Такое же изменение, можно осуществлять в процессе эксплуатации аппарата, оперативно изменяя режимы УЗ воздействия. При настройке аппарата для работы в режиме самовозбуждения с выбранной рабочей колебательной системой или необходимыми рабочими инструментами обеспечивается проведение определенного технологического процесса. В ходе проведения этого процесса может происходить изменение параметров колебательной системы (за счет нагревания пьезоэлементов и материала накладок, изменений условий ввода колебаний и т.п.). В этом случае, изменение частоты механического резонанса рабочей колебательной системы, происходящее в небольших пределах, приводит также к изменению характера нагрузки (т.е. нагрузка, приведенная ко входу генератора, начинает носить индуктивный или емкостной характер) и в небольших пределах к изменению фазовых соотношений между током и напряжением на выходе усилителя. В обоих случаях для сохранения условий самовозбуждения, т.е. сохранения на выходе усилителя первоначально установленного сдвига фаз, автоматически осуществляется изменение частоты генерации в небольших пределах до величины, равной резонансной частоте колебательной системы, и условие самовозбуждения постоянно выполняется.

    Таким образом, рассмотренный УЗ генератор позволяет осуществлять технологические процессы с помощью различных рабочих колебательных систем или одной колебательной системы с различными рабочими инструментами, регулировать выходные параметры аппарата, в частности интенсивность УЗ колебаний, в ходе настройки и эксплуатации аппарата, а также обеспечивает сохранение условий первоначально установленного режима самовозбуждения в процессе эксплуатации при изменении параметров колебательной системы и условий воздействия УЗ колебаний на объекты, среды и материалы. Принципиальная схема генератора содержит также реле времени, выполненное на элементе DD1 и обеспечивающее включение технологического аппарата на время проведения технологического процесса. На транзисторе VT1 выполнена схема стабилизации амплитуды колебаний генератора. Перечисленные достоинства делают рассмотренные генераторы пригодными для комплектации многофункциональных УЗ аппаратов мощностью от 40 до 160 Вт.

    Основное достоинство генераторов с самовозбуждением - простота конструкции и удобство эксплуатации. Однако, изготовление таких генераторов требует очень точной предварительной балансировки схемы согласования генератора с колебательной системой и схемы выделения сигнала обратной связи. Кроме того, генераторы с самовозбуждением, не обеспечивают автоматическое изменение параметров генератора (рабочей частоты) в очень широких пределах, например, при изменении параметров акустической нагрузки от газовой среды до твердого тела. Для решения подобных задач используются генераторы с независимым возбуждением, выполненные по схемам с автоподстройкой частоты.

    Условия самовозбуждения такого генератора следующие:

    Первое условие- заключается в том, чтобы у такого генератора существовал остаточный магнитный поток, который индуцирует первоначальную ЭДС в обмотке якоря

    Такой магнитный поток обычно существует в машине вследствие остаточного намагничивания полюсов.

    Второе условие- заключается в том, что, ког­да по обмотке возбуждения начинает протекать ток (под дей­ствием остаточной ЭДС), магнитодвижущая сила должна быть направлена согласно с Fост . Тогда под воздействием результирующей МДС, равной у генератора возрастает ЭДС . Если МДС и направлены встречно, то машина размагничивается и процесс самовозбуждения не произойдет. В этом случае необходимо изменить направление протекания тока в обметке возбуждения, изменив полярность напряжения, прило­женного к ней.

    Третье условие- заключается в том, чтобы со­противление цепи обмотки возбуждения было меньше некоторого значения, называемого критическим.

    Принципиальная электрическая схема генератора с самовоз­буждением приведена на рис. 1.3. Генераторы данного типа имеют две обмотки возбуждения: параллельную и последовательную.

    Рис. 1.3. Принципиальная электрическая схема генератора

    У генераторов параллельного возбуждения цепь обмотки возбуждения подключается параллельно якорю. Ток возбуждения может быть определён:

    где - сопротивление обмотки возбуждения.

    Характеристика холостого хода генератора параллельного возбуждения аналогична такой же характеристике генератора не­зависимого возбуждения.

    Нагрузочная характеристика генератора параллельного воз­буждения будет располагаться ниже, чем соответствующая харак­теристика генератора независимого возбуждения из-за наличия явления саморазмагничивания.

    Внешней характеристикой генератора параллельного возбуж­дения называется зависимость при и . В отличие от генераторов с независимым возбужден­ием, у которых при снятии внешней характеристики ток возбужде­ния , у генераторов параллельного возбуждения - является переменной величиной, зависящей от тока нагрузки . Это связано с тем, что при изменении изменяется напряжение на зажимах якоря генератора, к которому подключена обмотка возбуждения.

    У генераторов параллельного возбуждения с ростом тока на­грузки напряжение генератора уменьшается значительнее, чем у генераторов независимого возбуждения. Это связано с тем, что помимо двух причин, вызывающих понижение напряжения U с рос­том тока нагрузки (падение напряжения в якоре и размагничивающего действия реакции якоря) существует ещё и третья причина: яв­ление саморазмагничивания. Это явление заключается в том, что с возрастанием тока нагрузки уменьшается ток возбуждения за счет понижения напряжения U из-за влияния первых двух причин.

    Генератор параллельного возбуждения может быть загружен до некоторого максимального значения тока якоря . При дальнейшем уменьшении сопротивления нагрузки ток нагрузки начи­нает резко уменьшаться, т.к. напряжение U падает быстрее, чем уменьшается сопротивление .Это связано с тем, что при больших токах нагрузки магнитная система переходит в ненасыщенное состояние вследствие саморазмагничивания и преобладающее значение имеют факторы, вызывающие падение напряжения на сопротивление якоря.

    Ток якоря , достигнув значения начинает уменьшаться и при достигает значения тока ко­роткого замыкания генератора. Значение определяется только остаточной ЭДС и сопротивлением обмотки якоря (U=0 и I в =0 ).

    Регулировочная характеристика генератора с параллельным возбуждением имеет такой же вид, как и у генератора независимого возбуждения.

    Генераторы смешанного возбуждения имеют две обмотки возбуждения: параллельную и последовательную (см. рис. 1.3). Как правило, параллельная обмотка возбуждения является основной, а последовательная – вспомогательной.

    Обмотки возбуждения могут выключаться согласно, т.е. так, чтобы их магнитодвижущие силы складывались. Целью включения последовательной обмотки является компенсация падения напряжения на сопротивлении обмотки якоря и размагничивающего действия ре­акции якоря. За счет этой обмотки можно обеспечить автоматичес­кую стабилизацию напряжения генератора в определенном диапазоне

    изменения нагрузки.

    Это объясняется тем, что возрастающий ток нагрузки, протекая по последовательной обмотке возбуждения, вызывает увеличе­ние МДС этой обмотки. МДС последовательной обмотки, суммируясь с МДС параллельной обмотки, компенсирует уменьшение напряжения генератора.

    Если последовательную обмотку включить встречно, так что­ бы МДС последовательной и параллельной обмоток были бы противоположно направлены, то внешняя характеристика такого генератора будет крутопадающей, поскольку рост тока нагрузки приводит к резкому уменьшению магнитного потока и ЭДС, наводимой в обмотке якоря.

    Встречное включение последовательной и параллельной обмо­ток возбуждения используется в тех случаях, когда необходимо ограничить ток короткого замыкания, (сварочные генераторы и т.п.)

    ОТЧЕТ

    по лабораторной работе №1:

    Выполнил: студент гр. ЭТ-21-10

    Шоглев Р.Г.

    Преподаватель:

    Пичугин Ю.П.

    Чебоксары 2012

    Лабораторная работа №1

    «Исследование генератора постоянного тока»

    Цель работы: исследование генератора постоянного тока с различными видами возбуждения, снятие и изучение различных характеристик, в частности нагрузочная и характеристика холостого хода.

    Необходимые исходные сведения

    Устройство и принцип действия

    На статоре машин постоянного тока (рис. 6) имеются об­мотки возбуждения, расположенные на главных полюсах, а так­же обмотка якоря, расположенная на роторе.

    В установившемся режиме полюсная система статора созда­ет неизменное по направлению магнитное поле, которое прони­зывает якорь. При вращении якоря в этом поле в его проводни­ках наводится переменная ЭДС. Специальное устройство - кол­лектор и щетки, которые можно рассматривать как механиче­ский выпрямитель, позволяет получить на выводах обмотки яко­ря практически постоянную во времени ЭДС.

    Способы возбуждения генераторов постоянного тока

    Генераторы с независимым возбуждением

    Если независимая обмотка возбуждения L1G (см. рис.1) по­лучает питание от стороннего источника постоянного тока, воз­буждение называется независимым. Обычно у крупных генера­торов таким источником служит вспомогательный генератор небольшой мощности, называемый возбудителем.

    В учебной лаборатории независимая обмотка возбуждения питается от внутренней сети постоянного тока.

    Генераторы с параллельным возбуждением

    Обмотку возбуждения L1G можно питать от выводов об­мотки якоря самого генератора (см. рис. 2). В этом случае отпа­дает надобность в дополнительном источнике постоянного тока, что является существенным преимуществом генератора с парал­лельным возбуждением. Недостатком параллельного возбужде­ния является значительное уменьшение выходного напряжения при увеличении тока нагрузки генератора.

    Генераторы со смешанным возбуждением

    Генераторы со смешанным возбуждением снабжаются дву­мя обмотками возбуждения: параллельной L1G и последова­тельной L2G (см. рис.З).

    Применение последовательной обмотки, МДС которой про­порциональна току нагрузки, обеспечивает автоматическое уве­личение потока возбуждения с ростом нагрузки и позволяет поддерживать достаточно стабильное напряжение при измене­нии тока нагрузки в широких пределах.

    Самовозбуждение генераторов

    В генераторах с параллельным, последовательным и сме­шанным возбуждениями источником питания обмоток возбуж­дения является якорь самой машины (см. рис. 2, 3).

    Рассмотрим процесс самовозбуждения генератора с парал­лельным возбуждением на холостом ходу. Магнитная система машины, будучи однажды намагниченной, сохраняет неболь­шой поток остаточного магнетизма. При вращении якоря в поле остаточного магнетизма в его обмотке возникает ЭДС Е ост, ко­торая создает в обмотке возбуждения первоначальный ток. Этот ток усиливает магнитное поле машины, вследствие чего напря­жение на зажимах якоря и обмотке возбуждения возрастает, что приводит к увеличению тока возбуждения и т.д. Таким образом, процесс самовозбуждения есть одновременное нарастание на­пряжения на выводах обмотки якоря и тока возбуждения гене­ратора. Пренебрегая сопротивлением якоря, можно считать, что ЭДС в обмотке якоря уравновешивается ЭДС самоиндукции и падением напряжения на активном сопротивлении обмотки воз­буждения:

    где e о - мгновенное значение ЭДС в обмотке якоря; i в - мгно­венное значение тока в обмотке возбуждения; R B , L B – активное сопротивление и коэффициент самоиндукции обмотки возбуж­дения.

    Падение напряжения на активном сопротивлении обмотки возбуждения и R в = i B R B с ростом тока i в растет линейно и изобра­жается (см. рис. 4) прямой ОА. Зависимость e 0 =f(i в) представля­ет собой характеристику холостого хода генератора.

    При значении тока возбуждения, равного i в (рис. 5), произ­водная

    Это означает, что ток i в увеличивается во время переходного про­цесса при самовозбуж­дении. В точке А пере­сечения характеристики холостого хода и пря­мой ОА , ток i в в этой точке перестает нарастать (i в =const ) и процесс самовозбужде­ния заканчивается.

    Процесс самовоз­буждения ( ) возможен при выполнении следующих ус­ловий:

    а) в машине должен быть поток остаточного магнетизма. При отсутствии остаточного магнетизма магнитную систему машины следует намагнитить, пропустив постоянный ток по обмотке возбуждения от постороннего источника;

    б) направления потока остаточного магнетизма и потока возбу­ждения должны быть одинаковыми. Если ток в обмотке возбуж­дения создает магнитный поток, направленный встречно оста­точному, то генератор не возбуждается, нужно изменить на­правление тока в обмотке возбуждения, изменив полярность присоединения ее зажимов к обмотке якоря;

    в) сопротивление в цепи возбуждения должно быть меньше критического. Крити­ческому сопротивления цепи обмотки возбуждения соответст­вует зависимость и R в = i B R B .КР представляющая собой касатель­ную О В к характеристике холостого хода.

    Реакция якоря

    Магнитное поле в машине постоянного тока создается при холостом ходе только обмоткой возбуждения (рис. 6, а). При вращении ротора по направлению стрелки в проводниках об­мотки якоря наводится ЭДС (на рис. 6, а направления ЭДС по­казаны знаками «+» и « ».

    При нагрузке по обмотке якоря протекает ток. В проводни­ках обмотки якоря генератора направление тока совпадает с на­правлением ЭДС. Такое распределение тока в проводниках об­мотки якоря имеет место, когда щетки располагаются на гео­метрической нейтрали (их расположение совпадает с попереч­ной осью q). В результате возникает поле якоря. Воздействие МДС обмотки якоря на поле машины, созданное обмоткой воз­буждения, называется реакцией якоря. Пояснить, как изменяется поле машины в результате этого воздействия, мы можем с по­мощью рис.6. Поле машины при ее холостом ходе (рис, 6, а) соз­дается только МДС обмотки возбуждения. Поле якоря (рис. 6, 6) получается в машине при наличии тока только в обмотке якоря. Его поле имеет ось, совпадающую с линией расположения ще­ток. Из сопоставления рис 6,а и 6,б видно, что МДС обмотки возбуждения и обмотки якоря складываются в пределах одной половины полюса и вычитаются в пределах другой половины полюса. Из-за насыщения ферромагнитных участков, располо­женных близко к воздушному зазору (это в основном зубцы ро­тора), увеличение МДС на половине полюса не приводит к про­порциональному увеличению индукции в воздушном зазоре. В то же время на другой половине полюса, где МДС меньше, на­сыщение отсутствует. Магнитная индукция здесь уменьшается практически пропорционально уменьшению МДС. В результате при нагрузке магнитный поток Ф уменьшается. Таким образом, поперечная реакция якоря является размагничивающей.

    Недостатком генератора с независимым возбуждением является необходимость иметь отдельный источник питания. Но при определенных условиях обмотку возбуждения можно питать током якоря генератора.
    Самовозбуждающиеся генераторы имеют одну из трех схем: с параллельным, последовательным и смешанным возбуждением. На рис. 10 изображен генератор с параллельным возбуждением.

    Обмотка возбуждения подключена параллельно якорной обмотке. В цепь возбуждения включен реостат R в. Генератор работает в режиме холостого хода.
    Чтобы генератор самовозбудился, необходимо выполнение определенных условий.
    Первым из этих условий является наличие остаточного магнитного потока между полюсами. При вращении якоря остаточный магнитный поток индуцирует в якорной обмотке небольшую остаточную ЭДС.
    Рис. 10
    Вторым условием является согласное включение обмотки возбуждения. Обмотки возбуждения и якоря должны быть соединены таким образом, чтобы ЭДС якоря создавала ток, усиливающий остаточный магнитный поток. Усиление магнитного потока приведет к увеличению ЭДС. Машина самовозбуждается и начинает устойчиво работать с каким-то током возбуждения I в = const и ЭДС Е = const, зависящими от сопротивления R в в цепи возбуждения.
    Третьим условием является то, что сопротивление цепи возбуждения при данной частоте вращения должно быть меньше критического. Изобразим на рис. 11 характеристику холостого хода генератора E = f (I в) (кривая 1) и вольт - амперную характеристику сопротивления цепи возбуждения U в = R в ·I в, где U в - падение напряжения в цепи возбуждения. Эта характеристика представляет собой прямую линию 2, наклоненную к оси абсцисс под углом γ (tg γ ~ R в).

    Ток обмотки возбуждения увеличивает магнитный поток полюсов при согласном включении обмотки возбуждения. ЭДС, индуцированная в якоре, возрастает, что приводит к дальнейшему увеличению тока обмотки возбуждения, магнитного потока и ЭДС. Рост ЭДС от тока возбуждения замедляется при насыщении магнитной цепи машины.
    Рис. 11

    Падение напряжения в цепи возбуждения пропорционально росту тока. В точке пересечения характеристики холостого хода машины 1 с прямой 2 процесс самовозбуждения заканчивается. Машина работает в устойчивом режиме.
    Если увеличим сопротивление цепи обмотки возбуждения, угол наклона прямой 2 к оси тока возрастает. Точка пересечения прямой с характеристикой холостого хода смещается к началу координат. При некотором значении сопротивления цепи возбуждения R кр, когда
    γ = γ кр, самовозбуждение становится невозможным. При критическом сопротивлении вольт - амперная характеристика цепи возбуждения становится касательной к прямолинейной части характеристики холостого хода, а в якоре появляется небольшая ЭДС.