Сайт о телевидении

Сайт о телевидении

» » Функция одной переменной основные определения. Понятие функции. График функции. Способы заданий функций

Функция одной переменной основные определения. Понятие функции. График функции. Способы заданий функций

Функция одной переменной

Функции одной переменной.

Введение

В математике основополагающими понятиями являются понятие множества, элемента множества. Математический анализ имеет дело, в основном, с числовыми множествами.

В дальнейшем будем использовать следующую символику:

N - множество натуральных чисел;

Z - множество целых чисел;

Q - множество рациональных чисел;

R - множество действительных чисел;

С – множество комплексных чисел;

Î - знак принадлежности: х Î Х – элемент х принадлежит множеству Х, х Ï Х – х не принадлежит множеству Х;
Ì - знак включения: Х Ì У – множество Х есть подмножество У;
È - знак объединения: Х È У – множество, элементы которого принадлежат Х или У;
Ç - знак пересечения множеств: Х Ç У – множество, элементы которого принадлежат и Х и У одновременно;
\ - знак вычитания множеств: Х \ У – множество, состоящее из элементов множества Х, не принадлежащих У;
" - квантор всеобщности, читается: «для любого», «для всех», «каждый», «всякий» и т. п. ;
$ - квантор существования, читается: «существует», «найдется»;
Ù - логическое «и» (конъюнкция);
Ú - логическое «или» (дизъюнкция);
Þ - знак следствия, читается: «следует», «выполняется», «влечет за собой»;
Û - знак эквивалентности, читается: «тогда и только тогда», «необходимо и достаточно»;
| или: - знаки описания (расшифровки), читаются: «такой, что...», «для которых выполняется...», и т. п.

Например, символьная запись "х ÎN $ y ÎN: (y > x Ú y < x ) читается «для любого натурального числа х найдется натуральное число у такое, что либо y > x , либо y < x ».

Как известно, каждому действительному числу ставится в соответствие единственная точка на числовой прямой. Поэтому в дальнейшем договоримся отождествлять термины «действительное число» и «точка» числовой прямой. Для числовых промежутков будем использовать следующие обозначения:

[a ; b ] или a £ x £ b – замкнутый промежуток или отрезок с началом в точке а и концом в точке b ;


(a ; b ) или a < x < b – открытый промежуток или интервал ;


(a ; b ] или a < x £ b ,

[a ; b ) или a £ x < b

– полуоткрытые промежутки или полуинтервалы;

[a ; +¥) или x ³ a , (–¥; b ] или x £ b – лучи;

(a ; +¥) или x > a , (–¥ ; b ) или x < b – открытые лучи;

(–¥ ; +¥) или –¥ < х < +¥ – координатная прямая (множество R действительных чисел).

В науке и практике приходится иметь дело с разного рода величинами. Одни из них в конкретных условиях остаются неизменными (постоянными), другие – меняются (переменные). Например, объем аудитории, банки – постоянны, а объем воздушного шарика – переменный.

В математическом анализе нас будет интересовать только численное выражение той или иной величины, а не ее природа, т.е. будем рассматривать абстрактные величины. Поэтому, постоянной величиной мы будем называть ту величину, которая принимает фиксированное, конкретное (пусть даже неизвестное) значение. Обозначать это будем: х – const. Чаще всего постоянные обозначают начальными буквами латинского алфавита: a , b , c , ... или греческими a, b, e, l, ... .

Переменной величиной считаем ту, которая может принимать произвольные числовые значения из некоторого множества чисел. Обозначают переменные чаще всего буквами конца латинского алфавита: х , у , z , t ,... . Множество, из которого переменная величина принимает значения, называют областью определения этой переменной и пишут: x ÎD.

Функция одной переменной

Наряду с понятием множества и элемента множества, к основным понятиям математики относят и понятие соответствия. Определенный вид соответствий носит название функции.

Пусть заданы множество Х с элементами х и множество У, состоящее из элементов у (множества Х и У – не пустые, элементы их могут быть любой природы).

Определение 1.1 Если каждому элементу х ÎХ по некоторому закону (правилу) f поставлен в соответствие единственный элемент у Î У, то говорят, что на множестве Х задана функция y = f (x ), х ÎХ или отображение f : Х → У множества Х в множество У.

При этом принята терминология:

х – независимое переменное, или аргумент,

Х – область определения функции, а каждый элемент х ÎХ – значение аргумента,

у – зависимое переменное, или функция от аргумента х ,

У – область значений функции, а каждый элемент у ÎУ такой, что
y
= f (x ) для некоторого х ÎХ, называется значением функции.

В зависимости от множеств Х и У, функции имеют специфические названия и обозначения:

если Х, У – подмножества множества действительных чисел R, то функция у = f (x ) называется действительной функцией действительного аргумента или функцией одной переменной;

если ХÌR, УÌС – комплексная функция действительного аргумента, обозначается z = f (x );

если ХÌС, У ÌС – комплексная функция комплексного аргумента, обозначается w = f (z );

если ХÌN, УÌR – функция натурального аргумента или последовательность у п = f (п );

если ХÌR 2 (т.е. множество точек (x , у ) плоскости), УÌR, z ÎУ – действительная функция двух переменных z = f (x , у );

если ХÌR п (п -мерное арифметическое пространство), УÌR – действительная функция п переменных и = f (x 1 ,х 2 , …, х п ). Эту и перечисленные выше функции называют числовыми функциями;

если ХÌ R, УÌ V 2 (множество геометрических векторов на плоскости) –векторная функция скалярного аргумента, `r (t )= x (t ) +y (t ) ;

если ХÌ R 2 , УÌ V 2 – векторная функция двух скалярных аргументов, `F (x , y ) = P(x , y ) + Q(x , y ) ;

В математическом анализе, в основном, изучаются числовые функции. Рассмотрим сначала действительную функцию одного переменного. Поскольку и аргументом, и функцией при этом является действительная числовая величина, то часто будем употреблять ее в женском роде: независимая переменная, зависимая переменная.

В этом случае определение 1.1 может быть перефразировано так:

Определение 1.2 Если каждому значению переменной х из числового множества ХÌR по некоторому закону f поставлено в соответствие определенное действительное число у , то говорят, что на множестве Х задана числовая функция у = f (x ). При этом х называют независимой переменной (аргументом), у зависимой переменной (функцией), Х – областью определения функции и обозначают Х = D(f ) .

Множество значений, которые принимает у , называется областью значений функции и обозначается Е(f ) . Буква f символизирует то правило, по которому устанавливается соответствие между х и у . Наряду с буквой f используются и другие буквы: y = g (x ), y = h (x ), y = u (x ) . Также функцию можно обозначить z = j(t ), x = f (z ) , s = S (p ) и т. п., т.е. и независимая переменная, и зависимая могут обозначаться любыми буквами латинского алфавита.

Две функции равны тогда и только тогда, когда они имеют одну область определения и при каждом значения аргумента принимают одно и то же значение.

Задать функцию – значит, указать правило, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции.

Основные способы задания функции:

1) Аналитический – с помощью одной или нескольких формул, например

y = sin3x + x 2 , ,

(последние две функции иногда называют кусочно-аналитическими или ступенчатыми функциями). Если функция задана аналитически (формулой), то под областью определения понимают множество значений аргумента х , для которых по заданной формуле можно вычислить соответствующее значение у (т.е. выполнимы все операции, указанные в формуле).

Если в формуле, описывающей функцию, зависимая переменная выражена через независимую переменную, то такая функция называется явно заданной . Приведенные выше функции заданы явно.

Если же равенство, описывающее функцию, не разрешено относительно зависимой переменной, то функция называется неявно заданной , например

х 2 + 3ху у 3 = 1 или ln(x +3y ) = y 2 .

Неявно заданная функция может быть представлена в форме

где t – параметр, принимающий значения из некоторого множества. Такую функцию называют параметрически заданной функцией . Например,

, t Î R определяет функцию у = (х –1) 2 ,

определяет функцию .

Параметрическое задание функции широко применяется в механике: если х = х (t ) и у = у (t ) законы изменения координат движущейся точки, то уравнения определяю траекторию движения.

2) Словесный . Например, «целая часть числа» – наибольшее целое, не превосходящее х . Эту функцию обозначают у = [x ].

3) Табличный . Например

х х 1 х 2 х 3 ...
у у 1 у 2 у 3 ...

Так задаются функции, обычно получаемые по результатам опыта, эксперимента, расчета.

4) Графический.

Определение 1.3. Графиком функции у = f (x ) называется геометрическое место точек координатной плоскости ХОУ с координатами (х , f (x )), где х ÎD(f ).

Изображение функциональной зависимости в виде линии (графика) и является графическим заданием функции . Например, показания осциллографа, электрокардиограмма и т.п. – это графическое представление зависимости между изучаемыми величинами.

Заметим, что для однозначной функции ее график имеет только одну точку пересечения с любой прямой х = а , а Î D(f ).

Свойства функций.

I. Функция у = f (x ), x ÎD, называется ограниченной на множестве D, если существуют действительные числа А, В такие, что " x ÎD выполняется условие A £ f (x ) £ B. График такой функции расположен в некоторой горизонтальной полосе между прямыми у = А и у = В (рис.1а). Если таких чисел А и В не существует, то функция называется неограниченной на множестве D.

Если " x ÎD Þ f (x ) £ B, то функция ограничена сверху (рис.1 б).

Если " x ÎD Þ f (x ) ³ А, то функция ограничена снизу (рис.1в).

Ограниченными в своей области определения являются функции у = sin x и y = cos x , т.к. для всех значений х выполняется

–1 £ sin x £ 1 и –1 £ cos x £ 1.

Функция ограничена сверху, т.к. для всех действительных значений х выполняется условие у £ 1. Примером ограниченной снизу функции служит показательная функция у = , т.к. > 0 для всех действительных значений х .

II. Функция у = f (x ), x ÎD, называется возрастающей , если для любых значений аргумента х 1 , х 2 ÎD таких, что х 1 < х 2 , выполняется условие f (x 1) < f (x 2) (т.е. большему значению аргумента соответствует большее значение функции, Рис.2а).

Функция у = f (x ), x ÎD, называется убывающей , если "х 1 ,х 2 ÎD таких, что х 1 < х 2 , выполняется условие (f (x 1) > f (x 2) (большему значению аргумента соответствует меньшее значение функции, рис.2б). Возрастающие и убывающие функции называются монотонными функциями. Если строгие неравенства заменить нестрогими, то соответственно функция будет называться неубывающей и невозрастающей.



III. Функция у = f (x ), x ÎD, называется четной , если

" х ÎD Þ (–х ÎD и f (–x ) = f (x )).

График четной функции симметричен относительно оси ОУ (рис.3а).

Функция у = f (x ), x ÎD, называется нечетной , если

" х ÎD Þ (–х ÎD и f (–x ) = f (x )).

График нечетной функции симметричен относительно начала координат (рис. 3б).

IV. Функция у = f (x ), x ÎD, называется периодической , если

$ Т > 0: "х ÎD Þ (х ± ТÎD и f (x ) = f (x ± Т)).

у
Число Т при этом называется периодом функции. На любых двух соседних отрезках оси ОХ длины Т график периодической функции имеет один и тот же вид (рис. 4).

Тема 4 . Функция одной переменной.

Время: 2 часа

Цель лекции: Актуализировать понятие функции; расширить имеющиеся представления о функции, познакомить с основными характеристиками функции.

План лекции:

    Понятие функции.

    Числовые функции. График функции. Способы задания функции.

    Обратная функция.

    Сложная функция.

    Понятие функции.

Понятие функции является одним из основных в математике. Оно связано с установлением соответствия между элементами двух множеств.

Пусть даны два непустых множества Х и Y . Соответствие f , которое каждому элементу сопоставляет один и только один элемент
, называется функцией и записывается
или
. Говорят ещё, что функция отображает множество Х на множество Y .


X

X

Y


Y


X

Y

Y


. .


X


Например, соответствия f и g , изображённые на рисунке, являются функциями, а и u ‒ нет. В случае ‒ не каждому соответствует элемент
. В случае
и ‒ не соблюдается условие однозначности.

Элемент
, который соответствует данному , называют образом элемента х. Все элементы , которым соответствует данный
, называют полным прообразом элемента у .

Множество Х называется областью определения функции f и обозначается D (f ). Множество всех
, для которых существует прообраз в Х , называется множеством значений функции f и обозначается Е (f ).

    Числовые функции. График функции. Способы задания.

Пусть задана функция
. Если элементами множеств Х и Y являются действительные числа, то функцию называют числовой функцией . В дальнейшем будем изучать числовые функции, называть их просто функциями и обозначать
.

Переменная х называется аргументом или независимой переменной , а у функцией или зависимой переменной . Относительно самих величин х и у говорят, что они находятся в функциональной зависимости .

Частное значение функции
при х=а записывают
. Например, если
, то
,

Г

М (х ;у )

у

х

1

О

рафиком функции
называется множество всех точек плоскости Оху , для каждой из которых х является значением аргумента, а у ‒ соответствующее значение функции.

Например, графиком функции
является верхняя полуокружность радиуса R =1 с центром О (0;0).

Чтобы задать функцию, необходимо задать правило, позволяющее, зная х , находить соответствующее значение функции.

Наиболее часто встречаются три способа задания функции: аналитический, табличный и графический.

Аналитический способ : функция задаётся в виде одной или нескольких формул или уравнений.


Если область определения функции не указана, то предполагается, что она совпадает с множеством всех значений аргумента, при которых соответствующая формула имеет смысл. Так, областью определения функции
является отрезок
.

Аналитический способ является наиболее совершенным, так как к нему приложены методы математического анализа, позволяющие полностью исследовать функцию
.

Графический способ : задаётся график функции; по графику находят значение функции, соответствующее данному значению аргумента и наоборот. Преимущества ‒ наглядность; недостатки ‒ неточность.

Табличный способ применяется, когда целесообразно задать пары х и у перечислением.

    Основные характеристики функций.

Функция
, определённая на множестве D , называется чётной , если
выполняются условия
и
; нечётной , если
выполняются условия
и
.

График чётной функции симметричен относительно оси Оу , а нечётной ‒ относительно начала координат.

Например,
,
,
‒ чётные функции, а
,
‒ нечётные функции;
,
‒ функции общего вида.

Пусть функция
определёна на множестве D и пусть
. Если для любых значений аргументов
из неравенства
вытекает неравенство:

а)
, то функция называется возрастающей на множестве (большему значению аргумента соответствует большее значение функции);

б)
, то функция называется неубывающей на множестве ;

в)
, то функция называется убывающей на множестве (большему значению аргумента соответствует меньшее значение функции);

г)
, то функция называется невозрастающей на множестве .

‒2 О 1 3 4 х

у

Апример, функция, заданная графиком на рисунке, убывает на промежутке
, не убывает на
, возрастает на
.

Возрастающие, невозрастающие, убывающие, неубывающие функции на множестве называются монотонными на этом множестве, а возрастающие и убывающие ‒ строго монотонными . Интервалы, в которых функция монотонна, называются интервалами монотонности .

Ф

у=М

у

х

у= ‒М

Ункцию, определённую на множестве D называют ограниченной
, что для всех
выполняется неравенство:
.

:

.

Отсюда следует, что график ограниченной функции лежит между прямыми у =‒М и у=М .

Функция
, определённая на множестве D , называется периодической на этом множестве, если существует такое число T >0 , что при каждом
значение
и
. При этом число Т называется периодом функции . Если Т ‒ период функции, то её периодами будут также числа пТ , где
Так, для
периодами будут числа
Основной период (наименьший положительный) ‒ это период
. Вообще за основной период берут наименьшее положительное число Т , удовлетворяющее равенству
.

    Обратная функция.

Пусть задана функция
с областью определения D и множеством значений Е . Если для каждого
существует единственный прообраз в D , то можно поставить в соответствие элементам
элементы
, т.е. определить функцию
с областью определения Е и множеством значений D . Такая функция
называется обратной к функции
и записывается
. Про функции
и
говорят, что они являются взаимно обратными. . Заметим, что для функции промежуточным аргументом сложной функции.

Например,
, есть суперпозиция двух функций
и
. Сложная функция может иметь несколько промежуточных аргументов.

Если каждому элементу х множ-ва Х (х є Х) ставится в соответствие вполне определённый элемент у множ-ва У (у є У), то говорят, что на множ-ве Х задана функция у = f(x). При этом х назыв. независимой переменной (или аргументом), у – зависимой переменной, а буква f обозначает закон соответсвия. Множ-во Х назыв. областью определения, а множ-во У – областью значений функции.

Способы задания фун-ий.

а)аналитический, если фун-ия задана формулой у = f(x)

б)табличный способ. Состоит в том, что фун-ия задаётся таблицей, содержащей значения аргумента х и соответствующие значения фун-ии f(x).

в)графический. Состоит в изображении графика фун-ии – множества точек (х,у) плоскости, абсциссы которых есть значения аргумента х, а ординаты – соответствующие им значения фун-ии f(x).

г)логический

3 . Односторонний предел. Существование предела в точке.

Число назыв. односторонним пределом слева фун-ии f(x) в точке сгущения x 0, если для ∀ε>0 ∃δ>0, такое, что x∈(x 0 -δ, x 0 ] => f(x)

Число назыв. односторонним пределом справа фун-ии f(x) в точке сгущения х 0 , если если ∀ε>0

∃δ>0, такое, что x∈(x 0 -δ, x 0 ] => f(x)

Число назыв. односторонним пределом справа фун-ии f(x) в точке сгущения х 0 , если если ∀ε>0 ∃δ>0, такое,что х ∈[ x 0, x 0 + δ) =>

Сущ-ие предела в точке. Число А назыв. пределом фун-ии f(x) при х, стремящемся к х 0 (или точке х 0), если для любого, даже сколь угодно малого положительного числа ε>0, найдётся такое положительное число δ>0 (зависящее от ε, δ=δ(ε)), что для всех х, не равных х 0 и удовлетворяющее условию , выполняется неравенство

Обозначается или

2. Предел функции и его свойства.

Предельной точной сгущения множества A называется точка x 0 , если в любой окрестности этой точки найдутся такие множества, отличные от x 0 .

Определение предела по Коши. Функция y=f(x), определенная в A, имеет предел С в точке сгущения x 0 , если ∀ε>0 ∃δ>0, такое, что x∈(x 0 -δ, x 0) ∪(x 0 , x 0 +δ) ⇒ f(x)∈(C-ε, С+ε). Существование предела записывают в виде lim x → x 0 f(x)=C или |x-x 0 |<δ⇒|f(x)-C|< ε.

Определение предела по Гейне. Если для различных последовательностей {x n }, стремящихся к x 0 , последовательность значений функции {f(x n)} сходится к некоторому числу C, то это число называется пределом функции f(x).

Определение Коши используется для обоснования существования предела, а опред-ие Гейна – для обоснования отсутствия предела.

Свойства предела: предел единственен и фун-ия в некоторой окрестности предельной точки ограничена.

1)Предел постоянной величины

Предел постоянной величины равен самой постоянной величине.

Рассмотрим сначала понятие переменной величины, или просто переменной.

Переменная величина х определяется множеством тех значений, которые она может принять в рассматриваемом случае. Это множество X назовем областью изменения значений переменной x .

Главным предметом изучения в математике является, однако, не изменение одной переменной самой по себе, а зависимость между двумя или несколькими переменными при их совместном изменении. Во многих случаях переменные не могут принимать любую пару значений из своих областей изменения; если одной из них придано конкретное значение, то этим уже определяется и значение другой. Тогда первая из них называется независимой , а вторая – зависимой переменной.

Пусть даны две переменные x и y с областями изменения X и Y . Если при этом каждому элементу x X по определенному правилу f поставлен в соответствие единственный элемент y Y , то говорят, что на множестве X задана функция y = f (x ).

Ясно, что при этом переменная x является независимой переменной. Ее часто называют аргументом функции.

Переменная y является зависимой переменной и называется значением функции, или просто функцией .

Множество X называется областью определения функции, а множество Y - областью ее значений .

Существует ряд способов задания функции:

а) наиболее простой - аналитический способ, т. е. задание функции в виде формулы. Если область определения функции X при этом не указана, то под X подразумевается множество значений x , при которых формула имеет смысл;

б) графический способ. Этот способ особенно нагляден. Для функции одной переменной y = f (x ) используется координатная плоскость (xy ).

Совокупность точек y , соответствующих заданным значениям x , определяет график функции на плоскости (xy );

в) табличный способ. Он часто используется, когда независимая переменная x принимает лишь конечное число значений.


5.2. Основные свойства функций

Рассмотрим основные свойства функций, которые упрощают проведение их исследования:



Четность. Функция y = f (x ) называется четной , если для любого значения x , принадлежащего области определения функции X , значение (–x ) тоже принадлежит X и при этом выполняется

f (–x ) = f (x ).

График четной функции симметричен относительно оси ординат.

Функция y = f (x ) называется нечетной , если для любого x X следует (–x ) X и при этом

f (–x ) = –f (x ).

График нечетной функции симметричен относительно начала координат.

Если функция y = f (x ) не является ни четной, ни нечетной, то ее часто называют функцией общего вида .

Монотонность. Функция y = f (x ) называется возрастающей на некотором интервале (a , b ), если для любых x 1 , x 2 (a , b ), таких,

что x 1 < x 2 , следует, что f (x 1) < f (x 2), и убывающей , если f (x 1) > f (x 2).

Возрастающую и убывающую на интервале (a,b ) функции называют монотонными на этом интервале, а сам интервал (a,b ) - интервалом монотонности этих функций.

В некоторых учебниках такие функции называют строго монотонными , а монотонными называют неубывающую и невозрастающую на рассматриваемом интервале функции (вместо строгих неравенств для функций пишутся нестрогие).

Ограниченность. Функция y = f (x ) называется ограниченной на интервале (a , b ), если существует такое число С > 0, что для любого x (a , b ) следует |f (x )| < C , и неограниченной в противном случае, т. е. если для любого числа C > 0 существует такой x (a , b ), что |f (x )| > C. На рис. 5.1 показан график функции, ограниченной на интервале (a , b ).

Аналогичное определение ограниченности можно дать для любого вида промежутка.

Периодичность. Функция y = f (x ) называется периодической , если существует такое число t , что для любого x X выполняется

f (x + t ) = f (x ).

Наименьшее из таких чисел t называется периодом функции и обозначается Т .

Характерным признаком периодичности функций является наличие в их составе тригонометрических функций.

5.3. Элементарные функции и их графики

К элементарным функциям относятся:

а) простейшие элементарные функции

1. Константа y = c , где с - постоянное для данной функции действительное число, одно и то же для всех значений x .


2. Степенная функция , где - любое постоянное действительное число, кроме нуля. Вид графиков функций при некоторых целых положительных ( = n ), целых отрицательных ( = –n ) и дробных ( = 1/n ) значениях представлен ниже.


4. Логарифмическая функция y = log a x (a > 0; a 1).


5. Тригонометрические функции : y = sin x , y = cos x , y = tg x , y = ctg x .


6. Обратные тригонометрические функции .

y = arcsin x y = arccos x


y = arctg x y = arcctg x


б) сложные функции

Кроме перечисленных простейших элементарных функций аргумента x к элементарным функциям также относятся функции, аргументами которых являются тоже элементарные функции, а также функции, полученные путем выполнения конечного числа арифметических действий над элементарными функциями. Например, функция

тоже является элементарной функцией.

Функции, аргументами которых являются не независимые переменные, а другие функции, называются сложными функциями или суперпозициями функций. Пусть даны две функции: y = sinx и z = log 2 y . Тогда сложная функция (суперпозиция функций) может иметь вид

z = log 2 (sin x ).

Также можно ввести понятиеобратной функции .Пусть y = f (x ) задана в области определения X , а Y - множество ее значений. Выберем какое-нибудь значение y = y 0 и по нему найдем x 0 так, чтобы y 0 было равно f (x 0).Подобных значений x 0 может оказаться и несколько.

Таким образом, каждому значению y из Y ставится в соответствие одно или несколько значений x . Если такое значение x только одно, то в области Y может быть определена функция x = g (y ), которая называется обратной для функции y = f (x ).

Найдем, например, обратную функцию для показательной функции y = a x . Из определения логарифма следует, что если задано значение y , то значение x , удовлетворяющее условию y = a x , находится по формуле x = log a y . То есть каждому y из Y можно поставить в соответствие одно определенное значение x = log a y .

Следовательно, функция x = log a y является обратной для функции y = a x на множествах X и Y . Так как принято у любой функции независимую переменную обозначать x , то в этом случае говорят, что y = f (x ) и y = g (x ) - обратные функции.

Графики функции y = f (x ) и обратной ей функции y = g (x ) симметричны относительно биссектрисы 1-го и 3-го координатных углов.