Сайт о телевидении

Сайт о телевидении

» » Делаем RFID-замок с использованием Arduino. Электронный RFID замок на микроконтроллере своими руками. Схема

Делаем RFID-замок с использованием Arduino. Электронный RFID замок на микроконтроллере своими руками. Схема

Считыватель RFID - карт и брелков
на микроконтроллере ATtiny13

Источник: www.serasidis.gr
Vassilis Serasidis

Перевод: Vadim по заказу РадиоЛоцман

В последнее время приобрели широкую популярность разнообразные проекты на базе RFID ключей, применяемые в системах безопасности, охраны и разграничения доступа. На некоторых предприятиях и организациях такие системы, дополненные специализированным программным обеспечением, применяются для фиксирования рабочего времени, учета материальных ценностей и пр.

Любая система радиочастотной идентификации (RFID) состоит из считывающего устройства (считыватель, ридер или интеррогатор) и транспондера (он же RFID-метка, иногда также применяется термин RFID-тег). В статье мы рассмотрим простое устройство для считывания RFID ключей, поддерживающих протокол EM4100 и работающие на частоте 125 кГц. Данный тип RFID-ключей может иметь форму брелока или кредитной карточки (Рисунок ниже).

Основным компонентом считывающего устройства является микроконтроллер Atmel AVR ATtiny13, который считывает 10-значный уникальный идентификационный номер ключа и передает его в кодировке ASCII по последовательному интерфейсу (UART) со скоростью 2400 бит/с Host-устройству. Другими словами, считыватель представляет собой отдельный модуль, подключаемый к основному процессору или микроконтроллеру системы (Рисунок 2).

Принципиальная схема RFID считывателя изображена на Рисунке ниже:

Рассмотрим основные особенности работы схемы. Микроконтроллер использует встроенный ШИМ модулятор для генерирования на выходе PB0 прямоугольных импульсов с частотой 125 кГц. Если на выходе PB0 лог. 0 (спадающий фронт импульса), транзистор T1 находится в закрытом состоянии, и на катушку L1 подается напряжение питания +5 В через резистор R1. Нарастающий фронт на выходе PB0 (лог. 1) открывает транзистор T1, и верхний по схеме вывод катушки подключается к «земле». В этот момент катушка оказывается включенной параллельно конденсатору С2, образуя LC генератор (колебательный контур). Переключение транзистора происходит 125,000 раз в секунду (125 кГц).). В итоге, катушкой генерируется сигнал синусоидальной формы с частотой 125 кГц

Модуль считывателяя генерирует электромагнитное поле, энергия которого используется для питания RFID-ключа. В основе передачи энергии между RFID-ключом и считывателем лежит принцип работы обычного трансформатора: первичная обмотка трансформатора создает ЭДС индукции во всех остальных обмотках. Для нашего случая первичной обмоткой является катушка считывателя, а вторичной - катушка RFID-ключа. Элементы D1, C3 и R5 образуют демодулятор сигнала с амплитудной модуляцией.

Обмен данными между ключом и считывающим устройством

Процесс обмена данными между RFID-ключом и считывателем очень прост, но продуман до мелочей. Если RFID-ключ должен передать лог. 0, то он к своему источнику питания подключает определенную «нагрузку», что требует больше энергии, передаваемой считывателем. Это вызовет небольшую «просадку» напряжения на стороне считывателя; именно этот уровень воспринимается считывателем как лог. 0

RFID ключ в общем случае передает 64 бита данных в следующей последовательности (Рисунок 6):

  1. Первые 9 бит (всегда лог. 1) - стартовые биты, свидетельствующие о начале обмена данными.
  2. 4 бита - младшие значащие биты пользовательского идентификационного номера (D00 - D03).
  3. 1 бит (P0) - бит контроля четности предыдущих 4 бит.
  4. 4 бита - старшие значащие биты пользовательского идентификационного номера (D04 - D07).
  5. 1 бит (P1) - бит контроля четности предыдущих 4 бит.
  6. 4 бита - первая часть 32-битного серийного номера RFID ключа (D08 - D11).
  7. 1 бит (P2) - бит контроля четности предыдущих 4 бит.
  8. Далее передаются следующие группы по 4 бита серийного номера ключа, каждая с битом контроля четности.
  9. Затем передаются 4 бита контроля четности битов по столбцам. К примеру, бит контроля четности PC0 для битов D00, D04, D08, D12, D16, D20, D24, D28, D32 и D36.
  10. 1 стоп-бит.

Данные (64 битная последовательность), которые передает RFID-ключ.

Проверка целостности данных осуществляется микроконтроллером посредством вычисления битов контроля четности для каждой строки и столбца и сравнения с полученными данными от RFID-ключа.

Конструкция катушки.

Бескаркасная катушка индуктивности в считывающем устройстве диаметром 120 мм намотана проводом диаметром 0.5 мм и имеет 58 витков, однако автор рекомендует при намотке добавить еще 2 - 3 витка. С целью повышения эффективности катушки и увеличения расстояния считывания данных RFID-ключа необходимо выполнить калибровку колебательного контура. Если, подключив осциллограф в точку соединения R1 и L1, на экране прибора вы увидите искаженные пики (Рисунок 7), то это говорит о необходимости калибровки катушки L1.

Искажения сигнала, генерируемого катушкой L1, говорит о необходимости калибровки.

Калибровку можно выполнить двумя способами после подачи напряжения питания на модуль.

  1. Подключите щупы осциллографа в точку соединения R1 и L1 и, увеличивая или уменьшая количество витков катушки L1, добейтесь устранения искажения сигнала.
  2. Если у вас нет осциллографа, то медленно подносите RFID-ключ к катушке до момента распознавания ключа, о чем свидетельствует звуковой сигнал. Если ключ определяется с расстояния 2 см, то необходимо добавить/удалить несколько витков и после этого снова проверить расстояние, с которого уверенно считывается ключ. С помощью калибровки автор схемы добился уверенного считывания RFID-ключа с 3 см.

При программировании микроконтроллера необходимо установить следующую конфигурацию Fuse-битов: младший байт 0x7A и старший байт 0x1F (микроконтроллер работает от встроенного тактового генератора 9.6 МГц, делитель тактовой частоты на 8 отключен). Программный код занимает в памяти микроокнтроллера 1024 Байт - используется весь доступный объем памяти микроконтроллера ATtiny13. Поэтому в дальнейшем при расширении функционала считывателя лучше использовать другой 8-выводной микроконтроллер AVR, например ATtiny85.

Загрузки:

Исходный код программы микроконтроллера (AVRStudio 6), прошивка (.hex) и принципиальная схема -

RFID (радиочастотная идентификация) использует электромагнитные поля для автоматической идентификации и отслеживания тегов, прикрепленных к объектам. Теги содержат электронно сохраненную информацию. Пассивные метки собирают энергию от радиосигналов соседнего RFID-считывателя. Активные теги имеют локальный источник питания (например, аккумулятор) и могут работать в сотнях метров от считывающего устройства. В отличие от штрих-кода, тег не должен находиться в пределах видимости прибора, поэтому он может быть встроен в отслеживаемый объект. RFID - это один из методов автоматической идентификации и сбора данных.

Применение

RFID-метки используются во многих отраслях промышленности. Например, считыватель RFID, прикрепленный к автомобилю во время производства, может использоваться для отслеживания прогресса по конвейерной линии. Фармацевтические препараты с маркировкой можно отслеживать через склады. Имплантация RFID-микрочипов в домашний скот позволяет идентифицировать животных.

Поскольку метки RFID могут быть прикреплены к деньгам, одежде и имуществу или имплантированы в животных и людей, возможность читать личную информацию без согласия пользователя вызывает серьезную проблему конфиденциальности. Эти риски привели к разработке стандартных спецификаций, касающихся вопросов безопасности личных данных. Теги также могут использоваться в магазинах для ускорения оформления заказа и предотвращения краж.

История

В 1945 году Леон Термен изобрел прослушивающее устройство для Советского Союза, которое повторно передавало радиоволны с добавленной аудиоинформацией. Звуковые колебания при вибрации влияли на диафрагму, которая слегка меняла форму резонатора, модулировавшего отраженную радиочастоту. Несмотря на то что это устройство было скрытым прибором для прослушивания, а не идентификационным тегом, оно считается предшественником USB RFID-считывателя, поскольку активировалось аудиоволнами из внешнего источника. Транспондеры по-прежнему используются большинством работающих самолетов. А раньше подобная технология, такая как считыватель RFID-меток, регулярно использовалась союзниками и Германией во Второй мировой войне для идентификации самолетов.

Устройство Марио Кардулло, запатентованное 23 января 1973 года, было первым истинным предшественником современной RFID, поскольку это был пассивный радиоприемник с памятью. Первоначальное устройство было пассивным, с питанием от опросного сигнала. Оно было продемонстрировано в 1971 году администрации Нью-Йорка и другим потенциальным пользователям и состояло из транспондера с 16-разрядной памятью для использования в качестве платного устройства. Основной патент Cardullo охватывает использование радиочастот, звука и света в качестве среды передачи.

Область использования

Первоначальный бизнес-план, представленный инвесторам в 1969 году, демонстрировал следующие сферы применения считывателя RFID:

  • использование в транспорте (идентификация автомобильных транспортных средств, автоматическая система оплаты, электронный номерной знак, электронный манифест, маршрутизация транспортного средства, мониторинг эффективности транспортных средств);
  • банковское дело (электронная чековая книжка, электронная кредитная карта);
  • персонала, автоматические ворота, наблюдение); медицинская отрасль (идентификация, история пациентов).

Ранняя демонстрация отраженной мощности (модулированного обратного рассеяния) RFID-меток, как пассивных, так и полупассивных, была выполнена Стивеном Деппом, Альфредом Коелле и Робертом Фрайманом в Национальной лаборатории Лос-Аламоса в 1973 году. Портативная система работала на частоте 915 МГц и использовала 12-битные теги. Этот метод применяется большинством современных UHFID и микроволновых RFID-считывателей. В современной жизни такие устройства очень востребованы.

Спецификация

Система радиочастотной идентификации использует метки, прикрепленные к идентифицируемым объектам. При изготовлении RFID-считывателя своими руками следует учитывать, что двусторонние радиопередатчики-приемники, называемые запросчиками или считывателями, посылают сигнал тегу и считывают его ответ. Метки RFID могут быть пассивными, активными или пассивными. Активный тег имеет встроенный аккумулятор и периодически передает его ID-сигнал. Пассивный аккумулятор (BAP) имеет небольшую батарею на борту и активируется при наличии считывателя RFID. Пассивная бирка дешевле и меньше, потому что у нее нет батареи. Вместо этого тег использует радиоволну, переданную считывателем. Однако для работы пассивного тега он должен быть освещен уровнем мощности примерно в тысячу раз сильнее, чем для передачи сигнала. Это влияет на интерференцию и облучение.

Много разговоров в последнее время ведется вокруг использования радиочастотных меток, причем в обсуждениях высказываются даже предположения, что при желании люди с определенными навыками владения компьютером могут взломать вашу домашнюю систему и получить полную информацию о ваших вещах.

Я решил сам разобраться в этой технологии. Для этого я заказал нужные компоненты и собрал RFID считыватель своими руками.

В данной статье я расскажу, как собрать работающий считыватель RFID-меток.

Шаг 1


В одной из прочитанных мною статей автор говорил, что его мобильный RFID считыватель работал только на частоте 13,56 МГц (короткая волна), но на частоте 1,25 кГц (длина волны ниже границы АМ-диапазона) не работал. Я же сделал считыватель, работающий на стандартной для всей этой отрасли частоте 125 кГц. Это значит, что для моего считывателя нужна другая комбинация антенны и конденсатора. Это иллюстрируют базовая схема и базовая формула. Чтобы получить нужное значение, выберите соответствующую формулу, подставьте ваши значения и с помощью калькулятора получите результат.

Список компонентов:

  • Около 12 м тонкой проволоки, от 22 до 30 калибра (я использовал 30 калибр).
  • Любой диод (я использовал красный).
  • Один 0,005 мкФ конденсатор или два дисковых конденсатора 0,01 мкФ, соединенных последовательно.
  • 2-5 дисковых конденсатора 100 пФ.
  • Основание для катушки (любое основание, диаметр катушки должен быть 10 см).
  • Печатная плата для прототипирования, для пробных сборок.
  • Печатная плата для аккуратной и точной сборки.
  • Возможность доступа к считывателю, чтобы снимать показания приемника.
  • Элементы питания не потребуются, так как приемник питается беспроводным способом от считывателя.

Шаг 2



Сначала я намотал проволоку на основу примерно 10 см в диаметре (я больше чем уверен, что пара сантиметров плюс-минус роли не сыграют).

Когда проволока была намотана на основание, я сравнил катушку с другими катушками, которые у меня уже были. Так я примерно оценил индуктивность новой катушки – у меня вышло около 330 мкгн.

Я подставил значение 330 мкгн в формулу и полученный результат значил, что для этой катушки нужен 0,005 мкФ конденсатор, чтобы пара катушка-конденсатор «резонировала» на частоте 125 кГц, а тока было достаточно для питания диода.

Прежде чем приступить к пайке, я сделал предварительную сборку на макетной плате.

Шаг 3


На макетной плате сначала соединяем катушку, диод и два дисковых 0,01 мкФ конденсатора (соединены последовательно друг с другом, а затем параллельно с диодом, что дает общую емкость 0,005 мкФ (5000 пФ)), затем включаем считыватель радиометок. При положении считывателя на расстоянии около 10 см от катушки горит диод. Диод горит очень ярко на расстоянии примерно 1,5 см.

Затем я добавил 100 пФ (0,0001 мкФ) конденсатор параллельно электросхеме, это увеличило радиус действия считывателя. Затем я выяснил, что добавив второй такой же конденсатор параллельно всей схеме я еще больше увеличу радиус действия считывателя. А добавление третьего конденсатора, напротив, уменьшило этот радиус. Таким образом, я установил, что емкость 5200 пФ является оптимальной для моей катушки (иллюстрация третьей попытки).

Мой приемник срабатывал бы на 10 см при использовании 0,005 мкФ конденсатора в параллельном соединении с катушкой и диодом, но макетная плата позволила использовать дополнительные конденсаторы и, тем самым, увеличила расстояние до 12,5 см.

Шаг 4




Фотографии наглядно показывают, как увеличивается яркость свечения диода по мере приближения катушки к считывателю.
Это маленькое устройство работает на частоте 125 кГц. Его достаточно просто собрать, используя более-менее подходящие материалы.

Шаг 5

Все компоненты, использованные в пробной сборке на макетной плате, я собрал на печатной плате и спаял их. Потом я приклеил схему к катушке, чтобы все устройство можно было перемещать с места на место просто в руке, без лишних проводов или соединений. Устройство работает нормально. Я ожидал, что оно будет реагировать на все считыватели радиометок в пределах 7-12 см и работающие на частоте 125 кГц.

Шаг 6

Так как я знаю, что максимальное свечение диода на заданном расстоянии достигается при емкости 0, 0052 мкФ, я вставил это значение вместе с длиной волны 125 кГц в соответствующую формулу и получил значение индуктивности 312 мкгн, вместо 330 мкгн, на которые я рассчитывал.

Математические расчёты здесь не играют огромной роли, хотя именно благодаря им я вычислил емкость конденсаторов, подходящих к моей катушке. Это, конечно, можно было выяснить методом проб и ошибок, но на это ушло бы много времени.

19 сентября 2013 в 18:32

Бюджетный UHF RFID считыватель и его развитие

  • Беспроводные технологии

Здравствуйте, досточтимые леди и джентльмены.
Самый дешевый UHF RFID считыватель или считыватель стандарта EPC Gen2 стоит в розницу никак не меньше 200 USD.

Как можно сделать работоспособный UHF RFID считыватель из деталей за 10 USD, и как можно было бы из этого извлечь пользу, рассказано ниже.

Большинство современных RFID считывателей стандарта EPC Gen2 использует специализированные микросхемы. Их выпускают компании Impinj, AMS и Phychips. Самые дешевые микросхемы стоят около 20 USD в партиях по 1000 штук. RFID считыватели получаются замечательные: мощные, шустрые и дальнобойные - но дорогие.
Весной этого года в Интернете появилась статья "Simple Low Cost UHF RFID Reader " о том, как из распространенных радиодеталей стоимостью около 5 USD в рознице собрать действующий RFID считыватель. Идея вроде как проста, но до реализации дошло только недавно. Предпосылка к разработке базируется на том, что очень часто вблизи от антенны нужно не спеша считать пару тройку меток, и платить много денег за считыватель скорострельностью 200-500 меток в секунду ни к чему. Блок схема считывателя представлена на картинке.


Её прелесть в простоте. Основой является обычный микроконтроллер, который формирует на ножке GPIO сигналы стандарта EPC Gen2, нужные для опроса метки. Сигналы передаются на микросхему трансмиттера Melexis TH72035, затем на антенну через каплер (coupler) Johanson 0910CF15B0100. Приемник собран на одном компараторе MAX931 по следующей схеме.


Логические сигналы с приемника поступают на другой вывод GPIO микропроцессора. Получаем простой софтовый UHF RFID считыватель. Конечно, написать софтовый EPC Gen2 RFID считыватель - это не фунт изюму. Но если четко определить цели и использовать только нужное подмножество протокола EPC Gen2, то задача упрощается значительно.
Авторы описываемого проекта одной из целей его дальнейшего развития считают размещение всех компонентов RFID считывателя на одной плате. Но не будет ли интереснее пойти в противоположном направлении? То есть разделить считыватель на физически обособленные функциональные модули и потом из разных модулей строить RFID считыватель с необходимыми характеристиками. Всё, что внизу, только идея, без детальной проработки.

Понятно, что главный модуль - микропроцессорный. Наверное, сделать его нужно на Cortex-M0, вывести на разъемы UART и USB с целью управления считывателем. Для подключения модуля приемопередатчика использовать разъем на 6 контактов: Rx, Tx, 2 на питание приемопередатчика, 2 GPIO. Таких разъемов можно сделать 2-4, насколько выводов микропроцессора хватит.
Модуль приемопередатчика подключаться к микропроцессорному модулю будет напрямую или через короткий кабель. Пожалуй, надо делать несколько вариантов модулей приемопередатчика с разной мощность и ценой, но одинаковым разъемом. 5-ый контакт разъема можно использовать для включения приемопередатчика, а 6-ой можно использовать под какой-то датчик при необходимости. Имеет смысл сделать печатную плату приемопередатчика с металлизированными торцевыми полуотверстиями. Тогда её можно будет припаивать к печатным платам с разными антеннами или печатной плате с коаксиальным разъемом SMA.
Итак, соединив микропроцессорный модуль и модуль приемопередатчика, мы получаем RFID считыватель. Но только ради этого городить огород не стоит. Пойдем дальше. Воткнем в 6-контактный разъем микропроцессорного модуля вместо приемопередатчика плату с драйвером RS422 и розеткой RJ45 (пара 1 - прием, пара 2 - передача, 3 - питание, 4 - GPIO). Такую же воткнем в приемопередатчик. Понятно, что теперь можно соединять микропроцессорный модуль и приемопередатчик с помощью любого патч-корда или использовать для соединения офисную СКС. В общем, антенна от микропроцессорного модуля может располагаться весьма далече. И никакого коаксиала.
Ну и это еще не всё :) RS422 - это шина. В приемопередатчике можно разместить микросхему D-триггера. Модули приемопередатчика соединить последовательно патч-кордами. Правда необходим второй разъем RJ45 или Т-разветвитель, если вместо D-триггера поставить синхронный счетчик. С помощью двух GPIO в четвертой паре UTP можно выбирать нужный приемопередатчик. Получается распределенный RFID считыватель, как на картинке.


Зачем нужен USB: а для того, чтобы уметь присоединить считыватель к планшетнику с Android.

Решение применимо, где не нужна большая скорость считывания меток и дальнобойность.
1. Для гастрономов не годится. Это RFID магазины будущего. А RFID магазины настоящего - это универмаги (обувь и одежда). Там RFID считыватели уже используются в примерочных (вместе в интерактивным дисплеем), на кассах и умных полках с товаром.
2. Склады с европоддонами (цепочка модулей приемопередатчика там, где находятся левые углы палет).
3. Пропускная система на разные массовые мероприятия.
4. Наверняка где-то ещё.

Любая система радиочастотной идентификации (RFID) состоит из считывающего устройства (считыватель, ридер или интеррогатор) и транспондера (он же RFID-метка, иногда также применяется термин RFID-тег). В статье мы рассмотрим простое устройство для считывания RFID ключей, поддерживающих протокол EM4100 и работающие на частоте 125 кГц. Данный тип RFID-ключей может иметь форму брелока или кредитной карточки (Рисунок 1).

Основным компонентом считывающего устройства является микроконтроллер AVR , который считывает 10-значный уникальный идентификационный номер ключа и передает его в кодировке ASCII по последовательному интерфейсу (UART) со скоростью 2400 бит/с Host-устройству. Другими словами, считыватель представляет собой отдельный модуль, подключаемый к основному процессору или микроконтроллеру системы (Рисунок 2).

Принципиальная схема RFID считывателя изображена на Рисунке 3.

Рисунок 3.

Рассмотрим основные особенности работы схемы. Микроконтроллер использует встроенный ШИМ модулятор для генерирования на выходе PB0 прямоугольных импульсов с частотой 125 кГц. Если на выходе PB0 лог. 0 (спадающий фронт импульса), транзистор T1 находится в закрытом состоянии, и на катушку L1 подается напряжение питания +5 В через резистор R1. Нарастающий фронт на выходе PB0 (лог. 1) открывает транзистор T1, и верхний по схеме вывод катушки подключается к «земле». В этот момент катушка оказывается включенной параллельно конденсатору С2, образуя LC генератор (колебательный контур). Переключение транзистора происходит 125,000 раз в секунду (125 кГц).). В итоге, катушкой генерируется сигнал синусоидальной формы с частотой 125 кГц (Рисунок 4).

Модуль считывателяя генерирует электромагнитное поле, энергия которого используется для питания RFID-ключа. В основе передачи энергии между RFID-ключом и считывателем лежит принцип работы обычного трансформатора: первичная обмотка трансформатора создает ЭДС индукции во всех остальных обмотках. Для нашего случая первичной обмоткой является катушка считывателя, а вторичной - катушка RFID-ключа. Элементы D1, C3 и R5 образуют демодулятор сигнала с амплитудной модуляцией.

Обмен данными между ключом и считывающим устройством

Процесс обмена данными между RFID-ключом и считывателем очень прост, но продуман до мелочей. Если RFID-ключ должен передать лог. 0, то он к своему источнику питания подключает определенную «нагрузку», что требует больше энергии, передаваемой считывателем. Это вызовет небольшую «просадку» напряжения на стороне считывателя; именно этот уровень воспринимается считывателем как лог. 0 (Рисунок 5).

RFID ключ в общем случае передает 64 бита данных в следующей последовательности (Рисунок 6):

  1. Первые 9 бит (всегда лог. 1) - стартовые биты, свидетельствующие о начале обмена данными.
  2. 4 бита - младшие значащие биты пользовательского идентификационного номера (D00 - D03).
  3. 1 бит (P0) - бит контроля четности предыдущих 4 бит.
  4. 4 бита - старшие значащие биты пользовательского идентификационного номера (D04 - D07).
  5. 1 бит (P1) - бит контроля четности предыдущих 4 бит.
  6. 4 бита - первая часть 32-битного серийного номера RFID ключа (D08 - D11).
  7. 1 бит (P2) - бит контроля четности предыдущих 4 бит.
  8. Далее передаются следующие группы по 4 бита серийного номера ключа, каждая с битом контроля четности.
  9. Затем передаются 4 бита контроля четности битов по столбцам. К примеру, бит контроля четности PC0 для битов D00, D04, D08, D12, D16, D20, D24, D28, D32 и D36.
  10. 1 стоп-бит.

Проверка целостности данных осуществляется микроконтроллером посредством вычисления битов контроля четности для каждой строки и столбца и сравнения с полученными данными от RFID-ключа.

Конструкция катушки.

Бескаркасная катушка индуктивности в считывающем устройстве диаметром 120 мм намотана проводом диаметром 0.5 мм и имеет 58 витков, однако автор рекомендует при намотке добавить еще 2 - 3 витка. С целью повышения эффективности катушки и увеличения расстояния считывания данных RFID-ключа необходимо выполнить калибровку колебательного контура. Если, подключив осциллограф в точку соединения R1 и L1, на экране прибора вы увидите искаженные пики (Рисунок 7), то это говорит о необходимости калибровки катушки L1.

Калибровку можно выполнить двумя способами после подачи напряжения питания на модуль.

  1. Подключите щупы осциллографа в точку соединения R1 и L1 и, увеличивая или уменьшая количество витков катушки L1, добейтесь устранения искажения сигнала.
  2. Если у вас нет осциллографа, то медленно подносите RFID-ключ к катушке до момента распознавания ключа, о чем свидетельствует звуковой сигнал. Если ключ определяется с расстояния 2 см, то необходимо добавить/удалить несколько витков и после этого снова проверить расстояние, с которого уверенно считывается ключ. С помощью калибровки автор схемы добился уверенного считывания RFID-ключа с 3 см.

При программировании микроконтроллера необходимо установить следующую конфигурацию Fuse-битов: младший байт 0x7A и старший байт 0x1F (микроконтроллер работает от встроенного тактового генератора 9.6 МГц, делитель тактовой частоты на 8 отключен). Программный код занимает в памяти микроокнтроллера 1024 Байт - используется весь доступный объем памяти микроконтроллера ATtiny13. Поэтому в дальнейшем при расширении функционала считывателя лучше использовать другой 8-выводный микроконтроллер AVR, например .

Загрузки:

Исходный код программы микроконтроллера (AVRStudio 6), прошивка (.hex) и принципиальная схема -