Сайт о телевидении

Сайт о телевидении

» » Что представляет собой большая интегральная схема. Микросхемы

Что представляет собой большая интегральная схема. Микросхемы

Классификация интегральных схем

По конструктивно-технологическому исполнению различают полу-проводниковые, пленочные и гибридные ИС.

К полупроводниковым относят ПМС (полупроводниковые интег-ральные микросхемы), все элементы и межэлементные,соединения которой выполнены в объеме или на поверхности полупроводника. В зависимости от способов изоляции отдельных элементов различают ПМС с изоляцией p-n-переходами и микросхемы с диэлектрической (оксидной) изоляцией. ПМС можно изготовить и на подложке из ди-электрического материала на основе как биполярных, так и поле-вых транзисторов. Обычно в этих схемах транзисторы выполнены в виде трехслойных структур с двумя р-n-переходами (n-p-n-типа), а диоды — в виде двухслойных структур с одним р-л-переходом. Иног-да вместо диодов используют транзисторы в диодном включении. Резисторы ПМС, представленные участками легированного полу-проводника с двумя выводами, имеют сопротивление несколько ки-лоомов. В качестве высокоомных резисторов иногда используют об-ратное сопротивление р-n-перехода или входные сопротивления эмнт-терных повторителей. Роль конденсаторов в ПМС выполняют обратно смещенные p-rt-переходы. Емкость таких конденсаторов составляет 50 — 200 пФ. Дроссели в ПМС создавать трудно, поэтому большинство устройств проектируют без индуктивных элементов. Все элементы ПМС полу-чают в едином технологическом цикле в кристалле полупроводника. Соединения элементов таких схем осуществляются с помощью алю-миниевых или золотых пленок, получаемых методом вакуумного на-пыления. Соединение схемы с внешними выводами производят алю-миниевыми или золотыми проводниками диаметром около 10 мкм, которые методом термокомпрессии присоединяют к пленкам, а за-тем приваривают к внешним выводам микросхемы. Полупроводниковые микросхемы могут рассеивать мощность 50 — 100 мВт, работать на частотах до 20 — 100 МГц, обеспечивать время задержки до 5 не. Плотность монтажа электронных устройств на ПМС — до 500 элементов на 1 см3. Современный групповой технологический цикл позволяет обра-батывать одновременно десятки полупроводниковых пластин, каж-дая из которых содержит сотни ПМС с сотнями элементов в кристал-ле, связанных в заданные электронные цепи. При такой технологии обеспечивается высокая идентичность электрических характеристик микросхем.

Пленочными интегральными (или просто пленочными схемами ПС) называют ИС, все элементы и межэлементные соединения кото-рой выполнены только в виде пленок. Интегральные схемы подраз-деляют, на тонко- и толстопленочные. Эти схемы могут иметь коли-чественное и качественное различие. К тонкопленочным условно от-носят ИС с толщиной пленок до 1 мкм, а к толстопленочным — ИС с толщиной пленок выше 1 мкм. Качественное различие определяется технологией изготовления пленок. Элементы тонкопленочной ИС наносят на подложку с помощью термовакуумного осаждения и катод-ного распыления. Элементы толстопленочных ИС изготовляют преи-мущественно методом шелкографии с последующим вжиганием.

Гибридные интегральные микросхемы (ГИС) представляют со-бой сочетание навесных активных радиоэлементов (микротранзисто-ров, диодов) и пленочных пассивных элементов и их соединений. Обычно ГИС содержат: изоляционные основания из стекла или. ке-, рамики, на поверхности которых сформированы пленочные проводни-ки, резисторы, конденсаторы небольшой емкости; навесные бескор-пусные активные элементы (диоды, транзисторы); навесные пассив-ные элементы в миниатюрном исполнении (дроссели, трансформато-ры, конденсаторы большой емкости), которые не могут быть выпол-нены в виде пленок. Такую изготовленную ГИС герметизируют в пластмассовом или металлическом корпусе. Резисторы сопротивлением от тысячных долей ома до десятков килоомов в ГИС изготовляют в виде тонкой пленки нихрома или тантала. Пленки наносят на изоляционную основу (подложку) и под-вергают термическому отжигу. Для получения резисторов с сопро-тивлением в десятки мегаомов используют металлодиэлектрическив смеси (хрома, монооксида кремния и др.). Средние размеры пленоч-ных резисторов-(1 — 2)Х10~3 см2. Конденсаторы в ГИС выполняют из тонких пленок меди, сереб-ра, алюминия или золота. Напыление этих металлов производят с подслоем хрома, титана, молибдена, обеспечивая хорошую адгезию с изоляционным материалом подложки. В качестве диэлектрика в конденсаторах используют пленку из оксида кремния, бериллия, двуоксида титана и т. д. Пленочные конденсаторы изготовляют ем-костью от десятых долей пикофарады до десятков тысяч пикофарад размером от 10~3 до 1 см2. Проводники ГИС, с помощью которых осуществляют межэле-ментные соединения -и подключение к выводным зажимам, выпол-няют в виде тонкой пленки золота, меди или алюминия с подслоем никеля, хрома, титана, обеспечивающем высокую адгезию к изоля-ционному основанию. Гибридные интегральные схемы, у которых толщина пленок, образующихся при изготовлении пассивных эле-ментов, до 1 мкм с шириной 100 — 200 мкм,-относят к тонкопленоч-ным. Такие пленки получают методом термического напыления на поверхности подложек в вакууме с использованием трафаретов, ма-сок. Гибридные интегральные схемы с толщиной 1 мкм и более от-носят к толстопленочным и изготовляют путем напыления на подложки токопроводящих или диэлектрических паст через сетчатые трафареты с последующим их вжиганием в подложки при высокой температуре. Эти схемы имеют большие размеры и массу пассивных элементов. Навесные активные элементы состоят из гибких или жест-ких «шариковых» выводов, которые пайкой или сваркой присоединя-, ют к пленочной микросхеме.

Плотность пассивных и активных элементов при их многослой-ном расположении в ГИС, выполненной по тонкопленочной техноло-гии, достигает 300 — 500 элементов на 1 см3, а плотность монтажа электронных устройств на ГИС — 60 — 100 элементов на 1 см3. При такой плотности монтажа объем устройства, содержащего-107 эле-ментов, составляет 0,1 — 0,5 м3, а время безотказной работы — 103 — 104 ч. -

Основным преимуществом ГИС является возможность частичной интеграции элементов, выполненных по различной технологии (бипо-лярной, тонко- и толстопленочной и др.) с широким диапазоном электрических параметров (маломощные, мощные, активные, пассив-ные, быстродействующие и др.).

В настоящее время перспективна гибридизация различных типов интегральных схем. При малых геометрических размерах пленочных элементов и большой площади пассивных подложек на их поверхно-сти можно разместить десятки — сотни ИС и других компонентов. Та-ким путем создают многокристальные гибридные ИС с большим чис-лом (несколько тысяч) диодов, транзисторов в неделимом элементе. В комбинированных микросхемах можно разместить функциональ-ные узлы, обладающие различными электрическими характеристи-ками.

Сравнение ПМС и ГИС. Полупроводниковые микросхемы со сте-пенью интеграции до тысяч и более элементов в одном кристалле получили преимущественное. распространение. Объем производства ПМС на порядок превышает объем выпуска ГИС. В некоторых уст-ройствах целесообразно применять ГИС по ряду причин.

Технология ГИС сравнительно проста и требует меньших перво-начальных затрат на оборудование, чем полупроводниковая техно-логия, что упрощает создание нетиповых, нестандартных изделий и аппаратуры.

Пассивная часть ГИС изготовляется на отдельной подложке, что позволяет получать пассивные элементы высокого качества и создавать высокочастотные ИС.

Технология ГИС дает возможность заменять существующие ме-тоды многослойного печатного монтажа при размещении на подлож-ках бескорпусных ИС и БИС и других полупроводниковых компо-нентов. Технология ГИС предпочтительна для выполнения силовых ИС на большие мощности. Предпочтительно также гибридное испол-нение интегральных схем линейных устройств, обеспечивающих про-порциональную зависимость между входными и выходными сигна-лами. В этих устройствах сигналы изменяются в широком интерва-ле частот и мощностей, поэтому их ИС должны обладать широким диапазоном номиналов, не совместимых в едином процессе изготов-ления пассивных и активных элементов. Большие интегральные схе-мы БИС допускают объединение различных функциональных узлов, в связи с чем они получили широкое распространение в линейных устройствах.

Преимущества и недостатки интегральных схем.

  • Преимуществом ИС являются высокая надежность, малые размеры и масса. Плот-ность активных элементов в БИС достигает 103 — 104 на 1 см3. При установке микросхем в печатные платы и соединении их в блоки плотность элементов составляет 100 — 500 на 1 см3, что в 10 — 50 раз выше, чем при использовании отдельных транзисторов, диодов, ре-зисторов в микромодульных устройствах.
  • Интегральные схемы безынерционны в работе. Благодаря не-большим, размерам в микросхемах снижаются междуэлектродные емкости и индуктивности соединительных проводов, что позволяет использовать их на сверхвысоких частотах (до 3 ГГц) и в логичес-ких схемах с малым временем задержки (до 0,1 не).
  • Микросхемы экономичны (от 10 до 200 мВт) и уменьшают рас-ход электроэнергии и массу источников питания.

Основным недостатком ИС является малая выходная мощность (50 — 100 мВт).

В зависимости от функционального назначения ИС делят на две основные категории — аналоговые (или линейно-импульсные) и цифровые (или логические).

Аналоговые интегральные схемы АИС используются в радио-технических устройствах и служат для генерирования и линейного усиления сигналов, изменяющихся по закону непрерывной функции в широком диапазоне мощностей и частот. Вследствие этого анало-говые ИМС должны содержать различные по номиналам пассивные и по параметрам активные элементы, что усложняет их разработку. Гибридные микросхемы уменьшают трудности изготовления аналого-вых устройств в микроминиатюрном исполнении. Интегральные мик-росхемы становятся основной элементной базой для радиоэлектрон-ной аппаратуры.

Цифровые интегральные схемы ЦИС применяются в ЭВМ, уст-ройствах дискретной обработки информации и автоматики. С по-мощью ЦИС преобразуются и обрабатываются цифровые коды. Ва-риантом этих схем являются логические микросхемы, выполняющие операции над двоичными кодами в большинстве современных ЭВМ и цифровых устройств.

Аналоговые и цифровые ИС выпускаются сериями. В серию входят ИС, которые могут выполнять различные функции, но имеют единое конструктивно-технологическое исполнение и предназначают-ся для совместного применения. Каждая серия содержит несколько различающихся типов, которые могут делиться на типономиналы, имеющие конкретное функциональное назначение и условное обозна-чение. Совокупность типономиналов образует тип ИС.

Введение

В настоящее время главными задачами при создании радиоэлектронной аппаратуры (РЭА) и электронно-вычислительных машин (ЭВМ) является увеличение скорости работы и уменьшение физических размеров. Для этого улучшаются характеристики и параметры элементов и интегральных микросхем, также происходит их оптимизация. Однако, при переходе работы устройств в наносекундный диапазон возникают новые проблемы, связанные с искажением сигналов в линиях связи. С повышением быстродействия логических схем скорость преобразования информации приближается к скорости её передачи, а при задержках логических элементов становится сравнимой с ней. В этом случае улучшение динамических характеристик самих элементов может не дать желаемого эффекта. Так как интегральные схемы как правильно, являются компонентами печатных плат, то необходим комплексный подход к проектированию печатных плат.

Следовательно при проектировании печатных узлов необходимо это учитывать, и искать методы которые позволяют существенно повысить помехоустойчивость аппаратуры. Также необходимо учитывать проблемы питания. целостность сигнал интегральный конденсатор

В данной работе мы проведем исследование, и покажем что при правильной разработке печатных плат мы можем значительно сократить возникающее помехи при передачи информации.

Интегральные схемы

История развития интегральных схем

Интегральная схема - электронная микросхема изготовленная на полупроводниковой подложке (пластине или плёнке) и помещённая в неразборный корпус, или без такового, в случае вхождения в состав микросборки. Большая часть микросхем изготавливается в корпусах для поверхностного монтажа.

Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой -- ИС, заключённую в корпус.

История появления интегральных схем берет своё начало со второй половины двадцатого века. Их возникновение было обусловлено острой необходимостью повышения надёжности аппаратуры и автоматизации процессов изготовления и сборки электронных схем.

Другой причиной создания ИС стала технологическая возможность размещения и соединения между собой множества электронных компонентов - диодов, транзисторов и так далее, на одной пластине полупроводника. Дело в том, что созданные к тому времени меза- и планарные транзисторы и диоды изготавливались по технологии групповой обработки на одной пластине-заготовке одновременно.

Концепция ИС была предложена задолго до появления групповых методов изготовления полупроводниковых приборов. Первые в мире ИС были разработаны и созданы в 1959 году американцами Джеком Сент Клером Килби (фирма Texas Instruments) и Робертом Н. Нойсом (Fairchild Semiconductor) независимо друг от друга.

В мае 1958 г. Джек Килби перешёл в фирму Texas Instruments из фирмы Centralab - в ней он возглавлял программу по разработке слуховых аппаратов, для которых фирма создала небольшое предприятие по созданию германиевых транзисторов. Уже в июле 1958 г. Килби пришла в голову идея создания ИС. Из полупроводниковых материалов уже умели изготовлять резисторы, конденсаторы и транзисторы. Резисторы изготовляли, используя омические свойства "тела" полупроводника, а для создания конденсаторов использовались смещённые в обратном направлении p-n -переходы. Оставалось только научиться создавать такие переходы в монолите кремния.

Многие недостатки "твёрдых схем" были устранены позднее Робертом Нойсом. С января 1959 года, занимаясь в фирме Fairchild Semiconductor (FS) исследованием возможностей планарного транзистора, он вплотную занялся выдвинутой им идеей создания интегральных диффузионных или напылённых резисторов методом изоляции приборов с помощью смещённых в обратном направлении р-n -переходов и соединения элементов через отверстия в окисле путём напыления металла на поверхность. Вскоре была подана соответствующая заявка на патент, и разработчики элементов в тесном контакте со специалистами по фотолитографии начали работать над вопросами соединения диффузионных резисторов и транзисторов на кремниевых пластинах.

Разработки ИС стали продвигаться лихорадочными темпами. Фирма FS пригласила в качестве разработчика схем Роберта Нормана из фирмы Sperry. Норман был знаком с резисторно-транзисторной логикой, выбранной в качестве основы для будущей серии ИС - Micrologic... Это было начало новой эры.

Степень интеграции

В зависимости от степени интеграции применяются следующие названия интегральных схем:

  • · малая интегральная схема (МИС) -- до 100 элементов в кристалле,
  • · средняя интегральная схема (СИС) -- до 1000 элементов в кристалле,
  • · большая интегральная схема (БИС) -- до 10 тыс. элементов в кристалле,
  • · сверхбольшая интегральная схема (СБИС) -- более 10 тыс. элементов в кристалле.

Ранее использовались также теперь устаревшие названия: ультрабольшая интегральная схема (УБИС) -- от 1-10 млн до 1 млрд элементов в кристалле и, иногда, гигабольшая интегральная схема (ГБИС) -- более 1 млрд. элементов в кристалле. В настоящее время, в 2010-х, названия «УБИС» и «ГБИС» практически не используются, и все микросхемы с числом элементов более 10 тыс. относят к классу СБИС.

Содержание статьи

ИНТЕГРАЛЬНАЯ СХЕМА (ИС), микроэлектронная схема, сформированная на крошечной пластинке (кристаллике, или «чипе») полупроводникового материала, обычно кремния, которая используется для управления электрическим током и его усиления. Типичная ИС состоит из множества соединенных между собой микроэлектронных компонентов, таких, как транзисторы, резисторы, конденсаторы и диоды, изготовленные в поверхностном слое кристалла. Размеры кремниевых кристаллов лежат в пределах от примерно 1,3ґ1,3 мм до 13ґ13 мм. Прогресс в области интегральных схем привел к разработке технологий больших и сверхбольших интегральных схем (БИС и СБИС). Эти технологии позволяют получать ИС, каждая из которых содержит многие тысячи схем: в одном чипе может насчитываться более 1 млн. компонентов.

Интегральные схемы обладают целым рядом преимуществ перед своими предшественниками – схемами, которые собирались из отдельных компонентов, монтируемых на шасси. ИС имеют меньшие размеры, более высокие быстродействие и надежность; они, кроме того, дешевле и в меньшей степени подвержены отказам, вызываемым воздействиями вибраций, влаги и старения.

Миниатюризация электронных схем оказалась возможной благодаря особым свойствам полупроводников. Полупроводник – это материал, обладающий гораздо большей электропроводностью (проводимостью), чем такой диэлектрик, как стекло, но существенно меньшей, чем проводники, например, медь. В кристаллической решетке такого полупроводникового материала, как кремний, при комнатной температуре имеется слишком мало свободных электронов, чтобы обеспечить значительную проводимость. Поэтому чистые полупроводники обладают низкой проводимостью. Однако введение в кремний соответствующей примеси увеличивает его электрическую проводимость.

Легирующие примеси вводят в кремний двумя методами. Для сильного легирования или в тех случаях, когда точное регулирование количества вводимой примеси необязательно, обычно пользуются методом диффузии. Диффузию фосфора или бора выполняют, как правило, в атмосфере легирующей примеси при температурах между 1000 и 1150° С в течение от получаса до нескольких часов. При ионной имплантации кремний бомбардируют высокоскоростными ионами легирующей примеси. Количество имплантируемой примеси можно регулировать с точностью до нескольких процентов; точность в ряде случаев важна, поскольку коэффициент усиления транзистора зависит от числа примесных атомов, имплантированных на 1 см 2 базы (см. ниже ).

Производство.

Изготовление интегральной схемы может занимать до двух месяцев, поскольку некоторые области полупроводника нужно легировать с высокой точностью. В ходе процесса, называемого выращиванием, или вытягиванием, кристалла, сначала получают цилиндрическую заготовку кремния высокой чистоты. Из этого цилиндра нарезают пластины толщиной, например, 0,5 мм. Пластину в конечном счете режут на сотни маленьких кусочков, называемых чипами, каждый из которых в результате проведения описываемого ниже технологического процесса превращается в интегральную схему.

Процесс обработки чипов начинается с изготовления масок каждого слоя ИС. Выполняется крупномасштабный трафарет, имеющий форму квадрата площадью ок. 0,1 м 2 . На комплекте таких масок содержатся все составляющие части ИС: уровни диффузии, уровни межсоединений и т.п. Вся полученная структура фотографически уменьшается до размера кристаллика и воспроизводится послойно на стеклянной пластине. На поверхности кремниевой пластины выращивается тонкий слой двуокиси кремния. Каждая пластина покрывается светочувствительным материалом (фоторезистом) и экспонируется светом, пропускаемым через маски. Неэкспонированные участки светочувствительного покрытия удаляют растворителем, а с помощью другого химического реагента, растворяющего двуокись кремния, последний вытравливается с тех участков, где он теперь не защищен светочувствительным покрытием. Варианты этого базового технологического процесса используются в изготовлении двух основных типов транзисторных структур: биполярных и полевых (МОП).

Биполярный транзистор.

Такой транзистор имеет структуру типа n-p-n или, намного реже, типа p-n-p . Обычно технологический процесс начинается с пластины (подложки) сильно легированного материала p -типа. На поверхности этой пластины эпитаксиально выращивается тонкий слой слабо легированного кремния n -типа; таким образом, выращенный слой имеет ту же самую кристаллическую структуру, что и подложка. Этот слой должен содержать активную часть транзистора – в нем будут сформированы индивидуальные коллекторы. Пластина сначала помещается в печь с парами бора. Диффузия бора в кремниевую пластину происходит только там, где ее поверхность подверглась обработке травлением. В результате формируются области и окна из материала n -типа. Второй высокотемпературный процесс, в котором используются пары фосфора и другая маска, служит для формирования контакта с коллекторным слоем. Проведением последовательных диффузий бора и фосфора формируются соответственно база и эмиттер. Толщина базы обычно составляет несколько микрон. Эти крошечные островки проводимостей n - и p -типа соединяются в общую схему посредством межсоединений, выполненных из алюминия, осаждаемого из паровой фазы или наносимого напылением в вакууме. Иногда для этих целей используются такие благородные металлы, как платина и золото. Транзисторы и другие схемные элементы, например резисторы, конденсаторы и индуктивности, вместе с соответствующими межсоединениями могут формироваться в пластине методами диффузии в ходе последовательности операций, создавая в итоге законченную электронную схему.

МОП-транзистор.

Наибольшее распространение получила МОП (металл-окисел-полупроводник) – структура, состоящая из двух близко расположенных областей кремния n -типа, реализованных на подложке p -типа. На поверхности кремния наращивается слой его двуокиси, а поверх этого слоя (между областями n -типа и слегка захватывая их) формируется локализованный слой металла, выполняющий роль затвора. Две упомянутые выше области n -типа, называемые истоком и стоком, служат соединительными элементами для входа и выхода соответственно. Через окна, предусмотренные в двуокиси кремния, выполняются металлические соединения с истоком и стоком. Узкий поверхностный канал из материала n -типа соединяет исток и сток; в других случаях канал может быть индуцированным – создаваемым под действием напряжения, приложенного к затвору. Когда на затвор транзистора с индуцированным каналом подается положительное напряжение, расположенный под затвором слой p -типа превращается в слой n -типа, и ток, управляемый и модулируемый сигналом, поступающим на затвор, течет от истока к стоку. МОП-транзистор потребляет очень небольшую мощность; он имеет высокое входное сопротивление, отличается низким током цепи стока и очень низким уровнем шумов. Поскольку затвор, оксид и кремний образуют конденсатор, такое устройство широко используется в системах компьютерной памяти (см. ниже ). В комплементарных, или КМОП-схемах, МОП-структуры применяются в качестве нагрузок и не потребляют мощности, когда основной МОП-транзистор находится в неактивном состоянии.

После завершения обработки пластины разрезают на части. Операция резки выполняется дисковой пилой с алмазными кромками. Каждый кристаллик (чип, или ИС) заключается затем в корпус одного из нескольких типов. Для подсоединения компонентов ИС к рамке выводов корпуса используется золотая проволока толщиной 25 мкм. Более толстые выводы рамки позволяют подсоединить ИС к электронному устройству, в котором она будет работать.

Надежность.

Надежность интегральной схемы примерно такая же, как у отдельного кремниевого транзистора, эквивалентного по форме и размеру. Теоретически транзисторы могут безотказно служить тысячи лет – один из важнейших факторов для таких областей применения, как ракетная и космическая техника, где единственный отказ может означать полный провал осуществляемого проекта.

Микропроцессоры и миникомпьютеры.

Впервые представленные публично в 1971 микропроцессоры выполняли большинство основных функций компьютера на единственной кремниевой ИС, реализованной на кристалле размером 5ґ5 мм. Благодаря интегральным схемам стало возможным создание миникомпьютеров – малых ЭВМ, где все функции выполняются на одной или нескольких больших интегральных схемах. Такая впечатляющая миниатюризация привела к резкому снижению стоимости вычислений. Выпускаемые в настоящее время мини-ЭВМ ценой менее 1000 долл. по своей производительности не уступают первым очень большим вычислительным машинам, стоимость которых в начале 1960-х годов доходила до 20 млн. долл. Микропроцессоры находят применение в оборудовании для связи, карманных калькуляторах, наручных часах, селекторах телевизионных каналов, электронных играх, автоматизированном кухонном и банковском оборудовании, средствах автоматического регулирования подачи топлива и нейтрализации отработавших газов в легковых автомобилях, а также во многих других устройствах. Большая часть мировой электронной индустрии, оборот которой превышает 15 млрд. долл., так или иначе зависит от интегральных схем. В масштабах всего мира интегральные схемы находят применение в оборудовании, суммарная стоимость которого составляет многие десятки миллиардов долларов.

Компьютерные запоминающие устройства.

В электронике термин «память» обычно относится к какому-либо устройству, предназначенному для хранения информации в цифровой форме. Среди множества типов запоминающих устройств (ЗУ) рассмотрим ЗУ с произвольной выборкой (ЗУПВ), приборы с зарядовой связью (ПЗС) и постоянные ЗУ (ПЗУ).

У ЗУПВ время доступа к любой ячейке памяти, находящейся на кристалле, одинаково. Такие устройства могут запоминать 65 536 бит (двоичных единиц, обычно 0 и 1), по одному биту на ячейку, и представляют собой широко используемый тип электронной памяти; на каждом чипе у них насчитывается ок. 150 тыс. компонентов. Выпускаются ЗУПВ емкостью 256 Кбит (К = 2 10 = 1024; 256 К = 262 144). В устройствах памяти с последовательной выборкой циркуляция запомненных битов происходит как бы по замкнутому конвейеру (в ПЗС используется именно такой тип выборки). В ПЗС, представляющем собой ИС специальной конфигурации, пакеты электрических зарядов могут размещаться под расположенными на малых расстояниях друг от друга крошечными металлическими пластинками, электрически изолированными от чипа. Заряд (или его отсутствие) может, таким образом, перемещаться по полупроводниковому устройству от одной ячейки к другой. В результате появляется возможность запоминания информации в виде последовательности единиц и нулей (двоичного кода), а также доступа к ней, когда это требуется. Хотя ПЗС не могут конкурировать с ЗУПВ по быстродействию, они способны обрабатывать большие объемы информации при меньших затратах, и их используют там, где память с произвольной выборкой не требуется. ЗУПВ, выполненное на такой ИС, является энергозависимым, и записанная в нем информация теряется при отключении питания. В ПЗУ информация заносится в ходе производственного процесса и хранится постоянно.

Разработки и выпуск ИС новых типов не прекращаются. В стираемых программируемых ПЗУ (СППЗУ) имеются два затвора, расположенные один над другим. При подаче напряжения на верхний затвор нижний может приобрести заряд, что соответствует 1 двоичного кода, а при переключении (реверсе) напряжения затвор может потерять свой заряд, что соответствует 0 двоичного кода.

Большая интегральная схема

Современные интегральные микросхемы, предназначенные для поверхностного монтажа.

Советские и зарубежные цифровые микросхемы.

Интегра́льная (engl. Integrated circuit, IC, microcircuit, microchip, silicon chip, or chip), (микро )схе́ма (ИС, ИМС, м/сх ), чип , микрочи́п (англ. chip - щепка, обломок, фишка) - микроэлектронное устройство - электронная схема произвольной сложности, изготовленная на полупроводниковом кристалле (или плёнке) и помещённая в неразборный корпус. Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой (МС) - ИС, заключённую в корпус. В то же время выражение «чип компоненты» означает «компоненты для поверхностного монтажа» в отличие от компонентов для традиционной пайки в отверстия на плате. Поэтому правильнее говорить «чип микросхема», имея в виду микросхему для поверхностного монтажа. В настоящий момент ( год) большая часть микросхем изготавливается в корпусах для поверхностного монтажа.

История

Изобретение микросхем началось с изучения свойств тонких оксидных плёнок, проявляющихся в эффекте плохой электро-проводимости при небольших электрических напряжениях. Проблема заключалась в том, что в месте соприкосновения двух металлов не происходило электрического контакта или он имел полярные свойства. Глубокие изучения этого феномена привели к открытию диодов а позже транзисторов и интегральных микросхем.

Уровни проектирования

  • Физический - методы реализации одного транзистора (или небольшой группы) в виде легированных зон на кристалле.
  • Электрический - принципиальная электрическая схема (транзисторы , конденсаторы , резисторы и т. п.).
  • Логический - логическая схема (логические инверторы , элементы ИЛИ-НЕ, И-НЕ и т. п.).
  • Схемо- и системотехнический уровень - схемо- и системотехническая схемы (триггеры , компараторы , шифраторы , дешифраторы , АЛУ и т. п.).
  • Топологический - топологические фотошаблоны для производства.
  • Программный уровень (для микроконтроллеров и микропроцессоров) - команды ассемблера для программиста .

В настоящее время большая часть интегральных схем разрабатывается при помощи САПР , которые позволяют автоматизировать и значительно ускорить процесс получения топологических фотошаблонов.

Классификация

Степень интеграции

Назначение

Интегральная микросхема может обладать законченным, сколь угодно сложным, функционалом - вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

Аналоговые схемы

  • Генераторы сигналов
  • Аналоговые умножители
  • Аналоговые аттенюаторы и регулируемые усилители
  • Стабилизаторы источников питания
  • Микросхемы управления импульсных блоков питания
  • Преобразователи сигналов
  • Схемы синхронизации
  • Различные датчики (температуры и др.)

Цифровые схемы

  • Логические элементы
  • Буферные преобразователи
  • Модули памяти
  • (Микро)процессоры (в том числе ЦПУ в компьютере)
  • Однокристальные микрокомпьютеры
  • ПЛИС - программируемые логические интегральные схемы

Цифровые интегральные микросхемы имеют ряд преимуществ по сравнению с аналоговыми:

  • Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» - что соответствует сигналу высокого уровня (1), либо «закрыт» - (0), в первом случае на транзисторе нет падения напряжения, во втором - через него не идёт ток . В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (резистивном) состоянии.
  • Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например 2,5 - 5 В) и низкого (0 - 0,5 В) уровня. Ошибка возможна при таких помехах, когда высокий уровень воспринимается как низкий и наоборот, что мало вероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов , позволяющих исправлять ошибки.
  • Большое отличие сигналов высокого и низкого уровня и достаточно широкий интервал их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора и настройки цифровых устройств.

ИНТЕГРАЛЬНАЯ СХЕМА
(ИС), микроэлектронная схема, сформированная на крошечной пластинке (кристаллике, или "чипе") полупроводникового материала, обычно кремния, которая используется для управления электрическим током и его усиления. Типичная ИС состоит из множества соединенных между собой микроэлектронных компонентов, таких, как транзисторы, резисторы, конденсаторы и диоды, изготовленные в поверхностном слое кристалла. Размеры кремниевых кристаллов лежат в пределах от примерно 1,3ґ1,3 мм до 13ґ13 мм. Прогресс в области интегральных схем привел к разработке технологий больших и сверхбольших интегральных схем (БИС и СБИС). Эти технологии позволяют получать ИС, каждая из которых содержит многие тысячи схем: в одном чипе может насчитываться более 1 млн. компонентов.
См. также ПОЛУПРОВОДНИКОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ . Интегральные схемы обладают целым рядом преимуществ перед своими предшественниками - схемами, которые собирались из отдельных компонентов, монтируемых на шасси. ИС имеют меньшие размеры, более высокие быстродействие и надежность; они, кроме того, дешевле и в меньшей степени подвержены отказам, вызываемым воздействиями вибраций, влаги и старения. Миниатюризация электронных схем оказалась возможной благодаря особым свойствам полупроводников. Полупроводник - это материал, обладающий гораздо большей электропроводностью (проводимостью), чем такой диэлектрик, как стекло, но существенно меньшей, чем проводники, например, медь. В кристаллической решетке такого полупроводникового материала, как кремний, при комнатной температуре имеется слишком мало свободных электронов, чтобы обеспечить значительную проводимость. Поэтому чистые полупроводники обладают низкой проводимостью. Однако введение в кремний соответствующей примеси увеличивает его электрическую проводимость.
См. также ТРАНЗИСТОР . Легирующие примеси вводят в кремний двумя методами. Для сильного легирования или в тех случаях, когда точное регулирование количества вводимой примеси необязательно, обычно пользуются методом диффузии. Диффузию фосфора или бора выполняют, как правило, в атмосфере легирующей примеси при температурах между 1000 и 1150° С в течение от получаса до нескольких часов. При ионной имплантации кремний бомбардируют высокоскоростными ионами легирующей примеси. Количество имплантируемой примеси можно регулировать с точностью до нескольких процентов; точность в ряде случаев важна, поскольку коэффициент усиления транзистора зависит от числа примесных атомов, имплантированных на 1 см2 базы (см. ниже).

Производство. Изготовление интегральной схемы может занимать до двух месяцев, поскольку некоторые области полупроводника нужно легировать с высокой точностью. В ходе процесса, называемого выращиванием, или вытягиванием, кристалла, сначала получают цилиндрическую заготовку кремния высокой чистоты. Из этого цилиндра нарезают пластины толщиной, например, 0,5 мм. Пластину в конечном счете режут на сотни маленьких кусочков, называемых чипами, каждый из которых в результате проведения описываемого ниже технологического процесса превращается в интегральную схему. Процесс обработки чипов начинается с изготовления масок каждого слоя ИС. Выполняется крупномасштабный трафарет, имеющий форму квадрата площадью ок. 0,1 м2. На комплекте таких масок содержатся все составляющие части ИС: уровни диффузии, уровни межсоединений и т.п. Вся полученная структура фотографически уменьшается до размера кристаллика и воспроизводится послойно на стеклянной пластине. На поверхности кремниевой пластины выращивается тонкий слой двуокиси кремния. Каждая пластина покрывается светочувствительным материалом (фоторезистом) и экспонируется светом, пропускаемым через маски. Неэкспонированные участки светочувствительного покрытия удаляют растворителем, а с помощью другого химического реагента, растворяющего двуокись кремния, последний вытравливается с тех участков, где он теперь не защищен светочувствительным покрытием. Варианты этого базового технологического процесса используются в изготовлении двух основных типов транзисторных структур: биполярных и полевых (МОП).
Биполярный транзистор. Такой транзистор имеет структуру типа n-p-n или, намного реже, типа p-n-p. Обычно технологический процесс начинается с пластины (подложки) сильно легированного материала p-типа. На поверхности этой пластины эпитаксиально выращивается тонкий слой слабо легированного кремния n-типа; таким образом, выращенный слой имеет ту же самую кристаллическую структуру, что и подложка. Этот слой должен содержать активную часть транзистора - в нем будут сформированы индивидуальные коллекторы. Пластина сначала помещается в печь с парами бора. Диффузия бора в кремниевую пластину происходит только там, где ее поверхность подверглась обработке травлением. В результате формируются области и окна из материала n-типа. Второй высокотемпературный процесс, в котором используются пары фосфора и другая маска, служит для формирования контакта с коллекторным слоем. Проведением последовательных диффузий бора и фосфора формируются соответственно база и эмиттер. Толщина базы обычно составляет несколько микрон. Эти крошечные островки проводимостей n- и p-типа соединяются в общую схему посредством межсоединений, выполненных из алюминия, осаждаемого из паровой фазы или наносимого напылением в вакууме. Иногда для этих целей используются такие благородные металлы, как платина и золото. Транзисторы и другие схемные элементы, например резисторы, конденсаторы и индуктивности, вместе с соответствующими межсоединениями могут формироваться в пластине методами диффузии в ходе последовательности операций, создавая в итоге законченную электронную схему. См. также ТРАНЗИСТОР .
МОП-транзистор. Наибольшее распространение получила МОП (металл-окисел-полупроводник) - структура, состоящая из двух близко расположенных областей кремния n-типа, реализованных на подложке p-типа. На поверхности кремния наращивается слой его двуокиси, а поверх этого слоя (между областями n-типа и слегка захватывая их) формируется локализованный слой металла, выполняющий роль затвора. Две упомянутые выше области n-типа, называемые истоком и стоком, служат соединительными элементами для входа и выхода соответственно. Через окна, предусмотренные в двуокиси кремния, выполняются металлические соединения с истоком и стоком. Узкий поверхностный канал из материала n-типа соединяет исток и сток; в других случаях канал может быть индуцированным - создаваемым под действием напряжения, приложенного к затвору. Когда на затвор транзистора с индуцированным каналом подается положительное напряжение, расположенный под затвором слой p-типа превращается в слой n-типа, и ток, управляемый и модулируемый сигналом, поступающим на затвор, течет от истока к стоку. МОП-транзистор потребляет очень небольшую мощность; он имеет высокое входное сопротивление, отличается низким током цепи стока и очень низким уровнем шумов. Поскольку затвор, оксид и кремний образуют конденсатор, такое устройство широко используется в системах компьютерной памяти (см. ниже). В комплементарных, или КМОП-схемах, МОП-структуры применяются в качестве нагрузок и не потребляют мощности, когда основной МОП-транзистор находится в неактивном состоянии.



После завершения обработки пластины разрезают на части. Операция резки выполняется дисковой пилой с алмазными кромками. Каждый кристаллик (чип, или ИС) заключается затем в корпус одного из нескольких типов. Для подсоединения компонентов ИС к рамке выводов корпуса используется золотая проволока толщиной 25 мкм. Более толстые выводы рамки позволяют подсоединить ИС к электронному устройству, в котором она будет работать.
Надежность. Надежность интегральной схемы примерно такая же, как у отдельного кремниевого транзистора, эквивалентного по форме и размеру. Теоретически транзисторы могут безотказно служить тысячи лет - один из важнейших факторов для таких областей применения, как ракетная и космическая техника, где единственный отказ может означать полный провал осуществляемого проекта.
Микропроцессоры и миникомпьютеры. Впервые представленные публично в 1971 микропроцессоры выполняли большинство основных функций компьютера на единственной кремниевой ИС, реализованной на кристалле размером 5ґ5 мм. Благодаря интегральным схемам стало возможным создание миникомпьютеров - малых ЭВМ, где все функции выполняются на одной или нескольких больших интегральных схемах. Такая впечатляющая миниатюризация привела к резкому снижению стоимости вычислений. Выпускаемые в настоящее время мини-ЭВМ ценой менее 1000 долл. по своей производительности не уступают первым очень большим вычислительным машинам, стоимость которых в начале 1960-х годов доходила до 20 млн. долл. Микропроцессоры находят применение в оборудовании для связи, карманных калькуляторах, наручных часах, селекторах телевизионных каналов, электронных играх, автоматизированном кухонном и банковском оборудовании, средствах автоматического регулирования подачи топлива и нейтрализации отработавших газов в легковых автомобилях, а также во многих других устройствах. Большая часть мировой электронной индустрии, оборот которой превышает 15 млрд. долл., так или иначе зависит от интегральных схем. В масштабах всего мира интегральные схемы находят применение в оборудовании, суммарная стоимость которого составляет многие десятки миллиардов долларов.
Компьютерные запоминающие устройства. В электронике термин "память" обычно относится к какому-либо устройству, предназначенному для хранения информации в цифровой форме. Среди множества типов запоминающих устройств (ЗУ) рассмотрим ЗУ с произвольной выборкой (ЗУПВ), приборы с зарядовой связью (ПЗС) и постоянные ЗУ (ПЗУ). У ЗУПВ время доступа к любой ячейке памяти, находящейся на кристалле, одинаково. Такие устройства могут запоминать 65 536 бит (двоичных единиц, обычно 0 и 1), по одному биту на ячейку, и представляют собой широко используемый тип электронной памяти; на каждом чипе у них насчитывается ок. 150 тыс. компонентов. Выпускаются ЗУПВ емкостью 256 Кбит (К = 210 = 1024; 256 К = 262 144). В устройствах памяти с последовательной выборкой циркуляция запомненных битов происходит как бы по замкнутому конвейеру (в ПЗС используется именно такой тип выборки). В ПЗС, представляющем собой ИС специальной конфигурации, пакеты электрических зарядов могут размещаться под расположенными на малых расстояниях друг от друга крошечными металлическими пластинками, электрически изолированными от чипа. Заряд (или его отсутствие) может, таким образом, перемещаться по полупроводниковому устройству от одной ячейки к другой. В результате появляется возможность запоминания информации в виде последовательности единиц и нулей (двоичного кода), а также доступа к ней, когда это требуется. Хотя ПЗС не могут конкурировать с ЗУПВ по быстродействию, они способны обрабатывать большие объемы информации при меньших затратах, и их используют там, где память с произвольной выборкой не требуется. ЗУПВ, выполненное на такой ИС, является энергозависимым, и записанная в нем информация теряется при отключении питания. В ПЗУ информация заносится в ходе производственного процесса и хранится постоянно. Разработки и выпуск ИС новых типов не прекращаются. В стираемых программируемых ПЗУ (СППЗУ) имеются два затвора, расположенные один над другим. При подаче напряжения на верхний затвор нижний может приобрести заряд, что соответствует 1 двоичного кода, а при переключении (реверсе) напряжения затвор может потерять свой заряд, что соответствует 0 двоичного кода.
См. также
ОРГТЕХНИКА И КАНЦЕЛЯРСКОЕ ОБОРУДОВАНИЕ ;
КОМПЬЮТЕР ;
ЭЛЕКТРОННЫЕ СРЕДСТВА СВЯЗИ ;
ИНФОРМАЦИИ НАКОПЛЕНИЕ И ПОИСК .
ЛИТЕРАТУРА
Мейзда Ф. Интегральные схемы: технология и применения. М., 1981 Зи С. Физика полупроводниковых приборов. М., 1984 Технология СБИС. М., 1986 Маллер Р., Кеймин С. Элементы интегральных схем. М., 1989 Шур М.С. Физика полупроводниковых приборов. М., 1992

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ИНТЕГРАЛЬНАЯ СХЕМА" в других словарях:

    Твердотельное устройство, содержащее группу приборов и их соединения (связи), выполненное на единой пластине (подложке). В И. с. интегрируются пассивные элементы (ёмкости, сопротивления) и активные элементы, действие к рых основано на разл. физ.… … Физическая энциклопедия

    - (ИС, интегральная микросхема, микросхема), микроминиатюрное устройство с высокой плотностью упаковки элементов (диодов, транзисторов, резисторов, конденсаторов и др.), неразрывно связанных (объединенных) между собой конструктивно, технологически… … Современная энциклопедия

    - (ИС интегральная микросхема, микросхема), микроминиатюрное электронное устройство, элементы которого неразрывно связаны (объединены) конструктивно, технологически и электрически. ИС подразделяются: по способу объединения (интеграции) элементов на … Большой Энциклопедический словарь

    интегральная схема - (МСЭ Т Q.1741). Тематики электросвязь, основные понятия EN integrated circuitIC … Справочник технического переводчика

    Запрос «БИС» перенаправляется сюда; см. также другие значения. Современные интегральные микросхемы, предназначенные для поверхностного монтажа Интегральная (микро)схема (… Википедия

    - (ИС). интегральная микросхема (ИМС), микросхема, микроминиатюрное электронное устройство с высокой плотностью упаковки связанных между собой (как правило, электрически) элементов (диодов, транзисторов, резисторов, конденсаторов и др.),… … Большой энциклопедический политехнический словарь

    - (ИС, интегральная микросхема, микросхема), микроминиатюрное электронное устройство, элементы которого изготовлены в едином технологическом цикле и неразрывно связаны (объединены) конструктивно и электрически. Интегральные схемы подразделяются: по … Энциклопедический словарь