Сайт о телевидении

Сайт о телевидении

» » Для чего служит протокол маршрутизации. Выбор протокола маршрутизации. Маршрут по умолчанию

Для чего служит протокол маршрутизации. Выбор протокола маршрутизации. Маршрут по умолчанию

Протоколы маршрутизации

Крупные объединенные компьютерные сети состоят из множества физических сетей, которые связываются между собой с помощью маршрутизаторов. Автономной системой AS (Autonomous Systems) называют группу сетей и маршрутизаторов R, объединенных общей политикой маршрутизации.

Рисунок 4.8

Если AS может передавать транзитный трафик других сетей, она называется транзитной.

Для определения маршрута внутри AS применяют внутренние протоколы маршрутизации IGP (Interior GatewayProtocols). Наиболее распространенными протоколами внутренней маршрутизации являются протоколы RIP (Routing Information Protocol), OSPF (Open Shortest Path First), IGRP (Interior Gateway Routing Protocol), разработанный компанией CISCO, как альтернативный RIP, а затем и его улучшенный вариант EIGRP (Enhanced Interior Gateway Routing Protocol).

Автономные системы объединяются между собой при помощи внешних или пограничных (Border) маршрутизаторов, используя протоколы внешней маршрутизации BGP (Border Gateway Protocol). Два соседних маршрутизатора, которые обмениваются информацией внутри AS, называются внутренним и внешним, если они обмениваются информацией, принадлежащей разным системам (рис. 4.8). Связь между разными автономными системами осуществляется с помощью высокоскоростной магистральной или опорной сети (Backbone).

В соответствии с терминологией международного института стандартов ISO используется понятие конечных ES и промежуточных систем IS. Промежуточная система IS (Intermedia Systems) – передающий узел между 2 подсетями. Устройство сети, которые не обладают способностью пересылать пакеты, называется оконечным. В это же время сетевое устройство, обладающее такой возможностью – промежуточной системой IS. Промежуточные системы, которые могут сообщаться внутри домена маршрутизации (эквивалент AS), называются внутридоменные AS и системы, которые общаются с другими доменами, называются междоменными.

Процесс взаимодействия и уровни взаимодействий в соответствии с OSI показан на рис. 4.9.

Рисунок 4.9

Протокол внутренней маршрутизации RIP (Routing Information Protocol) предназначался для небольших сетей. Для нахождения оптимального пути используется алгоритм вектора расстояния DVA (Distance Vector Algorithm) – алгоритм Беллмана-Форда. Маршрут в данном алгоритме характеризуется вектором расстояния до пункта назначения (пункт назначения – направление вектора, метрика – модуль вектора). Маршрутизаторы, которые используют протокол RIP в режиме широковещания, передают список сетей, с которыми они могут связаться, и метрику, содержащую информацию о том, за сколько пересылок, шагов (hops) каждая из этих сетей может быть достигнута.

Пересылкой считается каждый транзитный узел. Каждый маршрутизатор принимает широковещательные сообщения от других маршрутизаторов и добавляет или корректирует полученную информацию в своей таблице маршрутизации.

Таблица маршрутизации содержит по одной записи на каждый маршрут.

Такая запись имеет следующие поля: поле IP адреса пункта назначения, IP-адрес ближайшего (соседнего) маршрутизатора, метрику маршрута – до 15 шагов, таймеры (счетчики времени). Каждый маршрутизатор передает такую широковещательную информацию каждые 30 сек, генерируя достаточно большой трафик. RIP работает на сетевом уровне стека TCP/IP, используя протокол UDP (порт 520).

Каждый маршрут содержит счетчики тайм-аута и «сборщики» маршрутов. Счетчик тайм-аута сбрасывается в нуль при коррекции или инициализации маршрута. Если к моменту последней коррекции прошло 3 мин, маршрут закрывается, однако запись о нем в таблице сохраняется до наступления времени «сборка маршрута».

Формат сообщения протокола RIP имеет вид (рис. 4.10). Поле «Команда» определяет вид сообщения:

Код 1 – запрос на получение информации, код 2 – отклик, содержащий информацию о расстояниях из маршрутной таблицы отправителя, код 3 - включение режима трассировки, код 4 – выключение режима трассировки. Поле «Версия» для протокола RIP-1 равно 1. Номер протоколов, которые используются в соответствующей сети (для Интернет поле имеет значение, равное 2). Поле стоимость – число шагов. В одном сообщении может иметься информация до 25 маршрутов.

Рисунок 4.10

1. Таймер обновления – 70 сек (посылается всем соседям);

2. Таймер устаревшего маршрута – 90 сек;

3. Таймер удаления маршрута - 240 сек.

В протоколе RIP реализовано правило расщепления горизонта при модификации (Split Horizon Updates), которое препятствует появлению маршрутных петель в две пересылки, однако петли, включающие три и больше пересылок могут возникать.

Протокол RIP прос в инсталляции, эксплуатации, в связи с чем получил широкое распространение. Вместе с тем ему присущи следующие недостатки: RIP не способен определять путь, основываясь на таких параметрах как ширина полосы пропускания, загрузка канала, время ожидания. Протокол RIP имеет медленную сходимость, не способен поддерживать маски подсетей. В современных сетях число шагов равное 15, становится недостаточным.

Протокол маршрутизации внутренних шлюзов IGRP(Interior Gateway Routing Protocol) работает на основе использования алгоритма вектора расстояния DVA. Протоколы маршрутизации с вектором расстоянии требуют от каждого маршрутизатора отправления через определенные интервалы времени соседним маршрутизаторам всей или части своей таблицы маршрутизации, используя сообщения о корректировки маршрута. После того, как маршрутная информация распределиться по сети, маршрутизатор может вычислить расстояние до всех узлов объединенной сети.

Максимальное число транзисторных участков в этом протоколе может быть равным 255, а не 15 как в протоколе RIP. При формировании таблиц маршрутизации задаются следующие параметры:

1. Расстояние – число в диапазоне от 1 до 255.

2. Задержка. Измеряется кратно 10 мс. Для сетей E задается показателем 100.

3. Полоса от 1200 бит/с до 10 Гбит/с.

4. Надежность. Оптимальное значение составляет 255.

5. Загруженность канала в долях числа 255.

Для регулирования производительности применяются следующие таймеры:

1. Таймер обновления (по умолчанию 90с) – задает период передачи сообщения.

2. Таймер устаревшего маршрута. Столько времени ожидает маршрутизатор обновления, прежде чем объявить маршрут устаревшим (задается три периода обновления).

3. Таймер блокировки (по умолчанию 10 с).

4. Таймер удаления маршрута (семь периодов обновления).

Протокол предусматривает три типа маршрутов:

системные – ведущие в сети в рамках AS,

внешние – маршруты в сети вне AS.

Внешние, связанные с наличием граничного пути

Структура таблицы маршрутизации имеет вид, показанный на рис. 4.11

Рисунок 4.11

Первое поле в заголовке таблицы маршрутизации – номер версии,

затем следует поле операционного кода (OP Code). Это поле обозначает вид пакета. Код, равный 1, определяет пакет корректировки, код 2 – пакет запроса. Пакеты запроса использует маршрутизатор для получения информации о маршрутных таблицах других маршрутизаторов. Эти пакеты состоят только из заголовка, операционного кода и номера AS. Пакеты корректировки содержат заголовок, за которым следует записи данных маршрутных таблиц. Этот пакет не должен превышать 1500 байт. Далее следует поле редактирование, которое содержит последовательный номер, указывающий, когда маршрутная таблица изменялась. Далее следует номер автономной системы AS. Следующие поля определяют номер внешних сетей, главных сетей и подсетей. Последнее поле в заголовке – поле контрольной суммы. Сообщения о корректировке содержит семь полей данных для каждой записи данных маршрутной таблицы. Первое поле – 3 байта адреса IP, следующее – задержка, выраженная в десятках микросекунд, далее – поле ширины полосы в единицах 1 Кбит/с, затем идет поле размера блока данных MTU, поле надежности в процентах. Следующим является поле – загрузка, указывающее в процентах занятость канала. Последнее поле – число пересылок (счетчик шагов).

Протокол внешнего шлюза EGP (Exterion Gateway Protocol) – используется алгоритм вектора расстояния DVA для соединения AS через центральную сеть (ядро). Маршрутизатор выполняет следующие функции: выделяет соседей, с которыми обменивается информацией о достижении тех или иных сетей, посылает сообщения о их работоспособности, передает сообщения об обновлении, указывает информацию о доступности сетей для данной AS.

Типы сообщений:

1. Проверочные, если нужно установить работают ли соседние маршрутизаторы.

2. Сообщения о достижимости соседа (не выключен ли соседний маршрутизатор).

3. Сообщения о неисправности.

Протокол граничного шлюза BGP (Border Gateway Protocol) предназначен для обеспечения взаимодействий разных AS. Этот протокол можно использовать для организации связей не только между AS, но и внутри их. В BGP – нет ядра. Когда маршрутизатор подключается к сети, он получает от соседей полную таблицу маршрутизации, хранит информацию обо всех маршрутах, ведущих до пункта назначения.

Открытый протокол с алгоритмом поиска кратчайшего пути OSPF {Open Shortest Path First) – это протокол внутренних маршрутизаторов. Он гораздо сложнее RIP-протокола, однако OSPF может функционировать в сетях любой сложности и не имеет ограничений, характерных для RIP. Время, используемое на по­строение таблиц маршрутизации и загрузки сети служебной информацией, в среднем меньше по сравнению с тем, что потребовал бы протокол RIP для такой же системы. Кроме этого, переходные процессы в OSPF завершаются быстрее, чем в RIP. OSPF представляет собой протокол учета состояния канала LSA (Link State Algorithm), в котором маршрутизация выполняется по алгоритму Дийкстры. В качестве метрики используется коэффициент качества обслуживания QoS (Quality of Service). Каждый маршрутизатор обладает полной информацией о состоянии всех ин­терфейсов всех маршрутизаторов (узлов коммутации) автономной системы. Протокол OSPF реализован программным модулем - демоном маршрути­зации gated, который поддерживает также RIP и внешний протокол маршрутизации BGP. Качество обслуживания (QoS) характеризуется следующими параметрами: пропускной способностью канала, задержкой (временем распространения пакета), загрузкой канала, требованиями безопасности, типом трафика, числом шагов до места назначения, надежностью передачи пакетов.

Доминирующими являются три характеристики: задержка, пропуск­ная способность и надежность. На практике чаще всего метрика связи в OSPF определяется как количество секунд, требуемых для передачи 100 Мбит по каналу, через который проложен маршрут. Например, метрика сети на основе 10BASE-T Ethernet равна 10, метрика канала модемной связи со скоростью 56 кбит/с составляет 1785, а канала со скоростью 100 Мбит и вы­ше равна 1.

Для транспортных целей OSPF применяет протокол IP непосредст­венно, т.е. не привлекая протоколы UDP или TCP. OSPF имеет свой код в протокольном поле IP-заголовка. Код типа обслуживания ToS {type of service) в IP-пакетах, содержащих OSPF-сообщения, равен нулю, значение типа обслуживания ToS здесь задается в самих пакетах OSPF.

Маршрутизация в протоколе OSPF определяется IP-адресом и типом сервиса. В связи с тем, что протокол не требует инкапсуляции пакетов, су­щественно облегчается управление сетями с большим количеством мостов и сложной топологией (исключается циркуляция пакетов, сокращается тран­зитный трафик). Автономная система может быть разделена на отдельные области, каждая из которых становится объектом маршрутизации, а внут­ренняя структура снаружи не видна. Этот прием позволяет значительно со­кратить необходимый объем маршрутной базы данных. В OSPF использует­ся термин магистральная сеть {backbone), обозначающий среду для коммуникаций между выделенными областями. Протокол OSPF работает лишь в пределах автономной системы.

В стеке протоколов TCP/IP протокол OSPF находится непосредственно над протоколом IP, его код равен 89. Поэтому если значение поля "Прото­кол" IP-дейтаграммы равно 89, то данные дейтаграммы являются сообщени­ем OSPF и передаются OSPF-модулю для обработки. Соответственно размер OSPF сообщения ограничен максимальным размером дейтаграммы.

При передаче OSPF-пакетов фрагментация не желательна, но не за­прещается. Для передачи статусной информации OSPF использует широко­вещательные сообщения Hello. Повышение безопасности обеспечивается ав­торизацией процедур. Протокол OSPF требует резервирования двух группо­вых адресов: адрес 224.0.0.5 - предназначен для обращения ко всем маршрутиза­торам, поддерживающим этот протокол; адрес 224.0.0.6 - служит для обращения к специально выделенному маршрутизатору. Любое сообщение OSPF начина­ется с 24-октетного заголовка (рисунок 4.12).

Рисунок 4.12

Поле "Версия" определяет версию протокола. Поле "Тип" иден­тифицирует функцию сообщения, в частности: код 1- Hello (используется для проверки доступности маршрутизатора); код 2 - Описание базы данных (тополо­гия); код 3 - Запрос состояния канала; код 4 - Изменение состояния канала; код 5- Под­тверждение получения сообщения о статусе канала.

Поле "Длина сообщения" указывает длину блока в октетах, включая заго­ловок. "Идентификатор области" - 32-битный код, задающий область, ко­торой данный пакет принадлежит. Все OSPF-пакеты ассоциируются с той или иной областью. Большинство из них не преодолевает более одного шага. Пакеты, перемещающиеся по виртуальным каналам, помечаются идентифи­катором опорной (магистральной) области {backbone).

Поле "Контрольная сумма" содержит проверочную сумму IP-пакета, включая поле типа идентификации. Поле "Тип идентификации" может принимать значения 0 при отсутствии контроля доступа, и 1 при его нали­чии. В дальнейшем функции поля предполагается расширить.

Для взаимообмена данными между соседними маршрутизаторами протокол OSPF использует сообщения типа Hello. Важную функцию в этих сообщениях выполняет однобайтное поле "Опции", служащее для объявле­ния состояния канала и описания базы данных.

Структура пакетов этого типа показана на рисунке 4.13.

Рисунок 4.13

Особую роль в поле "Опции" играют младшие биты Е и Т: Бит Е ха­рактеризует возможность внешней маршрутизации и имеет значение только в сообщениях типа Hello, в остальных сообщениях этот бит должен быть об­нулен. Если Е=0, то данный маршрутизатор не будет посылать или прини­мать маршрутную информацию от внешних автономных систем. Бит Т оп­ределяет сервисные возможности маршрутизатора. Если Т=0, это означает, что маршрутизатор поддерживает только один вид услуг (тип сервиса ToS=0) и он не пригоден для маршрутизации с учетом вида услуг. Такие маршрутизаторы, как правило, не используются для транзитного трафика.

Поле "Сетевая маска" сообщения Hello соответствует маске подсети данного интерфейса. Поле "Время между Hello" содержит значение времени в секундах, между сообщениями Hello. Поле "Опции" характеризует возможности, ко­торые предоставляет данный маршрутизатор. Поле "Приоритет" задает уро­вень приоритета маршрутизатора, используемый при выборе резервного {backup) маршрутизатора. Если приоритет равен нулю, данный маршрутиза­тор никогда не будет реализован в качестве резервного. Поле "Время от­ключения маршрутизатора" определяет временной интервал в секундах, по истечении которого "молчащий" маршрутизатор считается вышедшим из строя. IP-адреса маршрутизаторов, записанные в последующих полях, ука­зывают место, куда следует послать данное сообщение, Поля "IP-адрес со­седа к" образуют список адресов соседних маршрутизаторов, откуда за по­следнее время были получены сообщения Hello.

Маршрутизаторы обмениваются сообщениями из баз данных OSPF, чтобы инициализировать, а в дальнейшем актуализовать свои базы данных, характеризующие топологию сети. Обмен происходит в режиме клиент-сервер. Клиент подтверждает получение каждого сообщения. Формат пере­сылки записей из базы данных изображен на рисунке 4.14.

Рисунок 4.14

Если размер базы данных велик, ее содержимое может пересылаться по частям. Для реализации этого используются биты I и М. Бит I устанавлива­ется в 1 в стартовом сообщении, а бит М принимает единичное состояние для сообщений, которые являются продолжением. Бит S определяет, кем по­слано сообщение (S=l для сервера, S=0 для клиента, этот бит иногда имеет имя MS).

Поле "Порядковый номер сообщения" служит для контроля пропу­щенных в процессе обмена информацией блоков. Первое сообщение содер­жит в этом поле случайное целое число М, последующие: М+1, M+2,...M+L. Поле "Тип канала" содержит коды, определяющие состояние каналов, а именно, его интерфейсов, описание внешних связей автономных систем.

Поле "Идентификатор канала" указывает вид идентификатора, в качестве которого может быть IP-адрес маршрутизатора или сети. Маршрутизатор, объявляющий канал, определяет адрес этого маршрутизатора. Поле "Поряд­ковый номер канала" позволяет маршрутизатору контролировать порядок прихода сообщений и их потерю. Поле "Возраст канала" задает время в се­кундах с момента установления связи. После обмена сообщениями с соседями маршрутизатор может выяснить, что часть данных в его базе устарела. Он может послать своим соседям запрос с целью получения свежей мар­шрутной информации о каком-то конкретном канале связи. Сосед, получив­ший запрос, высылает необходимую информацию.

Маршрутизаторы посылают широковещательные (или групповые) со­общения об изменении состояния своих непосредственных связей. Сообще­ния об изменениях маршрутов могут быть вызваны следующими причинами: возраст маршрута достиг предельного значения, изменилось состояние интерфейса, произошли изменения в маршрутизаторе сети, произошло изменение состояния одного из соседних маршрутиза­торов, изменилось состояние одного из внутренних маршрутов (появле­ние нового, исчезновение старого и т.д.), изменение состояния межзонного маршрута, появление нового маршрутизатора, подключенного к сети, вариация виртуального маршрута одним из маршрутизаторов, возникли изменения одного из внешних маршрутов, маршрутизатор перестал быть пограничным для данной автоном­ной системы (например, перезагрузился).

Маршрутизатор, получивший OSPF-пакет, посылает подтверждение его приема. Возможно подтверждение одним пакетом получения нескольких объявлений о состоянии линий. Адресом места назначения этого пакета мо­жет быть индивидуальный маршрутизатор, их группа или все маршрутиза­торы автономной системы.

Сообщения посылаются для каждой транзитной сети в автономной системе. Транзитной считается сеть, которая имеет более одного маршрутизато­ра и административная политика автономной системы позволяет передавать через свои сети транзитный трафик других AS. Сообщение о сетевых связях должно содержать информацию обо всех маршрутизаторах, подключенных к сети, включая тот, который рассылает эту информацию. Расстояние от сети до любого подключенного маршрутизатора равно нулю для всех видов сер­виса (TOS), поэтому поля TOS и метрики в этих сообщениях отсутствуют.

Маршрутная таблица OSPF включает следующие поля:

  • IP-адрес места назначения и маску;
  • тип места назначения (сеть, граничный маршрутизатор и т.д.);
  • тип функции (возможен набор маршрутизаторов для каждой из функ­ций ToS);
  • область (описывает область, связь с которой ведет к цели; возможно несколько записей данного типа, если области действия граничных маршру­тизаторов перекрываются);
  • тип пути (характеризует путь как внутренний, межобластной или внешний, ведущий к автономной системе AS);
  • цена маршрута до цели;
  • очередной маршрутизатор, куда следует послать дейтаграмму;
  • объявляющий маршрутизатор (используется для межобластных обме­нов и для связей автономных систем друг с другом).

К преимуществам протокола маршрутизации OSPF следует отнести:

  • возможность применения для любого получателя нескольких мар­шрутных таблиц, по одной на каждый вид IP-операции;
  • каждому интерфейсу присваивается безразмерная цена, учитывающая пропускную способность, время транспортировки сообщения; собственная цена (коэффициент качества) может быть присвоена любой IP-операции;
  • при существовании эквивалентных маршрутов OSFP распределяет по­ток равномерно по этим маршрутам;
  • поддерживается адресация подсетей (разные маски для разных маршрутов);
  • при связи точка-точка не требуется IP-адрес для каждого из конечных интерфейсов;
  • применение групповой рассылки вместо широковещательных сообще­ний снижает загрузку значительной части сегментов.

Недостаток протокола OSPF состоит в том, что трудно получить ин­формацию о предпочтительности каналов для узлов, поддерживающих дру­гие протоколы, или протоколы со статической маршрутизацией. Кроме того, OSPF является только внутренним протоколом.

Маршрутизаторы объединяют сегменты сетей или отдельные локальные сети в составную (распределенную) сеть. Маршрутизаторы функционируют в дейтаграммных сетях с коммутацией пакетов, где все возможные маршруты уже существуют. Поэтому пакету нужно лишь выбрать наилучший путь, на основе метрики протокола маршрутизации. Процесс прокладывания пути производится последовательно от одного маршрутизатора к другому. Этот процесс маршрутизации (routing ) является функцией Уровня 3 модели OSI. При прокладывании пути пакета маршрутизатор анализирует сетевой адрес узла назначения, заданный в заголовке пакета, вычленяет из него адрес сети, чтобы идентифицировать сеть адресата в пределах сети Интернет. Адреса сетей назначения хранятся в таблице маршрутизации. Поэтому маршрутизатор должен создавать и поддерживать таблицы маршрутизации, а также извещать другие маршрутизаторы о всех известных ему изменениях в топологии сети.

Совокупность сетей, представленных набором маршрутизаторов под общим административным управлением, образует автономную систему (рис. 9.1). Автономные системы нумеруются и в некоторых протоколах (IGRP, EIGRP) эти номера используются.

Рис. 9.1. Взаимодействие автономных систем

Маршрутизацию, т.е. прокладывание маршрута внутри автономных систем, осуществляют маршрутизирующие протоколы внутреннего шлюза (Interior Gateway Protocols - IGP s), к которым относятся RIP, RIPv2, IGRP, EIGRP, OSPF, Intermediate System-to-Intermediate System (IS-IS). Маршрутизацию между автономными системами производят протоколы внешнего шлюза (Exterior Gateway Protocols - EGP s). Примером протокола внешнего шлюза является протокол BGP, который работает на граничных маршрутизаторах автономных систем (рис. 9.1).

Маршрутизирующие протоколы, работающие внутри автономных систем, в свою очередь, подразделяются на протоколы вектора расстояния (distance - vector ) и протоколы состояния канала (link - state ). Протоколы distance-vector определяют расстояние и направление, т.е. вектор некоторого соединения в составной сети. Расстояние может быть выражено в количестве маршрутизаторов или переходов (hop count ) в соединении на пути от узла источника к адресату назначения или других значениях метрики. При использовании алгоритма distance-vector маршрутизаторы посылают всю или часть таблицы маршрутизации соседним (смежным) маршрутизаторам через определенные интервалы времени. В таких протоколах как RIP, обмен обновлениями (update ) или модификациями происходит, даже если в сети нет никаких изменений , на что затрачивается довольно большая часть полосы пропускания. Получив обновление маршрутной информации, маршрутизатор может заново вычислить все известные пути и произвести изменения в таблице маршрутизации.

Когда пакет прибывает на входной интерфейс, маршрутизатор должен использовать таблицу маршрутизации, чтобы определить, по какому маршруту направить пакет, т.е. на какой свой выходной интерфейс передать поступивший пакет. Выходной интерфейс связан с наиболее рациональным маршрутом к адресату назначения. Этот процесс называется коммутацией или продвижением пакета. На выходном интерфейсе пакет инкапсулируется в новый кадр, при этом маршрутизатор добавляет информацию для формирования кадра (см. Лекцию 8).

Таким образом, маршрутизатор ретранслирует пакет, используя две основных функции:

- функцию определения пути с использованием сетевой части адреса,

- функцию коммутации , принимая пакет на входной интерфейс и продвигая его на выходной интерфейс, который определяется функцией определения пути.

Определение наиболее рационального (оптимального) пути производится маршрутизатором на основе некоторого критерия – метрики . Значение метрики используется при оценке возможных путей. Метрика может включать разные параметры, например:

Полосу пропускания,

Задержку,

Надежность,

Загрузку,

Обобщенную стоимость и другие параметры сетевого соединения.

Маршрутизаторы могут использовать один какой-то параметр или комбинацию параметров метрики при выборе оптимального маршрута.

Маршрутная информация может быть сконфигурирована сетевым администратором – при этом реализуется статическая маршрутизация . Динамическая маршрутизация реализуется протоколами маршрутизации, когда маршрутная информация собирается в ходе динамического процесса обмена обновлениями (модификациями) между маршрутизаторами, который выполняется в сети.

Таким образом, протоколы маршрутизации (routing protocol) позволяют выбирать маршрутизаторам наилучший путь для данных от источника да устройства назначения. Для этого маршрутизирующие протоколы создают и поддерживают (модифицируют) таблицы маршрутизации путем обмена маршрутной информацией с другими маршрутизаторами в сети. Примерами протоколов маршрутизации являются:

RIP (Routing Information Protocol)

IGRP (Interior Gateway Routing Protocol)

EIGRP (Enhanced Interior Gateway Routing Protocol)

OSPF (Open Shortest Path First).

Маршрутизаторы способны поддерживать много независимых протоколов и таблиц маршрутизации для нескольких сетевых протоколов. Эта способность позволяет маршрутизатору передавать пакеты различных сетевых протоколов по тем же самым каналам связи.

Протоколы и устройства Уровня 2 и Уровня 3 модели OSI постоянно взаимодействуют при передаче данных по сети (рис. 9.2).

Рис.9.2. Взаимодействие протоколов и устройств

Это проявляется в виде взаимодействия таблиц ARP (табл.9.1), функционирующих на Уровне 2, и таблиц маршрутизации протоколов Уровня 3 модели OSI. Каждый компьютер и порт маршрутизатора поддерживает таблицы ARP, каждая строка которых содержит пару соответствующих IP- и MAC-адресов и функционируют только в пределах широковещательного домена, т.е. в пределах сети или подсети.

Таблица 9.1

Таблица ARP маршрутизатора А

МАС адрес

Таблицы маршрутизации позволяют передавать пакеты за пределы широковещательного домена. Строки таблицы маршрутизации (табл.9.2) с меткой С отображают непосредственно присоединенные к маршрутизатору сети, а с меткой R – сети, путь к которым проложен с помощью протокола RIP. В каждой строке также представлены: расстояние до сети назначения, выраженное в количестве переходов между маршрутизаторами (hop); выходной интерфейс маршрутизатора на пути к сети назначения.

Таблица 9.2

Таблица маршрутизации маршрутизатора А

Адрес сети назначения

Число переходов

Интерфейс

На Уровне 2 модели OSI функционируют коммутаторы, которые соединяют сегменты одной локальной сети или подсети, используя МАС-адреса. Для соединения с хостами вне локальной сети коммутатор продвигает кадр на маршрутизатор. Хост использует МАС-адрес входного интерфейса маршрутизатора как адрес назначения. Неизвестный МАС-адрес хост узнает из таблицы ARP. Маршрутизатор cверяет IP-адрес сети назначения с таблицей маршрутизации и продвигает пакет на выходной порт в соответствие с найденной строкой таблицы маршрутизации.

Поскольку коммутаторы не блокируют широковещательные передачи, то сети на коммутаторах могут быть затоплены широковещательными штормами. Маршрутизаторы блокируют широковещательные передачи, поэтому широковещательный шторм может быть только в пределах широковещательного домена (broadcast domain). Поэтому маршрутизаторы по сравнению с коммутаторами обеспечивают большую безопасность и контроль полосы пропускания.

Маршрутизаторы используют протоколы маршрутизации, чтобы создавать и поддерживать таблицы маршрутизации для определения маршрута. При этом таблицы маршрутизаторов разных фирм производителей и разных протоколов маршрутизации могут иметь несколько различающуюся маршрутную информацию. В большинстве случаев таблицы маршрутизации содержат:

    Тип протокола , который идентифицирует протокол маршрутизации, который создавал каждый вход (строку) таблицы.

    Следующий переход (Next-hop) – указывает адрес входного интерфейса следующего маршрутизатора на пути к адресату назначения.

    Метрику , которая различается для разные протоколов.

    Выходной интерфейс , через который данные должны быть отправлены к устройству назначения.

Маршрутизаторы поддерживают таблицы маршрутизации через обмен обновлениями или модификациями (update ). Некоторые протоколы передают обновления периодически, например, протоколы RIP, IGRP. Другие протоколы посылают модификации только когда происходят изменения в сетевой топологии, например, OSPF, EIGRP.

Маршрутизаторы, зная информацию о пути к некоторым сетям, обмениваются этой информацией с другими маршрутизаторами. Следовательно, после таких обновлений или модификаций все маршрутизаторы в сети будут иметь согласованную информацию о маршрутах к доступным сетям. Таким образом, маршрутизирующие протоколы разделяют сетевую информацию между маршрутизаторами .

Различные протоколы маршрутизации используют разные алгоритмы при выборе маршрута, т.е. выходного порта, на который должен быть передан пакет. Алгоритм и метрика определяются целым рядом решаемых задач, таких как простота, устойчивость, гибкость, быстрая сходимость (convergence ). Сходимость это процесс согласования между всеми маршрутизаторами сети о доступных маршрутах. При изменениях состояния сети необходимо, чтобы обмен модификациями восстановил согласованную сетевую информацию.

Каждый алгоритм по своему интерпретирует выбор наиболее рационального пути на основе метрики. Обычно меньшее значение метрики соответствует лучшему маршруту. Метрика может базироваться на одном или на нескольких параметрах пути. В протоколах маршрутизации наиболее часто используются следующие метрики:

    Полоса пропускания (Bandwidth) – способность соединения передавать данные с некоторой скоростью, например, соединения сети Ethernet предпочтительней линии со скоростью 64 кбит/с.

    Задержка (Delay) – это длительность времени прохождения пакета от источника до адресата назначения. Задержка зависит от количества промежуточных соединений и их типов, объема буферных устройств маршрутизаторов, сходимости сети и расстояния между узлами. (Load) – загрузка определяется количеством информации, загружающей сетевые ресурсы (маршрутизаторы и каналы). Чем больше загрузка, тем дольше пакет будет в пути.

    Надежность (Reliability) – надежность определяется интенсивностью ошибок на каждом сетевом соединении.

    Количество переходов (Hop count) – это количество маршрутизаторов, через которые пакет должен пройти на пути к адресату назначения (число переходов от маршрутизатора к маршрутизатору).

    Стоимость (Cost) –это обобщенный параметр затрат на передачу пакета к адресату назначения. Обычно стоимость имеет произвольное значение, назначенное администратором. Часто стоимость базируется на полосе пропускания.

Маршрутизаторы одновременно и просты и сложны. Однако познакомиться с ними будет небесполезно, поскольку они обеспечивают работу как Internet, так и корпоративных сетей. В этой статье мы описываем маршрутизаторы в общих чертах и обращаемся к конкретным сетевым протоколам только тогда, когда это необходимо.

В сети коммутации сообщений все делается при помощи зеркал. Зеркала - это такие устройства, как маршрутизаторы, коммутаторы и мосты. Они получают сообщения через один интерфейс, определяют получателя по той или иной таблице и передают его на другой интерфейс. Одно из основных отличий между маршрутизатором и любым другим коммутатором сообщений состоит в способе построения таблиц. Маршрутизаторы посылают сообщения сетям, в то время как таблицы мостов и коммутаторов содержат список адресов подуровня MAC.

Маршрутизатор выполняет две основные функции: переключение трафика и обслуживание среды, в которой он работает. Обе функции можно реализовать на одном и том же процессоре, но это вовсе не обязательно. Зачастую переключение трафика осуществляет отдельный интерфейсный процессор или процедура обработки прерываний ядра, в то время как процесс обслуживания среды выполняется в фоновом режиме. На Рисунке 1 представлены основные компоненты маршрутизатора с интеграцией услуг, т. е. поддерживающего качество услуг (QoS).

Рисунок 1.
Архитектура маршрутизатора с интеграцией услуг, т. е. поддерживающего усовершенствованные алгоритмы QoS, соответствует приведенной схеме.

Верхний уровень на Рисунке 1, уровень маршрутизации, представляет собою часть маршрутизатора, предназначенную для обслуживания среды. Маршрутизатор выполняет целый ряд приложений, причем они могут быть частью сетевой архитектуры или конфигурироваться для удобства администратором сети. Эти приложения, или процессы, выполняются на уровне приложений маршрутизации (Routing Application). Один из таких процессов - доменная служба имен (Domain Name Service, DNS): он кэширует информацию о DNS для обслуживаемых систем. Однако DNS - не обязательная часть архитектуры IP-маршрутизатора, и далеко не каждый согласится с тем, что маршрутизатор должен предоставлять такую услугу. Стандартными сервисами маршрутизаторов являются, например, определение топологии (topology mapping) и управление трафиком (traffic engineering).

Протоколы маршрутизации определяют топологию сети и сохраняют информацию о ней в таблице маршрутизации. Если маршрутизатор не применяет протокол маршрутизации, то тогда он хранит статические маршруты или использует отдельный протокол на каждом интерфейсе. Обычно маршрутизаторы работают с одним протоколом маршрутизации.

Таблица маршрутизации, иногда называемая базой данных маршрутизации, - это набор маршрутов, используемых маршрутизатором в данный момент времени. Строки таблицы маршрутизации содержат, по крайней мере, следующую информацию:

  • действительный адрес или множество действительных адресов в сети;
  • информация, вычисленная протоколом маршрутизации или необходимая ему;
  • информация, необходимая для того, чтобы переслать сообщение на один маршрутизатор ближе к получателю.
  • Информация о маршрутизации содержит метрику, т. е. меру времени или расстояния, и несколько отметок о времени. Информация о пересылке включает в себя данные о выходном интерфейсе и адрес следующей системы по пути. Обычно маршрутизаторы хранят данные о нескольких возможных следующих транзитных маршрутизаторах в одной строке таблицы.

    Протоколы, используемые при создании таблицы маршрутизации, отличаются между собой, но тем не менее их можно разделить на несколько основных категорий: на протоколы длины вектора расстояния, состояния канала и политики маршрутизации.

    ПРОТОКОЛЫ МАРШРУТИЗАЦИИ

    Протоколы длины вектора - простейший и наиболее распространенный тип протоколов маршрутизации. По большей части используемые сегодня протоколы этого типа ведут свое начало от протокола Routing Information Protocol компании Xerox (иногда они даже называются этим именем). Протоколы данного класса включают IP RIP, IPX RIP, протокол управления таблицей маршрутизации AppleTalk RTMP и Cisco Interior Gateway Routing Protocol.

    Свое название этот тип протоколов получил от способа обмена информацией. Периодически каждый маршрутизатор копирует адреса получателей и метрику из своей таблицы маршрутизации и помещает эту информацию в рассылаемые соседям сообщения об обновлении. Соседние маршрутизаторы сверяют полученные данные со своими собственными таблицами маршрутизации и вносят необходимые изменения.

    Этот алгоритм прост и, на первый взгляд, надежен. К сожалению, он работает наилучшим образом в небольших сетях при (желательно полном) отсутствии избыточности. Крупные сети не могут обойтись без периодического обмена сообщениями для описания сети, однако большинство из них избыточны. По этой причине сложные сети испытывают проблемы при выходе линий связи из строя из-за того, что несуществующие маршруты могут оставаться в таблице маршрутизации в течение длительного периода времени. Трафик, направленный по такому маршруту, не достигнет своего адресата. Эвристически данная проблема решаема, но ни одно из таких решений не является детерминистским.

    Некоторые из этих проблем решаются усовершенствованным алгоритмом под названием алгоритм диффузионного обновления (DUAL), при этом маршрутизаторы используют алгоритм длины вектора для составления карты путей между ними и DUAL для широковещательного объявления об обслуживаемых ими локальных сетях. Информация об изменениях в топологии также рассылается по всей сети. Примером такого усовершенствованного протокола может служить Cisco Enhanced IGRP.

    Вторую категорию протоколов обслуживания среды составляют протоколы состояния канала. Впервые предложенные в 1970 году в статье Эдсгера Дейкстры, протоколы состояния канала сложнее, чем протоколы длины вектора. Взамен они предлагают детерминистское решение типичных для их предшественников проблем. Вместо рассылки соседям содержимого своих таблиц маршрутизации каждый маршрутизатор осуществляет широковещательную рассылку списка маршрутизаторов, с которыми он имеет непосредственную связь, и напрямую подключенных к нему локальных сетей. Эта информация о состоянии канала рассылается в специальных объявлениях. За исключением широковещания периодических сообщений о своем присутствии в сети, маршрутизатор рассылает объявления о состоянии каналов только в случае изменения информации о них или по истечении заданного периода времени.

    Недостатком таких протоколов состояния каналов, как OSPF, IS-IS и NLSP, является их сложность и высокие требования к памяти. Они трудны в реализации и нуждаются в значительном объеме памяти для хранения объявлений о состоянии каналов. При всем своем превосходстве над ранними протоколами длины вектора их реальное преимущество перед DUAL далеко не очевидно.

    К третьей категории протоколов по обслуживанию среды относятся протоколы правил маршрутизации. Если протоколы маршрутизации на базе алгоритмов длины вектора и состояния канала решают задачу наиболее эффективной доставки сообщения получателю, то политика маршрутизации решает задачу наиболее эффективной доставки получателю по разрешенным путям. Такие протоколы, как BGP (Border Gateway Protocol) или IDRP (Interdomain Routing Protocol), позволяют операторам Internet получать информацию о маршрутизации от соседних операторов на основе контрактов или других нетехнических критериев. Алгоритмы, используемые для политики маршрутизации, опираются на алгоритмы длины вектора, но информация о метрике и пути базируется на списке операторов магистрали.

    Одно из следствий применения протоколов такого рода в том, что пути сообщения и ответа на него через Internet, вообще говоря, различны. В корпоративных же сетях Intranet, не использующих политику маршрутизации, эти пути, как правило, совпадают.

    ИНТЕГРИРОВАННЫЕ СЕРВИСЫ

    Маршрутизатор с интеграцией услуг должен поддерживать протокол резервирования ресурсов (Resource Reservation Protocol, RSVP). Маршрутизаторы этого типа добавляют протокол ресурсов, контрольный модуль и интерфейс к политике очередей уровня коммутации (см. ).

    RSVP позволяет системам запрашивать сервисы у сети, например гарантированную пропускную способность, максимальный уровень потерь или предсказуемую задержку. Сообщения "пути" RSVP рассылаются отправителем и отслеживают маршрут передачи данных, оставляя указатели на маршрутизаторах. Этот процесс позволяет маршрутизаторам производить резервирование по пути передачи даже при асимметрии маршрутов. Сообщения о резервировании ресурсов получателем находят источник, следуя оставленным указателям, и производят резервирование по пути.

    На маршрутизаторах сообщения о резервировании объединяются при их возвращении к источнику. Как следствие, отправитель - например, рабочая станция в сети - получает сообщение от ближайшего маршрутизатора, а не от каждого из сотен или даже тысяч потенциальных покупателей. Однако резервирование выполняется, только если достаточно ресурсов для его гарантии. Это решение принимается контрольным модулем.

    Согласие на резервирование ведет к изменениям политики очередности и базы данных резервирования. Политику очередности, т. е. алгоритмы, определяющие порядок, в котором сообщения обслуживаются, мы обсудим несколько позднее.

    Уровень коммутации выполняет и другие важные задачи. Определение топологии сети и политики очередности только вспомогательные задачи, основная же задача маршрутизации - переключение трафика. Переключение - это процесс приема сообщения, выбора подходящего маршрута дальнейшего следования и отправка его по этому маршруту. Данная операция обслуживается четырьмя различными процессами: входным драйвером, процессом выбора маршрута, очередью и выходным драйвером.

    При всем многообразии дополнительных возможностей производители стараются сделать этот путь оптимальным по скорости. Путь переключения делается настолько быстрым, насколько производитель в состоянии это сделать, поэтому он обычно называется быстрым путем. Реже используемые (или дополнительные) возможности, например фрагментация сообщений или обработка опций IP-заголовка, делегируются более медленным и более сложным последовательностям процессов.

    Многие рассматривают модуль выбора маршрута как основной модуль маршрутизатора. Выбор маршрута осуществляется с использованием классических методик. Например, в простейшем случае код переключения ищет адрес получателя в таблице маршрутизации, выбирает один из возможных следующих транзитных узлов (определенных протоколом маршрутизации), удаляет входной и добавляет выходной заголовки канального уровня, а затем посылает сообщение.

    Конечно, вся эта процедура применяется только к действительным сообщениям (основные протоколы сетевого уровня имеют процедуры для квалификации сообщения). Если сообщение слишком велико по размеру для выходного интерфейса, то маршрутизатор вынужден либо фрагментировать, либо отбросить его. Если пакет содержит контрольные суммы (DECnet IV и IPv6 их не предусматривают, в отличие от большинства других протоколов), то сначала проверяется контрольная сумма. Фактически все архитектуры имеют также и счетчик транзитных узлов: маршрутизатор увеличивает его на единицу и сравнивает с предельным допустимым значением. Маршрутизатор отбрасывает недействительные сообщения и уведомляет об этом отправителя.

    Некоторые протоколы, в частности IPv4, IPv6 и ISO IP, поддерживают дополнительные поля: они позволяют маршрутизатору записывать путь сообщения по сети и посылать сообщение в принудительном порядке через некоторые системы по пути следования, накапливать отметки о времени, передавать информацию об идентификации и выполнять другие функции сетевого уровня. Эти факультативные процедуры также выполняются модулем выбора маршрута.

    После переключения сообщения модулем выбора маршрута распорядитель сообщений определяет момент отправки сообщения. Планирование отправки сообщений - и самая простая, и самая сложная функция уровня коммутации. Маршрутизаторы по большей части либо добавляют сообщение в очередь FIFO (англ. сокр. "первым пришел, первым ушел") ожидающего отправки трафика, либо, если очередь полна, просто отбрасывают их. Такой простой алгоритм довольно эффективен, но опыт управления сетями и недавние исследования показывают, что он далеко не оптимален.

    В маршрутизаторе, реализующем архитектуру с интеграцией услуг IETF, алгоритмы обслуживания очередей сортируют трафик в таком порядке, чтобы данные гарантии были выполнены. Часто маршрутизаторы, не поддерживающие QoS, реализуют подобные алгоритмы в целях управления трафиком.

    FIFO - ПЕРВЫМ ПРИШЕЛ, ПЕРВЫМ УШЕЛ

    Стандартные реализации очереди FIFO первыми отправляют наиболее раннее из полученных сообщений и отбрасывают все последующие, если очередь уже полна. Недавние исследования показывают, что удаление сообщений, по крайней мере для TCP/IP, имеет серьезные побочные эффекты. Например, когда сообщение потеряно, приложение-отправитель может рассматривать это как сигнал о том, что оно посылает пакеты слишком быстро. TCP реагирует на такой сигнал замедлением отправки сообщений. Но когда очередь полна, то часто несколько сообщений отбрасываются друг за другом - в результате целый ряд приложений решает замедлить передачу. После этого приложения зондируют сеть для определения ее загруженности и буквально через несколько секунд возобновляют передачу с прежним темпом, что опять приводит к перегрузке.

    Случайное раннее обнаружение (Random Early Detection, RED) представляет альтернативу очередям FIFO. Оно позволяет смягчить эффект от потери трафика даже при очень больших нагрузках, так что приложения не синхронизированы друг с другом, как это имело место в предыдущем случае. Такая очередь по-прежнему использует принцип FIFO, но, вместо того чтобы отбрасывать сообщения из конца очереди, RED отбрасывает трафик статистически, когда средняя длина очереди за данный промежуток времени превосходит некоторое значение. Таким образом, заполнение очереди оптимизировано для обеспечения большей устойчивости алгоритма. Этот процесс был придуман специально для TCP, но те, кто его изобрел, считают, что он применим к любому трафику, когда сеть не гарантирует доставки.

    Очередь с приоритетами - это алгоритм, при котором несколько очередей FIFO или RED образуют одну систему очередей. Трафик распределяется между данными очередями в соответствии с некоторыми заданными критериями, например в соответствии с приложением или получателем. Однако трафик отправляется в порядке строгой очередности: сначала трафик с высоким приоритетом, затем со средним и т. д. При всей простоте понимания и реализации этот алгоритм не очень хорошо работает при высоких нагрузках, потому что очереди с низким приоритетом оказываются блокированными в течение продолжительного периода времени или низкоприоритетный трафик имеет такую большую задержку в результате следования по окружному пути, что становится бесполезным.

    Очереди в соответствии с классом (Class-Based Queuing, CBQ) - это алгоритм, при котором трафик делится на несколько классов. Определение класса трафика в значительной мере произвольно. Класс может представлять весь трафик через данный интерфейс, трафик определенных приложений, трафик к заданному подмножеству получателей, трафик с качеством услуг, гарантированным RSVP. Каждый класс имеет собственную очередь, и ему гарантируется, по крайней мере, некоторая доля пропускной способности канала. Если какой-либо класс не исчерпывает предоставленный ему лимит пропускной способности, то остальные классы увеличивают свою долю пропорциональным образом.

    Взвешенная справедливая очередь (Weighted Fair Queuing, WFQ) является частным случаем CBQ, когда отдельному классу соответствуют независимые потоки. Как и в случае CBQ, каждому классу WFQ соответствует одна очередь FIFO и гарантируется некоторая часть пропускной способности канала. Если некоторые потоки используют предоставленную им пропускную способность не полностью, то другие потоки увеличивают свою долю соответственно. Так как каждый класс - это отдельный поток, то гарантия пропускной способности эквивалентна в данном случае гарантии максимальной задержки. Зная параметры сообщения, вы можете по известной формуле вычислить его максимальную задержку при передаче по сети. Выделение дополнительной пропускной способности позволяет уменьшить максимальную задержку.

    Входные и выходные драйверы - это программы и чипы для приема и отправки сообщений из системы. Вообще говоря, они могут рассматриваться естественным образом в рамках протоколов сетевого уровня. Однако протоколы маршрутизации должны учитывать топологические соображения. По этой причине они рассматривают классы компонентов канального уровня по-иному. Обычно компоненты канального уровня характеризуются такими терминами, как локальные сети, каналы точка-точка, сети множественного доступа с виртуальными соединениями, каналы нерегулярного доступа и коммутируемые каналы.

    Локальная сеть, вероятно, наиболее известный для сообщества Internet компонент канального уровня. Примерами могут служить сети Ethernet, Token Ring, FDDI и (несколько парадоксально) Switched Multimegabit Data Service. Предназначение локальных сетей не в обеспечении высокой загруженности, а в обеспечении высокой доступности; в результате, когда локальная сеть загружена, ее производительность менее предсказуема и далека от оптимальной. Локальную сеть можно реализовать, используя различные комбинации кабеля, концентраторов и коммутаторов. Но системы в них - как хосты, так и маршрутизаторы - имеют целый ряд общих характеристик. Если вы не занимаетесь написанием драйверов, то тогда отношение к локальной сети как средству предоставления высокодоступных сервисов некоторому множеству систем с заданной скоростью, вполне достаточно.

    Каждая система имеет MAC-адрес, идентифицирующий систему в пределах данной сети. Когда какая-либо система отправляет сообщение, адрес сетевого уровня системы-получателя должен быть переведен сначала в MAC-адрес. Как это делается, зависит от протокола: в NetWare МАС-адрес является частью адреса сетевого уровня, в то время как в AppleTalk и IP протокол определения адреса запрашивает системы об их адресах для установления соответствия между адресами канального и сетевого уровня.

    Ввиду необходимости такой трансляции каждой системе в локальной сети необходим уникальный адрес сетевого уровня, благодаря которому сообщение может быть доставлено ей по сети; адрес должен содержать достаточную топологическую информацию (обычно в виде номера сети или префикса адреса), чтобы маршрутизаторы знали, куда направлять сообщение. Подобная система идентификации позволяет последнему маршрутизатору передать сообщение непосредственно системе-получателю.

    Организация очередей в локальных сетях сопряжена с определенными трудностями, так как системы не знают о поведении своих соседей. Протоколы локальных сетей имеют механизмы, с помощью которых системы могут договариваться об использовании среды передачи для каждого конкретного сообщения. Это согласование осуществляется обычно посредством обнаружения коллизий или передачи маркера. Такой процесс отнимает иногда немало времени, однако ввиду высокой пропускной способности длинные очереди для локальной сети не характерны.

    Каналы точка-точка, например PPP или HSSI, представляют полную противоположность локальным сетям, поскольку здесь мы имеем дело только с двумя участниками. Некоторые архитектуры маршрутизации рассматривают их как внутренние интерфейсы между двумя половинками маршрутизатора, в то время как другие - как вырожденный случай локальной сети.

    Такие каналы обычно не имеют адресов, потому что маршрутизаторы с обоих концов могут идентифицировать друг друга непосредственно, не беспокоясь о формальном имени. Данная конфигурация имеет определенные достоинства при распределении адресов: нет нужды присваивать каналу номер сети. Кроме того, преобразование адресов производить тоже не надо.

    В конфигурации точка-точка очередь, кроме того, проще организовать, так как незачем договариваться об использовании канала. Таким образом, система полностью контролирует характеристики трафика.

    Каналы нерегулярного доступа, наподобие асинхронных коммутируемых или ISDN-каналов, во многом напоминают каналы точка-точка, за одним важным исключением. Если прямой канал недоступен, то пользоваться им невозможно, пока он не будет восстановлен. Поэтому маршрутизаторы обмениваются друг с другом сообщениями для нахождения обходного пути по сети. Однако если канал нерегулярного доступа не функционирует в данный момент, то он может быть сделан доступным посредством звонка. При таком сценарии маршрутизаторы исходят из предположения, что канал задействуется по требованию, и при определении топологии они рассматривают такой канал как доступный. Это в какой-то степени фикция (недоступный канал считается доступным), которая требует некоторых изменений в протоколах маршрутизации.

    Сети множественного доступа с виртуальными соединениями (называемые также нешироковещательными сетями множественного доступа, или NBMA) включают X.25, frame relay и ATM. С точки зрения маршрутизаторов, сети с виртуальными соединениями рассматриваются обычно как локальные сети или совокупность интерфейсов точка-точка. Они схожи с локальными сетями в том, что каждая система имеет в них свой адрес, однако этот адрес соответствует виртуальному соединению, а не системе или интерфейсу. Если два виртуальных соединения соединяют одну и ту же пару маршрутизаторов, то каждое из них имеет свой адрес. Виртуальные сети схожи и с каналами точка-точка: например, система обладает полным контролем над очередями; более того, источником передаваемых по виртуальному соединению данных может быть только один из участников. Участник известен как "тот, кто использует виртуальное соединение", а стало быть, адреса интерфейсов попросту не нужны.

    С точки зрения маршрутизации, сети на канальном уровне следует рассматривать с осторожностью. Проблемы с маршрутизацией возникают, например, когда сеть множественного доступа с виртуальными соединениями рассматривается как локальная сеть. Потеря магистрали - общего пути для нескольких виртуальных соединений - в сети frame relay может привести к тому, что протоколы маршрутизации (в особенности это касается OSPF) потеряют связь со всеми коллегами, хотя, тем не менее, они и будут иметь возможность обмениваться сообщениями. По этой причине такие сети лучше представлять как совокупность ненумерованных каналов точка-точка.

    Имея представление о вышеперечисленных компонентах современного маршрутизатора, вы можете со знанием дела приобретать, развертывать, использовать и обслуживать вашу сеть.

    Фред Бейкер - ведущий инженер по программному обеспечению в Cisco Systems, работающий в области телекоммуникаций с 1978 года. Он принимал участие в разработке стандартов ITU и IETF и в таких отраслевых консорциумах, как форумы Winsock-2 и ATM. В настоящее время Бейкер является председателем IETF. С ним можно связаться по адресу:

    В качестве протокола маршрутизации может быть выбран RIP, OSPF или какой-либо другой протокол маршрутизации, например IS-IS или EIGRP, в зависимости от топологии и задач сети. RIP относится к протоколам маршрутизации типа «вектор-расстояние», тогда как IS-IS и OSPF относятся к протоколам состояния звена. EIGRP является гибридным протоколом. Рассмотрим эти протоколы маршрутизации более подробно.

    Протокол RIP (RoutingInformationProtocol, протокол маршрутной информации) является наиболее простым протоколом динамической маршрутизации. Он относится к протоколам типа «вектор-расстояние».

    В протоколах типа «вектор-расстояние» каждый маршрутизатор рассылает список адресов доступных ему сетей («векторов»), с каждым из которых связано параметр «расстояния» (например, количество маршрутизаторов до этой сети, значение, основанное на производительности канала и т.п.).

    Протокол RIP обладает следующими характеристиками:

    работа протокола основана на широковещательной рассылке. Маршрутизаторы одного и того же сегмента обмениваются сообщениями о корректировках с помощью широковещательной рассылки;

    он предназначен для использования в качестве внутреннего протокола маршрутизации;

    RIP лучше всего работает в небольших сетях. Поскольку RIP реализует широковещательную рассылку и имеет ограничения по диаметру сети, он не подходит для больших сетей;

    как протоко...

    В качестве маршрутизаторов сети выберем маршрутизаторы серии Cisco7200 а именно Cisco 7204VXR, так как внутренняя шина Cisco 7200 поддерживает технологию MIX (MultiserviceInterchange) - коммутацию DS0 каналов к любому интерфейсному модулю.

    Поддержка MIX позволяет интегрировать на одном интерфейсе голос и данные. Cisco 7200 может выступать в роли гибкого шлюза между различными средами передачи голоса: ATM, FrameRelay и IP. Cisco 7200 поддерживает следующие стандарты передачи голоса: VoATM с использованием уровня адаптации ATM AdapterLayer 2 (AAL2), VoFR (FRF.11 и FRF.12), VoIP (H.323 v2), MediaGatewayControlProtocol (MGCP), т.е по сути является универсальным решением. Функциональность голосового шлюза дополняется возможностью преобразования телефонных сигнализаций. Cisco 7200 может обеспечивать взаимодействие сетей с сигнализацией ОКС №7 (SS7).

    Основными возможностями являются: поддержка технологии MPLS, поддержка голосовых функций VoIP, VoFR, VoATM, гибкость мультисервисных приложений благодаря встроенной шине MIX, возможность интеграции со шлюзами ОКС №7 для построения крупномасштабных сетей доступа, широчайший спектр технологий подключения к локальным и территориально распределенным сетям.

    Технические характеристики сетевого оборудования приводятся в приложении Г курсового проекта.

    Таким образом, для построения сети выбирается оборудование компании Cisco, которая на сегодняшний день является ведущим производителем сетевого оборудования, которое соответствует стандартам качества и поддерживает наиболее современные технологии в области построения сети.

    Задача маршрутизации решается на основе анализа таблиц маршрутизации, размещенных во всех маршрутизаторах и конечных узлах сети. Каким же образом происходит формирование этих таблиц? Какими средствами обеспечивается адекватность содержащейся в них информации постоянно изменяющейся структуре сети? Основная работа по созданию таблиц маршрутизации выполняется автоматически, но и возможность вручную скорректировать или дополнить таблицу тоже, как правило, предусматривается.

    Для автоматического построения таблиц маршрутизации маршрутизаторы обмениваются информацией о топологии составной сети в соответствии со специальным служебным протоколом. Протоколы этого типа называются протоколами маршрутизации (или маршрутизирующими протоколами). Протоколы маршрутизации (например, RIP, OSPF, NLSP) следует отличать от собственно сетевых протоколов (например, IP, IPX). И те и другие выполняют функции сетевого уровня модели OSI - участвуют в доставке пакетов адресату через разнородную составную сеть. Но в то время как первые собирают и передают по сети чисто служебную информацию, вторые предназначены для передачи пользовательских данных, как это делают протоколы канального уровня. Протоколы маршрутизации используют сетевые протоколы как транспортное средство. При обмене маршрутной информацией пакеты протокола маршрутизации помещаются в поле данных пакетов сетевого уровня или даже транспортного уровня, поэтому с точки зрения вложенности пакетов протоколы маршрутизации формально следовало бы отнести к более высокому уровню, чем сетевой.

    В том, что маршрутизаторы для принятия решения о продвижении пакета обращаются к адресным таблицам, можно увидеть их некоторое сходство с мостами и коммутаторами. Однако природа используемых ими адресных таблиц сильно различается. Вместо MAC - адресов в таблицах маршрутизации указываются номера сетей, которые соединяются в интерсеть. Другим отличием таблиц маршрутизации от адресных таблиц мостов является способ их создания. В то время как мост строит таблицу, пассивно наблюдая за проходящими через него информационными кадрами, посылаемыми конечными узлами сети друг другу, маршрутизаторы по своей инициативе обмениваются специальными служебными пакетами, сообщая соседям об известных им сетях в интерсети, маршрутизаторах и о связях этих сетей с маршрутизаторами. Обычно учитывается не только топология связей, но и их пропускная способность и состояние. Это позволяет маршрутизаторам быстрее адаптироваться к изменениям конфигурации сети, а также правильно передавать пакеты в сетях с произвольной топологией, допускающей наличие замкнутых контуров.

    С помощью протоколов маршрутизации маршрутизаторы составляют карту связей сети той или иной степени подробности. На основании этой информации для каждого номера сети принимается решение о том, какому следующему маршрутизатору надо передавать пакеты, направляемые в эту сеть, чтобы маршрут оказался рациональным. Результаты этих решений заносятся в таблицу маршрутизации. При изменении конфигурации сети некоторые записи в таблице становятся недействительными. В таких случаях пакеты, отправленные по ложным маршрутам, могут зацикливаться и теряться. От того, насколько быстро протокол маршрутизации приводит в соответствие содержимое таблицы реальному состоянию сети, зависит качество работы всей сети.

    Протоколы маршрутизации могут быть построены на основе разных алгоритмов, отличающихся способами построения таблиц маршрутизации, способами выбора наилучшего маршрута и другими особенностями своей работы.

    Во всех описанных выше примерах при выборе рационального маршрута определялся только следующий (ближайший) маршрутизатор, а не вся последовательность маршрутизаторов от начального до конечного узла. В соответствии с этим подходом маршрутизация выполняется по распределенной схеме - каждый маршрутизатор ответственен за выбор только одного шага маршрута, а окончательный маршрут складывается в результате работы всех маршрутизаторов, через которые проходит данный пакет. Такие алгоритмы маршрутизации называются одношаговыми .

    Существует и прямо противоположный, многошаговый подход - маршрутизация от источника (Source Routing). В соответствии с ним узел-источник задает в отправляемом в сеть пакете полный маршрут его следования через все промежуточные маршрутизаторы. При использовании многошаговой маршрутизации нет необходимости строить и анализировать таблицы маршрутизации. Это ускоряет прохождение пакета по сети, разгружает маршрутизаторы, но при этом большая нагрузка ложится на конечные узлы. Эта схема в вычислительных сетях применяется сегодня гораздо реже, чем схема распределенной одношаговой маршрутизации. Однако в новой версии протокола IP наряду с классической одношаговой маршрутизацией будет разрешена и маршрутизация от источника.

    Одношаговые алгоритмы в зависимости от способа формирования таблиц маршрутизации делятся на три класса:

      алгоритмы фиксированной (или статической) маршрутизации;

      алгоритмы простой маршрутизации;

      алгоритмы адаптивной (или динамической) маршрутизации.

    В алгоритмах фиксированной маршрутизации все записи в таблице маршрутизации являются статическими. Администратор сети сам решает, на какие маршрутизаторы надо передавать пакеты с теми или иными адресами, и вручную (например, с помощью утилиты route ОС Unix или Windows NT) заносит соответствующие записи в таблицу маршрутизации. Таблица, как правило, создается в процессе загрузки, в дальнейшем она используется без изменений до тех пор, пока ее содержимое не будет отредактировано вручную. Такие исправления могут понадобиться, например, если в сети отказывает какой-либо маршрутизатор и его функции возлагаются на другой маршрутизатор. Различают одномаршрутные таблицы, в которых для каждого адресата задан один путь, и многомаршрутные таблицы, определяющие несколько альтернативных путей для каждого адресата. В многомаршрутных таблицах должно быть задано правило выбора одного из маршрутов. Чаще всего один путь является основным, а остальные - резервными. Понятно, что алгоритм фиксированной маршрутизации с его ручным способом формирования таблиц маршрутизации приемлем только в небольших сетях с простой топологией. Однако этот алгоритм может быть эффективно использован и для работы на магистралях крупных сетей, так как сама магистраль может иметь простую структуру с очевидными наилучшими путями следования пакетов в подсети, присоединенные к магистрали.

    В алгоритмах простой маршрутизации таблица маршрутизации либо вовсе не используется, либо строится без участия протоколов маршрутизации. Выделяют три типа простой маршрутизации:

      случайная маршрутизация, когда прибывший пакет посылается в первом попавшем случайном направлении, кроме исходного;

      лавинная маршрутизация, когда пакет широковещательно посылается по всем возможным направлениям, кроме исходного (аналогично обработке мостами кадров с неизвестным адресом);

      маршрутизация по предыдущему опыту, когда выбор маршрута осуществляется по таблице, но таблица строится по принципу моста путем анализа адресных полей пакетов, появляющихся на входных портах.

    Самыми распространенными являются алгоритмы адаптивной (или динамической) маршрутизации. Эти алгоритмы обеспечивают автоматическое обновление таблиц маршрутизации после изменения конфигурации сети. Протоколы, построенные на основе адаптивных алгоритмов, позволяют всем маршрутизаторам собирать информацию о топологии связей в сети, оперативно отрабатывая все изменения конфигурации связей. В таблицах маршрутизации при адаптивной маршрутизации обычно имеется информация об интервале времени, в течение которого данный маршрут будет оставаться действительным. Это время называют временем жизни маршрута (Time To Live, TTL) .

    Адаптивные алгоритмы обычно имеют распределенный характер, который выражается в том, что в сети отсутствуют какие-либо выделенные маршрутизаторы, которые собирали бы и обобщали топологическую информацию: эта работа распределена между всеми маршрутизаторами.

    ПРИМЕЧАНИЕ В последнее время наметилась тенденция использовать так называемые серверы маршрутов. Сервер маршрутов собирает маршрутную информацию, а затем раздает ее по запросам маршрутизаторам, которые освобождаются в этом случае от функции создания таблиц маршрутизации, либо создают только части этих таблиц. Появились специальные протоколы взаимодействия маршрутизаторов с серверами маршрутов, например Next Hop Resolution Protocol (NHRP).

    Адаптивные алгоритмы маршрутизации должны отвечать нескольким важным требованиям. Во-первых, они должны обеспечивать, если не оптимальность, то хотя бы рациональность маршрута. Во-вторых, алгоритмы должны быть достаточно простыми, чтобы при их реализации не тратилось слишком много сетевых ресурсов, в частности они не должны требовать слишком большого объема вычислений или порождать интенсивный служебный трафик. И наконец, алгоритмы маршрутизации должны обладать свойством сходимости, то есть всегда приводить к однозначному результату за приемлемое время.

    Адаптивные протоколы обмена маршрутной информацией, применяемые в настоящее время в вычислительных сетях, в свою очередь делятся на две группы, каждая из которых связана с одним из следующих типов алгоритмов:

      дистанционно-векторные алгоритмы (Distance Vector Algorithms, DVA);

      алгоритмы состояния связей (Link State Algorithms, LSA).

    В алгоритмах дистанционно-векторного типа каждый маршрутизатор периодически и широковещательно рассылает по сети вектор, компонентами которого являются расстояния от данного маршрутизатора до всех известных ему сетей. Под расстоянием обычно понимается число хопов. Возможна и другая метрика, учитывающая не только число промежуточных маршрутизаторов, но и время прохождения пакетов по сети между соседними маршрутизаторами. При получении вектора от соседа маршрутизатор наращивает расстояния до указанных в векторе сетей на расстояние до данного соседа. Получив вектор от соседнего маршрутизатора, каждый маршрутизатор добавляет к нему информацию об известных ему других сетях, о которых он узнал непосредственно (если они подключены к его портам) или из аналогичных объявлений других маршрутизаторов, а затем снова рассылает новое значение вектора по сети. В конце концов, каждый маршрутизатор узнает информацию обо всех имеющихся в интерсети сетях и о расстоянии до них через соседние маршрутизаторы.

    Дистанционно-векторные алгоритмы хорошо работают только в небольших сетях, В больших сетях они засоряют линии связи интенсивным широковещательным трафиком, к тому же изменения конфигурации могут отрабатываться по этому алгоритму не всегда корректно, так как маршрутизаторы не имеют точного представления о топологии связей в сети, а располагают только обобщенной информацией - вектором дистанций, к тому же полученной через посредников. Работа маршрутизатора в соответствии с дистанционно-векторным протоколом напоминает работу моста, так как точной топологической картины сети такой маршрутизатор не имеет.

    Наиболее распространенным протоколом, основанным на дистанционно-векторном алгоритме, является протокол RIP, который распространен в двух версиях - RIP IP, работающий с протоколом IP, и RIP IPX, работающий с протоколом IPX.

    Алгоритмы состояния связей обеспечивают каждый маршрутизатор информацией, достаточной для построения точного графа связей сети. Все маршрутизаторы работают на основании одинаковых графов, что делает процесс маршрутизации более устойчивым к изменениям конфигурации. «Широковещательная» рассылка (то есть передача пакета всем непосредственным соседям маршрутизатора) используется здесь только при изменениях состояния связей, что происходит в надежных сетях не так часто. Вершинами графа являются как маршрутизаторы, так и объединяемые ими сети. Распространяемая по сети информация состоит из описания связей различных типов: маршрутизатор - маршрутизатор, маршрутизатор - сеть,

    Чтобы понять, в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами HELLO со своими ближайшими соседями. Этот служебный трафик также засоряет сеть, но не в такой степени как, например, RIP-пакеты, так как пакеты HELLO имеют намного меньший объем.

    Протоколами, основанными на алгоритме состояния связей, являются протоколы IS-IS (Intermediate System to Intermediate System) стека OSI, OSPF (Open Shortest Path First) стека TCP/IP и недавно реализованный протокол NLSP стека Novell.