Сайт о телевидении

Сайт о телевидении

» » Физика зависимость силы тока от напряжения. Зависимость силы тока от напряжения и сопротивления в цепи

Физика зависимость силы тока от напряжения. Зависимость силы тока от напряжения и сопротивления в цепи

Тема урока: Зависимость силы тока от напряжения. Закон Ома для участка цепи.

Цель урока: Установить зависимость между силой тока, напряжением на однородном участке электрической цепи и сопротивлением этого участка.

Задачи урока:

  • Выяснить, что сила тока в участке цепи обратно пропорциональна его сопротивлению, если при этом напряжение остается постоянным
  • выяснить, что сила тока прямо пропорциональна напряжению на концах проводника, если при этом сопротивление не меняется.
  • научиться применять закон Ома для участка цепи при решении задач.
  • научиться определять силу тока, напряжение по графику зависимости между этими величинами, а также сопротивление.

Оборудование: Экран, демонстрационные амперметр и вольтметр, источник тока, ключ, соединительные провода, демонстрационный магазин сопротивлений, ТСО, портреты ученых.

План урока

  1. Организационный момент.
  2. целью подготовки к восприятию нового материала.
  3. Изучение нового материала.
  4. Закрепление знаний, умений и навыков.
  5. Домашнее задание.
  6. Подведение итогов урока.

ХОД УРОКА

1. Организационный момент

Учитель: По словам русского поэта ХIХ века Якова Петровича Полонского,

Царство науки не знает предела –
Всюду следы ее вечных побед,
Разума слово и дело,
Сила и свет.

Эти слова по праву можно отнести к теме, которую мы сейчас изучаем - электрические явления. Они подарили нам много открытий, осветивших нашу жизнь в прямом и переносном смысле. А сколько еще неопознанного вокруг! Какое поле деятельности для пытливого ума, умелых рук и любознательной натуры. Так что запускайте свой «вечный двигатель», и вперед!
Вспомним, что изучая тему «Электрические явления», вы узнали основные величины, характеризующие электрические цепи.

2. Актуализация знаний учащихся

Учитель: В начале, пожалуйста, перечислим основные величины, характеризующие электрические цепи.

Ученики: Сила тока, напряжение и сопротивление.

Учитель: А теперь, дайте небольшую характеристику каждой из этих величин, по следующему плану:

  1. Название величины.
  2. Что характеризует данная величина?
  3. По какой формуле находится?
  4. В каких единицах измеряется?
  5. Каким прибором измеряется или изменяется?

Ученики:
Сила тока – характеризует электрический ток в проводнике.
– формула для нахождения силы тока, где q-заряд, проходящий через поперечное сечение проводника, t-время прохождения заряда. Единица измерения – ампер. Измеряется сила тока – амперметром.
Напряжение -величина, которая характеризует электрическое поле.
– формула для нахождения напряжения, где А- работа по переносу заряда через поперечное сечение проводника, q-заряд. Единица измерения – вольт. Напряжение измеряется вольтметром.
Сопротивление характеризует сам проводник, обозначается – R, единица измерения 1Ом.

Учитель: на доске заполняем таблицу 1:

Таблица 1

Правильно, заполненная таблица 1:

Таблица 1

Учитель: Ребята, а что вы знаете об ученых, открывших силу тока, напряжение, сопротивление?

(Ученики приготовили сообщения об ученых физиках)

Ученики: Единицы измерения физических величин силы тока, напряжения и сопротивления, названы в честь ученых открывших их. Ампер, Вольт и Ом.

Андре-Мари Ампер – на его памятнике высечена надпись: «Он был также добр и также прост, как и велик». Славился своей рассеянностью. Про него рассказывали, что однажды он с сосредоточенным видом варил в воде свои часы 3 минуты, держа яйцо в руке.

Алессандро Вольта – был рыцарем почетного легиона, получил звание сенатора и графа. Наполеон не упускал случая посетить заседания Французской академии наук, где он выступал. Изобрел электрическую батарею, пышно названную «короной сосудов».

Георг Ом – немецкий физик. Опыты и теоретические доказательства были описаны им в главном труде «Гальваническая цепь, разработанная математически», вышедшем в 1827 г.

Разноуровневые задания:

Задание №1

1. Сколько ампер в 250 мА?

А) 250 А;
Б) 25 А;
В) 2,5 А;
Г) 0,25 А.

Величина, равная … называется электрическим напряжением.

А) произведению мощности на силу тока;
Б) отношению мощности к силе тока;
В) отношению работы к величине электрического заряда.

3. Начертите схему электрической цепи: источник тока, ключ, амперметр, соединительные провода, две лампочки и вольтметр, измеряющий напряжение на одной из лампочек.

Ответ: (1 – Г; 2 – В; 3 – Рис.1)

Задание №2

1. Сколько киловольт в 750 В?

А) 750000 кВ;
Б) 0,75 кВ;
В) 75 кВ;
Г) 7,5 кВ.

2. Вставьте пропущенное определение:

Величина, равная … называется силой тока.

А) отношению работы к величине электрического заряда;
Б) отношению электрического заряда ко времени;
В) произведению работы на время.

3. Начертите схему электрической цепи: источник тока, ключ, амперметр, соединительные провода, две лампочки и вольтметр, измеряющий напряжение на двух лампочках.

Ответ: (1 – Б; 2 – Б; 3 – Рис.2)

3. Изучение нового материала

Учитель: На прошлых уроках ребята, мы изучали силу тока, напряжение и сопротивление в отдельности. Сегодня мы перед собой поставили цель: раскрыть взаимозависимость силы тока, напряжения и сопротивления на участке электрической цепи. Выясним, как зависит сила тока от сопротивления, если напряжение остается постоянным.
Обратимся к опыту:

1. Соберем цепь, состоящую: источника тока, амперметра, вольтметра, проводников сопротивлением 1 Ом, 2 Ом, 4 Ом.

2. В цепь по очереди включаем проводники, обладающие различным сопротивлением. Напряжение на концах проводника во время опыта поддерживается постоянным. Силу тока в цепи измеряем амперметром.

Результаты измерений поместим в таблицу 2:

Таблица 2

Учитель: Что вы наблюдали?

Ученики: С увеличением сопротивления сила тока уменьшается.

Учитель: Какой вывод можно сделать из этого?

Ученики: Сила тока в проводнике обратно пропорциональна сопротивлению проводника.

Учитель: Выясним, как зависит сила тока от напряжения, если при этом сопротивление не меняется. Обратимся к опыту:

1. Соберем цепь, состоящую из источника тока - аккумулятора, амперметра, спирали из никелиновой проволоки (проводника), ключа и параллельно присоединенного к спирали вольтметра.

2. Присоединяем к первому аккумулятору второй, затем третий такой же, замыкаем цепь и отмечаем показание приборов при каждом подключении дополнительного аккумулятора.

Результаты измерений поместим в таблицу 3:

Таблица 3

Учитель: Что вы наблюдали?

Ученики: При увеличении напряжения в два раза, сила тока увеличилась вдвое. При трех аккумуляторах напряжение на спирали увеличилось втрое, во столько же раз увеличилась сила тока.

Учитель: Какой вывод из этого можно сделать?

Ученики: Сила тока в проводнике прямо пропорциональна напряжению на концах проводника.

Учитель: Используя результаты опытов, и выводы сделанные из них, установим зависимость силы тока, напряжения и сопротивления.

Такая запись носит название закона Ома для участка цепи.

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

Учитель:

Историческая справка: Этот закон открыл немецкий физик Георг Ом в 1827 году. Французские школьники изучают этот закон под именем Пуйе - французского физика, установившего этот же закон, но спустя 10 лет.
Учитель: Для того, чтобы вам было легче запомнить формулу закона Ома можно воспользоваться следующим способом её записи. (рис. 3)

; ; U = I * R

Физическая пауза

Учитель: Прежде чем приступить к решению задач проведем физическую паузу. Представим, что мы с вами пассажиры автобуса…

  • автобус резко трогается с места – ученики должны наклониться назад.
  • автобус тормозит – отклонится вперед.
  • автобус поворачивает направо – наклоняются влево.
  • автобус поворачивает налево – наклоняются вправо.

Учитель: Какое физическое явление вы изображали?

Ученики: Инерция – явление сохранения скорости тела, когда на это тело не действуют внешние силы.

4. Закрепление умений и навыков

Используя закон Ома для участка цепи, решим задачу.

Задача 1.

Напряжение на зажимах электрического утюга 220 В, сопротивление нагревательного элемента утюга 50 Ом. Чему равна сила тока в нагревательном элементе?

Дано:

U = 4B
I = 1A

RB – ?

Решение:

;

Ответ: 4 Ом.

Ученики: 2 Ом < 4 Ом, значит RA < RB , сопротивление проводника А меньше, чем сопротивление проводника В.

5. Домашнее задание: п.42–44, упр.19 № 3,4

6. Подведение итогов урока, оценки работы учащихся

Учитель: Молодцы ребята, очень хорошо потрудились, хорошо решали задачи, внимательно слушали и принимали активное участие в выводе закона Ома. Как для каждого прошел урок, мы сейчас увидим по результатам самодиагностики.

Самодиагностика (учащиеся поднимают одну из трех карточек, лежащих у них на парте).

  • Красная карточка – удовлетворен уроком, урок полезен для меня, я работал и получил заслуженную оценку; я понимал все, о чем говорилось.
  • Желтая карточка – урок был интересен, я отвечал с места, сумел выполнить ряд заданий. Мне на уроке достаточно комфортно.
  • Зеленая карточка – пользы от урока я получил мало, я не очень понимал, о чем идет речь, к ответу на уроке я был не готов.

§ 1 Зависимость силы тока

Как известно, металлы обладают хорошей проводимостью тока, и такие вещества называются проводниками, а вот дерево, фарфор имеют плохую проводимость. Дерево, фарфор относят к диэлектрикам. Объяснить такие свойства можно на основе молекулярного строения вещества, то есть проводимость тока связана с движением свободно заряженных частиц. При движении в проводнике свободные электроны взаимодействуют с ионами кристаллической решетки и между собой. Тем самым электроны в веществе испытывают сопротивление направленному движению при столкновении с узлами кристаллической решетки и столкновению между собой. Возникает необходимость остановиться на данном факте подробно.

Движение свободно заряженных частиц по проводнику в единицу времени называют силой тока. Раз движение замедляется в веществе при взаимодействии с атомами решетки, следовательно, создается электрическое сопротивление в проводнике.

Электрическое сопротивление - физическая скалярная величина, которая характеризует противодействие проводника упорядоченному движению по нему электрическому заряду. Поэтому сопротивление - характеристика электрических свойств проводника.

Буквенное обозначение электрического сопротивления: R.

Определим единицу измерения величины и ее характеристики, от которых она зависит на основе эксперимента.

Немецкий ученый Георг Ом изучал свойства проводимости веществ. Его опыты заключались в следующем: он использовал источник тока, амперметр, ключ и различные проводники, сделанные из разных материалов. Собрав цепь, он замкнул ее и наблюдал яркое свечение лампы. После Ом подключил последовательно с лампочкой проволоку из другого материала, заметил, что лампочка стала светить тускло. Так Ом подключал проводники из разных материалов и выявил закономерность, что сила тока увеличивается при увеличении напряжения в цепи. Обнаружил, что данная закономерность зависит от материала проводника.

Наглядно изобразим такие зависимости с помощью графиков I и II (рис). На графике по оси абсцисс отложено напряжение в вольтах, по оси ординат - сила тока в амперах. В системе координат отложено два графика, которые демонстрируют, что сила тока в цепях может увеличиваться по мере возрастания напряжения, причем, для разных материалов проводников (I и II) эти зависимости отличаются.

Георг Ом делает вывод о том, что различные проводники имеют различные свойства проводимости. Из-за этого было введено такое понятие, как электрическое сопротивление.

Итак, при увеличении напряжения растет сила тока в цепи, чем больше сила тока в проводнике, тем большее количество свободно заряженных частиц движется от одной части проводника в другую. Зависимость силы тока от напряжения выглядит таким образом:

(сила тока в цепи прямо пропорциональна напряжения участка цепи)

Не забываем, что сопротивление оказывает замедление в протекании тока в проводнике, то есть при увеличении сопротивления проводника наблюдается уменьшение силы тока. Зависимость силы тока от сопротивления можно записать следующим образом:

(сила тока обратно пропорциональна сопротивлению проводника)

Сведем записанные зависимости в одну формулу:

(Сопротивление проводника равно отношению напряжения на участке цепи к силе тока на этом участке)

§ 2 Электрическое сопротивление

Из данной формулы можно получить единицу измерения сопротивления в системе СИ (система интернациональная):[R]=В/A=Ом.

1 Ом равен электрическому сопротивлению проводника, между концами которого возникает напряжение 1 вольт при силе постоянного тока 1 ампер.

Обращаем внимание на то, что сопротивление не зависит ни от силы тока, ни от напряжения.

Осталось узнать, от чего зависит сопротивление проводника согласно опытам:

Выразим из формулы (3) удельное сопротивление:

Каков физический смысл удельного сопротивления? Указывает, чему равно сопротивление проводника длиной 1 метр и сечением 1 квадратный метр (1 квадратный миллиметр).

В заключении хотелось отметить, что электрическое сопротивление зависит от взаимодействия свободных электронов с положительными ионами, которые находятся в узлах кристаллической решетки, а также от взаимодействия свободных электронов между собой. Очень важно знать о сопротивлении, когда создают изоляционные материалы, заземляющие устройства, чтобы в дальнейшем использовать оборудование.

Список использованной литературы:

  1. Физика. 8 класс: Учебник для общеобразовательных учреждений / А.В. Перышкин. – М.: Дрофа, 2010.
  2. Физика 7-9. Учебник. И.В. Кривченко.
  3. Физика. Справочник. О.Ф. Кабардин. – М.: АСТ-ПРЕСС, 2010.
  4. Лукашик В.И., Иванова Е.В. Сборник задач по физике 7-9 класс – М.: Просвещение, 2008.
  5. Чеботарева В.А. Тесты по физике. 8 класс. – Издательство «Экзамен», 2009.

Использованные изображения:

Соберем электрическую цепь (рисунок 1, а ), состоящую из аккумулятора 1 напряжением в 2 В, рычажного реостата 2 , двух измерительных приборов – вольтметра 3 и амперметра 4 и соединительных проводов 5 . Установим в цепи при помощи реостата сопротивление, равное 2 Ом. Тогда вольтметр, включенный на зажимы аккумулятора, покажет напряжение в 2 В, а амперметр, включенный последовательно в цепь, покажет ток, равный 1 А. Увеличим напряжение до 4 В путем включения другого аккумулятора (рисунок 1, б ). При том же сопротивлении в цепи – 2 Ом – амперметр покажет уже ток 2 А. Аккумулятор напряжением 6 В изменит показание амперметра до 3 А (рисунок 1, в ). Сведем наши наблюдения в таблицу 1.

Рисунок 1. Изменение тока в электрической цепи путем изменения напряжения при неизменном сопротивлении

Таблица 1

Зависимость тока в цепи от напряжения при неизменном сопротивлении

Отсюда можно сделать вывод, что ток в цепи при постоянном сопротивлении тем больше, чем больше напряжение этой цепи, причем ток будет увеличиваться во столько раз, во сколько раз увеличивается напряжение.

Теперь в такой же цепи поставим аккумулятор с напряжением 2 В и установим при помощи реостата сопротивление в цепи, равное 1 Ом (рисунок 2, а ). Тогда амперметр покажет 2 А. Увеличим реостатом сопротивление до 2 Ом (рисунок 2, б ). Показание амперметра (при том же напряжении цепи) будет уже 1 А.

Рисунок 2. Изменение тока в электрической цепи путем изменения сопротивления при неизменном напряжении

При сопротивлении в цепи 3 Ом (рисунок 2, в ) показание амперметра будет 2/3 А.

Результат опыта сведем в таблицу 2.

Таблица 2

Зависимость тока в цепи от сопротивления при неизменном напряжении

Отсюда следует вывод, что при постоянном напряжении ток в цепи будет тем больше, чем меньше сопротивление этой цепи, причем ток в цепи увеличивается во столько раз, во сколько раз уменьшается сопротивление цепи.

Как показывают опыты, ток на участке цепи прямо пропорционален напряжению на этом участке и обратно пропорционален сопротивлению того же участка. Эта зависимость известна под названием закон Ома.

Если обозначим: I – ток в амперах; U – напряжение в вольтах; r – сопротивление в омах, то закон Ома можно представить формулой:

то есть ток на данном участке цепи равен напряжению на этом участке, деленному на сопротивление того же участка.

Видео 1. Закон Ома для участка цепи

Пример 1. Определить ток, который будет проходить по нити лампы накаливания, если нить имеет неизменное сопротивление 240 Ом, а лампа включена в сеть с напряжением 120 В.

Пользуясь формулой закона Ома, можно определить также напряжение и сопротивление цепи.

U = I × r ,

то есть напряжение цепи равно произведению тока на сопротивление этой цепи и

то есть сопротивление цепи равно напряжению, деленному на ток цепи.

Пример 2. Какое нужно напряжение, чтобы в цепи с сопротивлением 6 Ом протекал ток 20 А?

U = I × r = 20 × 6 = 120 В.

Пример 3. По спирали электрической плитки протекает ток в 5 А. Плитка включена в сеть с напряжением 220 В. Определить сопротивление спирали электрической плитки.

Если в формуле U = I × r ток равен 1 А, а сопротивление 1 Ом, то напряжение будет равно 1 В:

1 В = 1 А × 1 Ом.

Отсюда заключаем: напряжение в 1 В действует в цепи с сопротивлением 1 Ом при токе в 1 А.

Потеря напряжения

На рисунке 3 приведена электрическая цепь, состоящая из аккумулятора, сопротивления r и длинных соединительных проводов, имеющих свое определенное сопротивление.

Как видно из рисунка 3, вольтметр, присоединенный к зажимам аккумулятора, показывает 2 В. Уже в середине линии вольтметр показывает только 1,9 В, а около сопротивления r напряжение равно всего 1,8 В. Такое уменьшение напряжения вдоль цепи между отдельными точками этой цепи называется потерей (падением) напряжения.

Потеря напряжения вдоль электрической цепи происходит потому, что часть приложенного напряжения расходуется на преодоление сопротивления цепи. При этом потеря напряжения на участке цепи будет тем больше, чем больше ток и чем больше сопротивление этого участка цепи. Из закона Ома для участка цепи следует, что потеря напряжения в вольтах на участке цепи равно току в амперах, протекающему по этому участку, умноженному на сопротивление в омах того же участка:

U = I × r .

Пример 4. От генератора, напряжение на зажимах которого 115 В, электроэнергия передается электродвигателю по проводам, сопротивление которых 0,1 Ом. Определить напряжение на зажимах двигателя, если он потребляет ток в 50 А.

Очевидно, что на зажимах двигателя напряжение будет меньше, чем на зажимах генератора, так как в линии будет потеря напряжения. По формуле определяем, что потеря напряжения равна:

U = I × r = 50 × 0,1 = 5 В.

Если в линии потеря напряжения равна 5 В, то напряжение у электродвигателя будет 115 – 5 = 110 В.

Пример 5. Генератор дает напряжение 240 В. Электроэнергия по линии из двух медных проводов длиной по 350 м, сечением 10 мм² передается к электродвигателю, потребляющему ток в 15 А. Требуется узнать напряжение на зажимах двигателя.

Напряжение на зажимах двигателя будет меньше напряжения генератора на величину потери напряжения в линии. Потеря напряжения в линии U = I × r .

Так как сопротивление r проводов неизвестно, определяем его по формуле:

"); длина l равна 700 м, так как току приходится идти от генератора к двигателю и оттуда обратно к генератору.

Подставляя r в формулу, получим:

U = I × r = 15 × 1,22 = 18,3 В

Следовательно, напряжение на зажимах двигателя будет 240 – 18,3 = 221,7 В

Пример 6. Определить поперечное сечение алюминиевых проводов, которое необходимо применить, чтобы подвести электрическую энергию к двигателю, работающему при напряжении в 120 В и токе в 20 А. Энергия к двигателю будет подаваться от генератора напряжением 127 В по линии длиной 150 м.

Находим допустимую потерю напряжения:

127 – 120 = 7 В.

Сопротивление проводов линии должно быть равно:

Из формулы

определим сечение провода:

где ρ – удельное сопротивление алюминия (таблица 1, в статье "Электрическое сопротивление и проводимость ").

По справочнику выбираем имеющееся сечение 25 мм².
Если ту же линию выполнить медным проводом, то сечение его будет равно:

где ρ – удельное сопротивление меди (таблица 1, в статье "Электрическое сопротивление и проводимость ").

Выбираем сечение 16 мм².

Отметим еще, что иногда приходится умышленно добиваться потери напряжения, чтобы уменьшить величину приложенного напряжения.

Пример 7. Для устойчивого горения электрической дуги требуется ток 10 А при напряжении 40 В. Определить величину добавочного сопротивления, которое нужно включить последовательно с дуговой установкой, чтобы питать ее от сети с напряжением 120 В.

Потеря напряжения в добавочном сопротивлении составит:

120 – 40 = 80 В.

Зная потерю напряжения в добавочном сопротивлении и ток, протекающий через него, можно по закону Ома для участка цепи определить величину этого сопротивления:

При рассмотрении электрической цепи мы до сих пор не принимали в расчет того, что путь тока проходит не только по внешней части цепи, но также и по внутренней части цепи, внутри самого элемента, аккумулятора или другого источника напряжения.

Электрический ток, проходя по внутренней части цепи, преодолевает ее внутреннее сопротивление и потому внутри источника напряжения также происходит падение напряжения.

Следовательно, электродвижущая сила (э. д. с.) источника электрической энергии идет на покрытие внутренних и внешних потерь напряжения в цепи.

Если обозначить E – электродвижущую силу в вольтах, I – ток в амперах, r – сопротивление внешней цепи в омах, r 0 – сопротивление внутренней цепи в омах, U 0 – внутреннее падение напряжения и U внешнее падение напряжения цепи, то получим, что

E = U 0 + U = I × r 0 + I × r = I × (r 0 + r ),

Это и есть формула закона Ома для всей (полной) цепи. Словами она читается так: ток в электрической цепи равен электродвижущей силе, деленной на сопротивление всей цепи (сумму внутреннего и внешнего сопротивлений).

Видео 2. Закон Ома для полной цепи

Пример 8. Электродвижущая сила E элемента равна 1,5 В, его внутреннее сопротивление r 0 = 0,3 Ом. Элемент замкнут на сопротивление r = 2,7 Ом. Определить ток в цепи.

Пример 9. Определить э. д. с. элемента E , замкнутого на сопротивление r = 2 Ом, если ток в цепи I = 0,6 А. Внутреннее сопротивление элемента r 0 = 0,5 Ом.

Вольтметр, включенный на зажимы элемента, покажет напряжение на них, равное напряжению сети или падению напряжения во внешней цепи.

U = I × r = 0,6 × 2 = 1,2 В.

Следовательно, часть э. д. с. элемента идет на покрытие внутренних потерь, а остальная часть – 1,2 В отдается в сеть.

Внутреннее падение напряжения

U 0 = I × r 0 = 0,6 × 0,5 = 0,3 В.

Так как E = U 0 + U , то

E = 0,3 + 1,2 =1,5 В

Тот же ответ можно получить, если воспользоваться формулой закона Ома для полной цепи:

E = I × (r 0 + r ) = 0,6 × (0,5 +2) = 1,5 В.

Вольтметр, включенный на зажимы любого источника э. д. с. во время его работы, показывает напряжение на них или напряжение сети. При размыкании электрической цепи ток по ней проходить не будет. Ток не будет проходить также и внутри источника э. д. с., а следовательно, не будет и внутреннего падения напряжения. Поэтому вольтметр при разомкнутой цепи покажет э. д. с. источника электрической энергии.

Таким образом, вольтметр, включенный на зажимы источника э. д. с. показывает:
а) при замкнутой электрической цепи – напряжение сети;
б) при разомкнутой электрической цепи – э. д. с. источника электрической энергии.

Пример 10. Электродвижущая сила элемента 1,8 В. Он замкнут на сопротивление r =2,7 Ом. Ток в цепи равен 0,5 А. Определить внутреннее сопротивление r 0 элемента и внутреннее падение напряжения U 0 .

Так как r = 2,7 Ом, то

r 0 = 3,6 – 2,7 = 0,9 Ом;

U 0 = I × r 0 = 0,5 × 0,9 = 0,45 В.

Из решенных примеров видно, что показание вольтметра, включенного на зажимы источника э. д. с., не остается постоянным при различных условиях работы электрической цепи. При увеличении тока в цепи увеличивается также внутреннее падение напряжения. Поэтому при неизменной э. д. с. на долю внешней сети будет приходиться все меньшее и меньшее напряжение.

В таблице 3 показано, как меняется напряжение электрической цепи (U ) в зависимости от изменения внешнего сопротивления (r ) при неизменных э. д. с. (E ) и внутреннем сопротивлении (r 0) источника энергии.

Таблица 3

Зависимость напряжения цепи от сопротивления r при неизменных э. д. с. и внутреннем сопротивлении r 0

E r 0 r U 0 = I × r 0 U = I × r
2
2
2
0,5
0,5
0,5
2
1
0,5
0,8
1,33
2
0,4
0,67
1
1,6
1,33
1

В электротехнике для описания процессов, протекающих внутри электрических цепей, используются термины «ток», «напряжение» и «сопротивление». Каждый из них имеет собственное назначение со специфическими характеристиками.

Рассмотрим и подведем выводы о каждом из терминах.

Электрический ток

Слово используется для характеристики движения заряженных частиц (электроны, дырки, катионы и анионы) через определенную среду вещества. Направление и количество носителей заряда определяет тип и силу тока.

Основные характеристики тока, влияющие на его практическое применение

Обязательным требованием для протекания зарядов является наличие цепи или, другим словами, замкнутого контура, создающего условия для их передвижения. Если внутри движущихся частиц образуется разрыв, то их направленное перемещение сразу прекращается.

На этом принципе работают все выключатели и защиты, используемые в электрике. Они создают разделение подвижными контактами токопроводящих частей между собой и этим действием прерывают протекание электрического тока, отключая прибор.

В энергетике наибольшее распространение получил метод создания электрического тока за счет передвижения электронов внутри металлов, изготовленных в виде проводов, шин или других токопроводящих частей.

Кроме этого способа также используется создание тока внутри:

1. газов и жидкостей-электролитов за счет движения электронов или катионов и анионов - ионов с положительными и отрицательными знаками заряда;

2. среды из вакуума, воздуха и газов при условии передвижения электронов, вызванного явлением термоэлектронной эмиссии;

3. полупроводниковых материалов вследствие перемещения электронов и дырок.

Электрический ток может возникнуть при:

приложении к заряженным частицам внешней разности электрических потенциалов;

нагреве проводников, не являющихся в данный момент сверхпроводниками;

протекании химических реакций, связанных с выделением новых веществ;

воздействии приложенного на проводник магнитного поля.

Форма сигнала электрического тока может быть:

1. постоянной в виде прямой линии на временно́м графике;

2. переменной синусоидальной гармоникой, хорошо описываемой основными тригонометрическими соотношениями;

3. меандром, грубо напоминающим синусоиду, но с резкими, ярко выраженными углами, которые в отдельных случаях могут быть хорошо сглажены;

4. пульсирующей, когда направление остается одним и тем же без изменения, а амплитуда колеблется периодически от нулевого до максимального значения по вполне определенному закону.

Формы тока

Электрический ток может совершать полезную для человека работу, когда он:

преобразуется в световое излучение;

создает нагрев тепловых элементов;

совершает механическую работу за счет притяжения или отталкивания подвижных якорей либо вращения роторов с приводами, закрепленных в подшипниках;

формирует электромагнитное излучение и в некоторых других случаях.

При прохождении электрического тока по проводам может создаваться вред , вызываемый:

излишним нагревом токонесущих цепей и контактов;

образованием вихревых токов в магнитопроводах электрических машин;

излучением электроэнергии электромагнитными волнами в окружающую среду и некоторыми подобными явлениями.

Конструкторы электрических приборов и разработчики различных схем учитывают перечисленные возможности электрического тока в своих устройствах. Например, вредное воздействие вихревых токов в трансформаторах, двигателях и генераторах уменьшается за счет шихтовки сердечников, используемых для пропускания магнитных потоков. В то же время вихревой ток успешно применяют для разогрева среды внутри электрических печей и микроволновок, работающих на индукционном принципе.

Электрический ток, в зависимости от своей величины, способен совершать различную работу. Для количественной оценки его возможностей принята величина, называемая силой тока. Ее размерностью в международной системе измерений является 1 ампер. Для обозначения силы тока в технической литературе принят индекс «I».

Электрическое напряжение

Этот термин используется как характеристика физической величины, выражающей затраченную работу по переносу пробного единичного электрического заряда из одной точки в другую без изменения характеров размещения остальных зарядов на действующих источниках полей.

Поскольку начальная и конечная точки обладают различными потенциалами энергии, то работа на перемещение заряда, или напряжение, совпадает с соотношением разности этих потенциалов.

В зависимости от протекающих токов используются различные термины и способы вычисления напряжения. Оно может быть:

1. постоянным - в цепях электростатики и постоянного тока;

2. переменным - в схемах с переменными и синусоидальными токами.

Для второго случая используются такие дополнительные характеристики и разновидности напряжения, как:

амплитуда - наибольшее отклонение от нулевого положения оси абсцисс;

мгновенная величина, которая выражается в конкретный момент времени;

действующее, эффективное или, называемое по-другому, среднеквадратичное значение, определяемое по совершаемой активной работе одного полупериода;

средневыпрямленное, рассчитываемое по модулю выпрямленного значения одного периода гармоники.

Характеристики переменного напряжения

Для количественной оценки напряжения введена международная единица 1 вольт, а ее обозначением стал символ «U».

При транспортировке электрической энергии по проводам воздушных линий конструкция опор и их габариты зависят от значения используемого напряжения. Его величину между проводами фаз называют линейной, а относительно каждого провода и землей - фазной.

Электрическое сопротивление

Термин применяется для характеристики свойств вещества ослаблять прохождение через него электрического тока. При этом могут выбираться разные среды, изменяться температура вещества или его габариты.

У цепей постоянного тока сопротивление совершает активную работу, поэтому его называют активным. Оно для любого участка прямо пропорционально приложенному напряжению и обратно пропорционально - проходящему току.

В цепях переменного тока введены понятия:

импеданса;

волнового сопротивления.

Электрический импеданс по-другому называют комплексным или полным сопротивлением с составляющими частями:

активной;

реактивной.

Реактивное сопротивление, в свою очередь, может быть:

емкостным;

индуктивным.

Соотношения между составляющими импеданса описываются треугольником сопротивлений.

Величиной сопротивления принята международная единица измерения в 1 Ом.

Взаимосвязь тока, напряжения, сопротивления

Классическим примеров выражения соотношений между этими характеристиками является сравнение с гидравлической схемой, в которой сила движения потока жизни (аналог - величина тока) зависит от значения приложенной к поршню силы (созданного напряжения) и характера магистралей потока, выполненных сужениями (сопротивлением).

Ток, напряжение и сопротивление

Математические закономерности, описывающие взаимосвязь электрического сопротивления, тока и напряжения впервые опубликовал и запатентовал Георг Ом. Он вывел законы для полного контура электрической цепи и его участка. Подробнее смотрите здесь: Применение закона Ома на практике

Для замера основных электрических величин электроэнергии применяют амперметры, вольтметры и омметры.

Замеры тока, напряжения и сопротивления

Амперметр замеряет ток, проходящий по цепи. Поскольку на всем замкнутом участке он не изменяется, то амперметр врезают в любом месте между источником напряжения и потребителем, создавая прохождение зарядов через измерительную головку прибора.

Вольтметром измеряют напряжение на клеммах подключенного к источнику тока потребителя.

Замеры сопротивления омметром могут выполняться только на обесточенном потребителе. Это объясняется тем, что омметр выдает калиброванное напряжение и замеряет ток, проходящий по измерительной головке, который переводится в Омы за счет деления напряжения на полученное значение тока.

Любое подключение маломощного постороннего напряжения при выполнении измерения создаст дополнительные токи и исказит результат. Учитывая, что внутренние цепи омметра изготавливаются маломощными, то при ошибочных замерах сопротивления при поданном постороннем напряжении довольно часто прибор выходит из строя за счет того, что у него выгорает внутренняя схема.

Знание основных характеристик тока, напряжения, сопротивления и зависимостей между ними позволяет электрикам успешно выполнять свою работу и надежно эксплуатировать электрические системы, а допускаемые ошибки очень часто заканчиваются несчастными случаями и травмами.

Опишем схему проведения экспериментов Георга Ома. В электрическую цепь он подключал проводник, на котором с помощью вольтметра и амперметра измерялись напряжение и сила тока соответственно, ключ и источник тока (рис. 2). Обратим внимание на то, что в цепи подключено несколько источников тока, и изменение их количества позволяет пронаблюдать за изменением силы тока в цепи в зависимости от напряжения.

Рис. 2. Схема экспериментов Г. Ома

В результате измерений прослеживается зависимость , где напряжение измеряется на зажимах AB, т. е. на проводнике.

Для того чтобы пронаблюдать зависимость силы тока от сопротивления, в той же цепи теперь следует не менять количество источников тока, а менять проводники, т. е. сопротивление цепи. Георг Ом поступил следующим образом: вместо одного проводника он подключил другой с вдвое большей длиной, т. е. с вдвое большим сопротивлением (почему это так, вы узнаете на следующем уроке). Аналогично он подключал и проводники с другими длинами и получил зависимость такого вида: . Т. е. при увеличении сопротивления проводника сила тока в нем уменьшается.

На графике зависимость силы тока в проводнике от сопротивления выглядит следующим образом (рис. 3).

Рис. 3. Зависимость силы тока в проводнике от сопротивления

Такая зависимость называется обратно пропорциональной. Эту зависимость Ому пришлось достаточно долго получать, но именно это и привело его к выводу важнейшего закона электродинамики - закону Ома для участка цепи. Собрав вместе те две зависимости, которые мы показали выше, Ом и пришел к своему закону.

Закон Ома для участка цепи : сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению:

Замечание . Этот закон лежит в основе науки под названием электротехника.

Т. к. напряжение в законе рассматривается на концах проводника и учитывается сопротивление самого проводника, то закон применим именно к участку цепи, т. е. к какой-либо его части.

Обозначения:

Напряжение, В;

Сила тока, А;

Сопротивление, Ом.

При работе с законом Ома следует понимать, что он выполним отдельно для каждого рассматриваемого участка цепи с различными значениями входящих в него параметров.

На следующем уроке речь пойдет о том, от каких параметров зависит сопротивление проводника.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. School.xvatit.com ().
  2. Fiz.1september.ru ().
  3. Youtube.com ().

Домашнее задание

1. Стр. 102: вопросы № 1-7, упражнение № 19. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.

2. Вычислите силу тока в резисторе, сопротивление которого - 1200 Ом, а напряжение - 36 В.

3. Каким образом изменится сила тока в цепи, если количество последовательно соединенных источников тока в ней увеличить втрое, а подключенный к ней проводник укоротить вдвое? Кроме проводника и источников тока в цепи элементов нет.

4. * Соберите с помощью родителей или учителя схему, аналогичную той, с помощью которой Георг Ом получил свой известный закон. Проведите серию экспериментов, доказывающую справедливость закона Ома для участка цепи. Оцените погрешности измерений и результаты обсудите с учителем.