Сайт о телевидении

Сайт о телевидении

» » Алгоритм венгерского метода решения задач о назначениях. Венгерский алгоритм решения задачи о назначениях

Алгоритм венгерского метода решения задач о назначениях. Венгерский алгоритм решения задачи о назначениях

Рассмотрим следующий пример. Пусть для выполнения пяти различных работ имеется пять человек. Из отчетных данных известно, какое время требуется каждому из них для выполнения каждой работы. Эти данные приведены в таблице.

исполнители

потребности

В данном случае величины представляют собой затраты времени каждого работника на выполнение каждой из работ, а величины равны либо 1, либо 0, причем равен 1, если работник i назначен на работу j, и 0 во всех остальных случаях. Таким образом задача сводится к минимизации функции. стоимость маршрут линейный программирование

при следующих ограничениях.

Ясно, что если отбросить последнее условие и заменить его условием

То получается транспортная задача, в которой все потребности и все ресурсы равны единице. В оптимальном решении все равны либо целому числу, либо нулю, причем единственным возможным целым является единица. Таким образом, решение транспортной задачи при этих условиях всегда приводит к равенству.

Однако вследствие вырожденности методы решения транспортных задач в случае задачи о назначении оказываются малоэффективными. При любом назначении всегда автоматически совпадают поставки по строке со спросом по столбцу и поэтому вместо 2n-1 получаем n ненулывых значений. В связи с этим необходимо заполнить матрицу n-1 величинами е, и может оказаться, что ненулевые значения определяют оптимальное решение, однако проверка его не обнаруживает, так как величины е расставлены неверно.

Метод решения задачи о назначении основан на двух довольно очевидных теоремах. Первая из них утверждает, что решение не изменится, если прибавить к любому столбцу или строке матрицы некоторую константу или вычесть ее из них. Эта теорема точно формулируется следующим образом:

Теорема 1.

Если минимизирует

по всем, таким что и

то минимизирует также функционал

где при всех

Теорема 2.

Если все и можно отыскать набор такой, что

то это решение оптимально.

Вторая теорема очевидна. Для доказательства первой теоремы заметим, что

Вследствие того что величины, вычитаемые из Z с целью получения, не зависят от, достигает минимума всегда, когда минимизируется Z, и наоборот.

Разработанный метод решения сводится к прибавлению констант к строкам и столбцам и вычитанию их из строк и столбцов до тех пор, пока достаточное число величин не обращается в нуль, что дает решение, равное нулю.

Отыскание решения начинают, вычитая наименьший элемент из каждой строки, а затем из каждого столбца. В таблице даны результаты для приведенного выше примера.

Таблица А)

исполнители

вычитается

Таблица Б)

исполнители

вычитается

Из столбцов и строк было вычтено всего 10 единиц. Поэтому для правильной оценки любого решения, получаемого при использовании таблицы (Б), необходимо прибавить к результату 10 единиц

Прежде всего стремятся отыскать решение, включающее лишь те клетки таблицы (Б),в которых стоят нулевые элементы, поскольку такое решение, если его удается найти, будет наилучшим из всех возможных. Однако встречаются случаи, когда несколько решений имеют одинаковое качество. Допустимое решение помечено в таблице (Б) скобками. Однако, для того чтобы определить, возможно ли улучшение решения, применяется следующий алгоритм.

Заметим предварительно, что любое дальнейшее вычитание из строки или столбца, хотя и может приводить к появлению новых нулей, неизбежно приводит в появлению отрицательных элементов, так что нулевое решение теперь не обязательно будет оптимальным. Однако отрицательные элементы можно исключить, прибавляя соответствующие числа к строкам или столбцам. Так например, если вычесть 2 из столбца 1 в таблице (Б), то в строке 1 появится элемент - 2. Если теперь прибавить 2 к строке 1, то вновь получим матрицу с неотрицательными элементами. Задача заключается в том, чтобы получать новые нули указанным способом, но вместе с тем в конечном счете получить матрицу, содержащую решение среди одних нулей. Можно доказать, что описываемый ниже алгоритм обеспечивает решение этой задачи.

1. Провести минимальное число горизонтальных и вертикальных прямых, пересекающих по крайней мере один раз все нули. Выполнение этого шага для таблицы (Б) дает результат в таблице 1.

Таблица 1

Заметим, что в данном случае используется только четыре линии, а следовательно, нулевые клетки не содержат оптимального решения.

  • 2. Выбрать наименьший элемент, через который не проведена линия. В примере это 1 в клетке (5,2).
  • 3. Вычесть это число из всех элементов, через которые не проведена ни одна линия, и прибавить его ко всем элементам, через которые проведены две линии. В данном примере получается результат, показанный в таблице 2.

Таблица 2

Этот шаг должен приводить к появлению нуля в клетке, где его ранее не было. В рассматриваемом примере это клетка (5,2).

4. Определить, имеется ли решение среди нового набора нулей. Если решение не обнаруживается (в данном примере оно отсутствует), то вернуться к шагу 1 и выполнить все последующие шаги, пока не будет найдено решение. продолжая рассматривать данный пример, получаем результат, приведенный в таблице 3.

Таблица 3

В этой таблице уже содержится решение, помеченное скобками и имеющее значение 13, что на 1 лучше исходного допустимого решения. , .

Пример 2.

Представлено четыре студента и четыре вида работ. Следующая таблица соответствует матрице стоимостей для этой задачи.

Выполним первый шаг алгоритма.

Теперь вычтем минимальные стоимости из элементов соответствующих строк.

На втором шаге алгоритма находим минимальные значения по столбцам и вычитаем их из элементов соответствующих столбцов. В результате получим матрицу, представленную в следующей таблице.

В последней матрице расположение нулевых элементов не позволяет назначить каждому ребенку одну работу. Например, если мы назначим Даше уборку гаража, из дальнейшего рассмотрения исключается первый столбец и тогда, в строке Аллы не окажется нулевых элементов.

  • 1) В последней матрице проведем минимальное число горизонтальных и вертикальных прямых по строкам и столбцам с тем, чтобы вычеркнуть все нулевые элементы.
  • 2) Найдем наименьший невычеркнутый элемент и вычтем его из остальных невычеркнутых элементов и прибавим к элементам, стоящим на пересечении проведенных прямых.

В задаче данного примера требуется провести три прямых, это приводит к следующей таблице:

Наименьший невычеркнутый элемент равен 1. Этот элемент вычитаем из остальных невычеркнутых элементов и прибавляем к элементам, стоящим на пересечении прямых. В результате получим матрицу, представленную в следующей таблице.

Оптимальное решение, показанное в таблице, предлагает Даше убрать гараж, Кате стричь газоны, Алле мыть машины, а Саше выгуливать собак. Соответствующее значение целевой функции равно 1+10+5+5=21. Такое же значение можно получить путем суммирования значений и и значения элемента, наименьшего среди всех невычеркнутых.

В настоящее время разработано множество различных алгоритмов решения Т.з. распределительный метод , метод потенциалов, дельта-метод, венгерский метод, метод дифференциальных рент , способ двойного предпочтения , различные сетевые методы. Они относительно просты, по ним составлены десятки программ для различных вычислительных машин . Во многих снабженческих, транспортных и других организациях во всем мире с их помощью рассчитываются маршруты доставки материалов на строительные площадки, планы длительного прикрепления поставщиков металлопроката к потребителям, планы перевозок топлива. Задачи эти часто усложняются разного рода дополнительными условиями напр., в них включается расчет не только себестоимости перевозок, но и себестоимости производства продукции (производственно-транспортная задача), оптимизируется совместно доставка взаимозаменяемых видов продукции (скажем, различных кровельных материалов), оптимизируется доставка грузов с промежуточными базами (складами). Кроме того, следует учитывать, что экономико-математическая модель Т.з. позволяет описывать множество ситуаций, весьма далеких от проблемы перевозок, в частности, находить оптимальное размещение заказов на производство изделий с разной себестоимостью.  


Полученные с помощью этого алгоритма сбалансированные планы поставок ресурсов и услуг могут быть в дальнейшем оптимизированы стандартными методами (потенциалов, венгерским и др.)  

Венгерский метод в классическом варианте применим только для замкнутой модели транспортной задачи. Поэтому при разработке алгоритмов решения транспортной задачи с открытой или полуоткрытой системой ограничений исследовались и были определены эффективные методы предварительного построения замыкания исходной модели с последующим применением венгерского метода. В общем случае схема решения такой задачи представляет собой двухэтапную процедуру, где на первом этапе определяется замыкание модели, а на втором по замыканию модели отыскивается оптимум задачи.  

Описание алгоритма венгерского метода  

После конечного числа построений очередной первый этап обязательно закончится переходом на второй этап и количество независимых нулей увеличится на единицу, т. е. (к + 1)-я итерация будет завершена. Обоснование отдельных этапов алгоритма венгерского метода для задачи выбора приведено в .  

Количество возможных вариантов назначений равно факториалу числа работ и ресурсов и огромно даже в небольшой задаче. Поэтому для нахождения оптимального варианта применяют специальные алгоритмы. Среди них особенно эффективен при решении 3. о н. вручную т.н. венгерский метод.  

Оптимизация цены, объема выпуска и постоянных затрат предприятия при освоении нового продукта чисто математически может быть осуществлена на основе постановки следующий оптимизационной задачи , которая, будучи выражена линейными уравнениями выручки, переменных и совокупных издержек предприятия, а также зависимости между располагаемыми инвестициями и максимально возможным объемом выпуска продукта, обусловленным созданием на средства этих инвестиций соответствующих новых производственных и торговых мощностей. Эта задача поддается решению методами линейного целочисленного программирования (например, симплекс-методом или так называемым венгерским методом)  

Известны различные способы решения этой задачи - распределительный, венгерский, метод потенциалов и др. Как правило, для расчетов применяется ЭВМ.  

В то же время в книге изложено немало организационных решений , с успехом применяемых на венгерских промышленных предприятиях , представляющих интерес и для наших условий. К таким решениям можно отнести обоснование механизма выявления новых назревших организационных проблем, подлежащих решению процедуру разработки вариантов организационной концепции при подготовке проектов рационализации организационных систем обоснование многофакторного подхода при выборе форм и методов организации производства применение гибких методов организации и диверсификации производства и др.  

Венгерские специалисты разработали методики комплексного исследования рынка для новых товаров как производственного назначения, так и народного потребления. Различие методов обусловлено назначением товаров, в силу чего, например, точнее можно определить круг потребителей изделий производственного назначения, так как покупателями являются определенные предприятия. А это, в свою очередь, говорит производителю о довольно ограниченном объеме выпуска. Маркетинг изделий производственного назначения характерен и тем, что практически возможен опрос всех будущих потребителей, т. v процедура выяснения запросов покупателей проще, чем в случае потребительских товаров.  

Рассматриваемый метод получения ацетилена успешно изучался венгерскими и румынскими химиками в Венгрии и Румынии были построены не только лабораторные, но и опытно-промышленные установки, на которых проводились интенсивные работы по промышленному освоению метода. Промышленные установки, работающие по этому методу, имеются также в ФРГ и в Канаде.  

Существует много частных способов (например, способ Фогеля, методы потенциалов, дифференциальных рент , способ Лебедева - Тихомирова, венгерский метод и др.), а также универсальных методов (например, алгоритм симплекс-метода) решения задач линейного программирования с такого рода условиями. Представляет интерес, как сам результат вычисления, так и его интерпретация.  

Корнай (Kornai) Янош (р. 1928), венгерский экономист-математик, академик АН Венгерской республики. Окончил Будапештский университет (1955), работал в АН, Институте текстильной промышленности , вычислительном центре Академии наук с 1967 г. - профессор и руководитель отдела АН Венгрии, с 1986 г. - профессор экономики в Гарвардском университете. В конце 50-х гг. вместе с Т. Липтаком разработал метод решения задач блочного программирования - метод планирования на двух уровнях (см. Корнай-Липтака метод). Исследовал проблемы функционирования экономики в условиях неравновесия, взаимоотношения между дефицитом и инфляцией. Был одним из идеологов венгерской экономической реформы конца 60-х гг. Иностранный член Британской, Шведской, Финляндской академий наук , почетный член Американской академии искусств и наук, Американской экономической ассоциации почетный доктор университетов многих стран мира . Государственная премия ВНР - 1983 г.  

Большинство конфликтов является ситуациями для торга, сделки, но существуют и такие, в которых возможность выигрыша одной строны в значительной степени зависит от поведения и принимаемых решений другой стороны. Это возможно продемонстрировать на примере, приведенном венгерским социологом Э. Ханкишем. Последний назвал этот метод дилеммой арестанта. Суть его в том, что, добиваясь признания от двух подозреваемых, следователь ставит следующие условия  

Особое место в программе уделяется методам, чувствительным к разладке технологического процесса , в частности, методу регулирования с предупреждающими границами и методу кумулятивных сумм . В программу включены документы по контрольным картам кумулятивных сумм для средних арифметических значений, дисперсий и размахов, числа дефектов и дефектных единиц продукции. По предложению Венгерской Народной Республики в программу внесено общее методическое руководство по применению контрольных карт . Разработка методов регулирования предусмотрена на основе использования критерия проверки гипотез Кеймана-Пирсона или, когда критерий Неймана-Пирсона оказывается неприемлемым, принципа

ВЕНГЕРСКИЙ МЕТОД

Венгерский метод является одним из интереснейших и наиболее распространенных методов решения транспортных задач.

Рассмотрим сначала основные идеи венгерского метода на примере решения задачи выбора (задачи о назначениях), которая является частным случаем Т-задачи, а затем обобщим этот метод для произвольной Т-задачи.

Венгерский метод для задачи о назначениях

Постановка задачи. Предположим, что имеется различных работ и механизмов , каждый из которых может выполнять любую работу, но с неодинаковой эффективностью. Производительность механизма при выполнении работы обозначим , и = 1,...,n; j = 1,...,n . Требуется так распределить механизмы по работам, чтобы суммарный эффект от их использования был максимален. Такая задача называется задачей выбора или задачей о назначениях.

Формально она записывается так. Необходимо выбрать такую последовательность элементов из матрицы

чтобы сумма была максимальна и при этом из каждой строки и столбца С был выбран только один элемент.

Введем следующие понятия.

Нулевые элементы матрицы С называются независимыми нулями, если для любого строка и столбец, на пересечении которых расположен элемент , не содержат другие такие элементы .

Две прямоугольные матрицы С и D называются эквивалентными (C ~ D ), если для всех i,j . Задачи о назначениях, определяемые эквивалентными матрицами, являются эквивалентными (т.е. оптимальные решения одной из них будут оптимальными и для второй, и наоборот).

Описание алгоритма венгерского метода

Алгоритм состоит из предварительного этапа и не более чем (n -2) последовательно проводимых итераций. Каждая итерация связана с эквивалентными преобразованиями матрицы, полученной в результате проведения предыдущей итерации, и с выбором максимального числа независимых нулей. Окончательным результатом итерации является увеличение числа независимых нулей на единицу. Как только количество независимых нулей станет равным n , проблему выбора оказывается решенной, а оптимальный вариант назначений определяется позициями независимых нулей в последней матрице.

Предварительный этап. Разыскивают максимальный элемент в j - м столбце и все элементы этого столбца последовательно вычитают из максимального. Эту операцию проделывают над всеми столбцами матрицы С . В результате образуется матрица с неотрицательными элементами, в каждом столбце которой имеется, по крайней мере, один нуль.

Далее рассматривают i - ю строку полученной матрицы, разыскивают ее минимальный элемент a i и из каждого элемента этой строки вычитают минимальный. Эту процедуру повторяют со всеми строками. В результате получим матрицу С 0 (С 0 ~ C ), в каждой строке и столбце которой имеется, по крайней мере, один нуль. Описанный процесс преобразования С в С 0 называется приведением матрицы.

Находим произвольный нуль в первом столбце и отмечаем его звездочкой. Затем просматриваем второй столбец, и если в нем есть нуль, расположенный в строке, где нет нуля со звездочкой, то отмечаем его звездочкой. Аналогично просматриваем один за другим все столбцы матрицы С 0 и отмечаем, если возможно, следующие нули знаком "*". Очевидно, что нули матрицы С 0 , отмеченные звездочкой, являются независимыми. На этом предварительный этап заканчивается.

(k +1)-ая итерация. Допустим, что k -я итерация уже проведена и в результате получена матрица С k . Если в ней имеется ровно n нулей со звездочкой, то процесс решения заканчивается. В противном случае переходим к (k +1) - й итерации.

Каждая итерация начинается первым и заканчивается вторым этапом. Между ними может несколько раз проводиться пара этапов: третий - первый. Перед началом итерации знаком "+" выделяют столбцы матрицы С k , которые содержат нули со звездочками.

Первый этап. Просматривают невыделенные столбцы С k . Если среди них не окажется нулевых элементов, то переходят к третьему этапу. Если же невыделенный нуль матрицы С k обнаружен, то возможен один из двух случаев: 1) строка, содержащая невыделенный нуль, содержит также и нуль со звездочкой; 2) эта строка не содержит нуля со звездочкой.

Во втором случае переходим сразу ко второму этапу, отметив этот нуль штрихом.

В первом случае этот невыделенный нуль отмечают штрихом и выделяют строку, в которой он содержится (знаком "+" справа от строки). Просматривают эту строку, находят нуль со звездочкой и уничтожают знак "+" выделения столбца, в котором содержится данный нуль.

Далее просматривают этот столбец (который уже стал невыделенным) и отыскивают в нем невыделенный нуль (или нули), в котором он находится. Этот нуль отмечают штрихом и выделяют строку, содержащую такой нуль (или нули). Затем просматривают эту строку, отыскивая в ней нуль со звездочкой.

Этот процесс за конечное число шагов заканчивается одним из следующих исходов:

1) все нули матрицы С k выделены, т.е. находятся в выделенных строках или столбцах. При этом переходят к третьему этапу;

2) имеется такой невыделенный нуль в строке, где нет нуля со звездочкой. Тогда переходят ко второму этапу, отметив этот нуль штрихом.

Второй этап. На этом этапе строят следующую цепочку из нулей матрицы С k : исходный нуль со штрихом, нуль со звездочкой, расположенный в одном столбце с первым нулем со штрихом в одной строке с предшествующим нулем со звездочкой и т.д. Итак, цепочка образуется передвижением от 0 " к 0 * по столбцу, от 0 * к 0 " по строке и т.д.

Можно доказать, что описанный алгоритм построения цепочки однозначен и конечен, при этом цепочка всегда начинается и заканчивается нулем со штрихом.

Далее над элементами цепочки, стоящими на нечетных местах (0 ") -, ставим звездочки, уничтожая их над четными элементами (0 *). Затем уничтожаем все штрихи над элементами С k и знаки выделения "+". Количество независимых нулей будет увеличено на единицу. На этом (k+ 1) -я итерация закончена.

Третий этап. К этому этапу переходят после первого, если все нули матрицы С k выделены. В таком случае среди невыделенных элементов С k выбирают минимальный и обозначают его h (h >0). Далее вычитают h из всех элементов матрицы С k , расположенных в невыделенных строках и прибавляют ко всем элементам, расположенным в выделенных столбцах. В результате получают новую матрицу С " k , эквивалентную С k . Заметим, что при таком

преобразовании, все нули со звездочкой матрицы С k остаются нулями и в С " k , кроме того, в ней появляются новые невыделенные нули. Поэтому переходят вновь к первому этапу. Завершив первый этап, в зависимости от его результата либо переходят ко второму этапу, либо вновь возвращаются к третьему этапу.

После конечного числа повторений очередной первый этап обязательно закончится переходом на второй этап. После его выполнения количество независимых нулей увеличится на единицу и (k+ 1)- я итерация будет закончена.

Пример 3.4. Решить задачу о назначениях с матрицей

При решении задачи используем следующие обозначения:

Знак выделения "+", подлежащий уничтожению, обводим кружком; цепочку, как и ранее, указываем стрелками.

Предварительный этап. Отыскиваем максимальный элемент первого столбца - 4. Вычитаем из него все элементы этого столбца. Аналогично для получения второго, третьего, четвертого и пятого столбцов новой матрицы вычитаем все элементы этих столбцов от п"яти, трех, двух и трех соответственно. Получим матрицу С " (C " ~C ). Так как в каждой строке С " есть нуль, то С " = С 0 и процесс приведения матрицы заканчивается. Далее ищем и отмечаем знаком "*" независимые нули в С 0 , начиная с первой строки.

Первая итерация . Первый этап. Выделяем знаком "+" первый, второй, и четвертый столбцы матрицы С 0 , которые содержат 0 * .

Просматриваем невыделенный третий столбец, находим в нем невыделенный нуль С 23 = 0, отмечаем его штрихом и выделяем знаком "+" вторую строку. Просматриваем эту строку, находим в ней элемент С 22 = 0 * и уничтожаем знак выделения второго столбца, содержащего 0 * . Затем просматриваем второй столбец - в нем нет невыделенных элементов. Переходим к последнему невыделенному столбцу (пятому), ищем в нем невыделенные нули. Поскольку невыделенных нулей нет, то переходим к третьему этапу.

Третий этап. Находим минимальный элемент в невыделенной части матрицы С 0 (т.е. элементы, которые лежат в столбцах и строках, не отмеченных знаком "+"). Он равен h = 1.

Вычтем h = 1 из всех элементов невыделенных строк (т.е. всех, кроме второго) и прибавим ко всем элементам выделенных столбцов (первого и четвертого). Получим матрицу С " 1 и перейдем к первому этапу.

Первый этап. Перед его началом вновь выделяем знаком "+" первый, второй и четвертый столбцы. Просматриваем невыделенный третий столбец, находим в нем невыделенный нуль С 23 = 0, отмечаем его знаком штрих. Поскольку во второй строке есть 0 * (элемент С 22), то выделяем знаком "+" вторую строку, далее уничтожаем знак выделения второго столбца, где лежит 0 * . Потом просмотрим второй столбец, находим в нем невыделенный нуль С 12 = 0, отмечаем его знаком штрих. Поскольку в первой строке есть нуль со звездочкой С 14 = 0 * , то выделяем его знаком "+", и уничтожаем знак выделения четвертого столбца, где находился этот знак 0 * . Затем пересматриваем четвертый столбец и находим в нем невыделенный нуль С 54 = 0. Так как в строке, где он находится, нет нуля со звездочкой, то отметив этот 0 штрихом, переходим ко второму этапу.

Идея метода была высказана венгерским математиком Эгервари и состоит в следующем. Строится начальный план перевозок, не удовлетворяющий в общем случае всем условиям задачи (из некоторых пунктов производства не весь продукт вывозится, потребность части пунктов потребления не полностью удовлетворена). Далее осуществляется переход к новому плану, более близкому к оптимальному. Последовательное применение этого приема за конечное число итераций приводит к решению задачи.

Алгоритм венгерского метода состоит из подготовительного этапа и из конечного числа итераций. На подготовительном этапе строится матрица X0 (xij)m,n, элементы которой неотрицательны и удовлетворяют неравенствам:

Если эти условия являются равенствами, то матрица Хo - решение транспортной задачи. Если среди условий имеются неравенства, то осуществляется переход к первой итерации. На k-й итерации строится матрица Хk (xij)m,n. Близость этой матрицы к решению задачи характеризует число Dk - суммарная невязка матрицы Хk:

В результате первой итерации строится матрица Хl, состоящая из неотрицательных элементов. При этом Dl D0. Если Dl 0, то Хl - оптимальное решение задачи. Если Dl 0, то переходят к следующей итерации. Они проводятся до тех пор, пока Dk при некотором k не станет равным нулю. Соответствующая матрица Хk является решением транспортной задачи.

Венгерский метод наиболее эффективен при решении транспортных задач с целочисленными объемами производства и потребления. В этом случае число итераций не превышает величины D0/2 (D0 - суммарная невязка подготовительного этапа).

Достоинством венгерского метода является возможность оценивать близость результата каждой из итераций к оптимальному плану перевозок. Это позволяет контролировать процесс вычислений и прекратить его при достижении определенных точностных показателей. Данное свойство существенно для задач большой размерности.

    Волков И.К., Загоруйко Е.А. Исследование операций: Учеб. для вузов. 2-е узд. / Под ред.. В.С. Зарубина, А.П. Крищенко. – М.: Узд-во МГТУ им. Н.Э. Баумана, 2002. – 436 с.

    Зайченко Ю.П. Исследование операций: Учеб. пособие для студентов вузов. – 2-е изд., перераб. и доп. – Киев: Вища школа. Главное изд-во, 1979. 392 с.

    И. А. Акулич. Математическое программирование в примерах и задачах. - М.: «Высшая школа», 1986.- 319 с.

    Сакович В.А. Исследование операций (детерминированные методы и модели): Справочное пособие. - Мн.: Выш. шк., 1984.-256с.

    Таха Х. Введение в исследование операций: в двух книгах. Кн.1,2 Пер. с англ. - М.: Мир, 1985.

    Хазанова Л.Э. Математическое программирование в экономике: Учебное пособие. – М.: Издательство БЕК, 1998. – 141с.

Задача о назначениях ставится весьма естественно.

Приведём несколько вариантов постановки (как легко видеть, все они эквивалентны друг другу):

Отметим, что все приведённые выше постановки "квадратны ": в них обе размерности всегда совпадают (и равны ). На практике часто встречаются аналогичные "прямоугольные " постановки, когда , и надо выбрать элементов. Впрочем, как легко заметить, от "прямоугольной" задачи всегда можно перейти к "квадратной", добавив строки/столбцы с нулевыми/бесконечными значениями соответственно.

Также заметим, что по аналогии с поиском минимального решения также можно ставить задачу поиска максимального решения. Впрочем, эти две задачи эквивалентны друг другу: достаточно все веса умножить на .

Венгерский алгоритм

Историческая справка

Алгоритм был разработан и опубликован Гарольдом Куном (Harold Kuhn) в 1955 г. Сам Кун дал алгоритму название "венгерский", потому что он был в значительной степени основан на более ранних работах двух венгерских математиков: Денеша Кёнига (Dénes Kőnig) и Эйгена Эгервари (Jenő Egerváry).

В 1957 г. Джеймс Манкрес (James Munkres) показал, что этот алгоритм работает за (строго) полиномиальное время (т.е. за время порядка полинома от , не зависящего от величины стоимостей).

Поэтому в литературе данный алгоритм известен не только как "венгерский", но и как "алгоритм Куна-Манкреса" или "алгоритм Манкреса".

Впрочем, недавно (в 2006 г.) выяснилось, что точно такой же алгоритм был изобретён за век до Куна немецким математиком Карлом Густавом Якоби (Carl Gustav Jacobi). Дело в том, что его работа "About the research of the order of a system of arbitrary ordinary differential equations", напечатанная посмертно в 1890 г., содержавшая помимо прочих результатов и полиномиальный алгоритм решения задачи о назначениях, была написана на латыни, а её публикация прошла незамеченной среди математиков.

Также стоит отметить, что первоначальный алгоритм Куна имел асимптотику , и лишь позже Джек Эдмондс (Jack Edmonds) и Ричард Карп (Richard Karp) (и независимо от них Томидзава (Tomizawa)) показали, каким образом улучшить его до асимптотики .

Построение алгоритма за

Сразу отметим во избежание неоднозначностей, что мы в основном рассматриваем здесь задачу о назначениях в матричной постановке (т.е. дана матрица , и надо выбрать из неё ячеек, находящихся в разных строках и столбцах). Индексацию массивов мы начинаем с единицы, т.е., например, матрица имеет индексы .

Назовём потенциалом два произвольных массива чисел и таких, что выполняется условие:

(Как видно, числа соответствуют строкам, а числа — столбцам матрицы.)

Назовём значением потенциала сумму его чисел:

С одной стороны, легко заметить, что стоимость искомого решения не меньше значения любого потенциала:

(Доказательство. Искомое решение задачи представляет из себя ячеек матрицы, и для каждой из них выполняется условие . Поскольку все элементы находятся в разных строках и столбцах, то, суммируя эти неравенства по всем выбранным , в левой части неравенства получаем , а в правой — , что и требовалось доказать.)

С другой стороны, оказывается, что всегда существует решение и потенциал, на которых это неравенство обращается в равенство . Венгерский алгоритм, описанный ниже, будет конструктивным доказательством этого факта. Пока же лишь обратим внимание на то, что если какое-либо решение имеет стоимость, равную по величине какому-либо потенциалу, то это решение — оптимально .

Зафиксируем некоторый потенциал. Назовём ребро жёстким , если выполняется:

Вспомним об альтернативной постановке задачи о назначениях, с помощью двудольного графа. Обозначим через двудольный граф, составленный только из жёстких рёбер. Фактически, венгерский алгоритм поддерживает для текущего потенциала максимальное по количеству рёбер паросочетание графа : и как только это паросочетание станет содержать рёбер, рёбра этого паросочетания и будут являться искомым оптимальным решением (ведь это будет решение, стоимость которого совпадает с величиной потенциала).

Перейдём непосредственно к описанию алгоритма .

  • В начале алгоритма потенциал полагается равным нулю , и паросочетание полагается пустым.
  • Далее, на каждом шаге алгоритма мы пытаемся, не меняя потенциала, увеличить мощность текущего паросочетания на единицу (напоминаем, паросочетание ищется в графе жёстких рёбер ).

    Для этого фактически используется обычный алгоритм Куна поиска максимального паросочетания в двудольных графах . Напомним здесь этот алгоритм.

    Все рёбра паросочетания ориентируются по направлению от второй доли к первой, все остальные рёбра графа ориентируются в противоположную сторону.

    Напомним (из терминологии поиска паросочетаний), что вершина называется насыщенной, если ей смежно ребро из текущего паросочетания. Вершина, которой не смежно ни одно ребро из текущего паросочетания, называется ненасыщенной. Путь нечётной длины, в котором первое ребро не принадлежит паросочетанию, а для всех последующих рёбер происходит чередование (принадлежит/не принадлежит) — называется увеличивающим путём.

    Из всех ненасыщенных вершин первой доли запускается обход в глубину /в ширину . Если в результате обхода удалось достигнуть ненасыщенной вершины второй доли, то это означает, что мы нашли увеличивающий путь из первой доли во вторую. Если прочередовать рёбра вдоль этого пути (т.е. первое ребро включить в паросочетание, второе исключить, третье включить, и т.д.), то тем самым мы увеличим мощность паросочетания на единицу.

    Если же увеличивающего пути не было, то это означает, что текущее паросочетание — максимально в графе , поэтому в таком случае переходим к следующему пункту.

  • Если на текущем шаге не удалось увеличить мощность текущего паросочетания, то производится некий пересчёт потенциала таким образом, чтобы на следующих шагах появилось больше возможностей для увеличения паросочетания.

    Обозначим через множество вершин первой доли, которые были посещены обходом алгоритма Куна при попытке поиска увеличивающей цепи; через — множество посещённых вершин второй доли.

    Посчитаем величину :

    Эта величина строго положительна.

    (Доказательство. Предположим, что . Тогда существует жёсткое ребро , причём и . Из этого следует, что ребро должно было быть ориентированным от второй доли к первой, т.е. это жёсткое ребро должно входить в паросочетание . Однако это невозможно, т.к. мы не могли попасть в насыщенную вершину , кроме как пройдя по ребру из в . Пришли к противоречию, значит, >.)

    Теперь пересчитаем потенциал таким образом: для всех вершин сделаем , а для всех вершин — сделаем . Получившийся потенциал по-прежнему останется корректным потенциалом.

    (Доказательство. Для этого надо показать, что по-прежнему для всех и выполняется: . Для случаев, когда или — это так, поскольку для них сумма и не изменилась. Когда — неравенство только усилилось. Наконец, для случая — хотя левая часть неравенства и увеличивается, неравенство всё равно сохраняется, поскольку величина , как видно по её определению — это как раз максимальное увеличение, не приводящее к нарушению неравенства.)

    Кроме того, старое паросочетание из жёстких рёбер можно будет оставить, т.е. все рёбра паросочетания останутся жёсткими.

    (Доказательство. Чтобы некоторое жёсткое ребро перестало быть жёстким в результате изменения потенциала, надо, чтобы равенство превратилось в неравенство . Однако левая часть могла уменьшиться только в одном случае: когда . Но раз , то это означает, что ребро не могло быть ребром паросочетания, что и требовалось доказать.)

    Наконец, чтобы показать, что изменения потенциала не могут происходить бесконечно , заметим, что при каждом таком изменении потенциала количество вершин, достижимых обходом, т.е. , строго увеличивается. (При этом нельзя утверждать, что увеличивается количество жёстких рёбер.)

    (Доказательство. Во-первых, любая вершина, которая была достижимой, достижимой и останется. В самом деле, если некоторая вершина достижима, то до неё есть некоторый путь из достижимых вершин, начинающийся в ненасыщенной вершине первой доли; а поскольку для рёбер вида сумма не меняется, то весь этот путь сохранится и после изменения потенциала, что и требовалось доказать. Во-вторых, покажем, что в результате пересчёта потенциала появилась хотя бы одна новая достижимая вершина. Но это почти очевидно, если вернуться к определению : то ребро , на котором был достигнут минимум, теперь станет жёстким, а, значит, вершина станет достижимой благодаря этому ребру и вершине .)

    Таким образом, всего может происходить не более пересчётов потенциала, прежде чем обнаружится увеличивающая цепочка и мощность паросочетания будет увеличена.

Таким образом, рано или поздно будет найден потенциал, которому соответствует совершенное паросочетание , являющееся ответом на задачу.

Если говорить об асимптотике алгоритма, то она составляет , поскольку всего должно произойти увеличений паросочетания, перед каждым из которых происходит не более пересчётов потенциала, каждый из которых выполняется за время .

Реализацию за мы здесь приводить не будем, поскольку она всё равно получится не короче, чем описанная ниже реализация за .

Построение алгоритма за ()

Научимся теперь реализовывать тот же алгоритм за асимптотику (для прямоугольных задач — ).

Ключевая идея: теперь мы будем добавлять в рассмотрение строки матрицы одну за одной , а не рассматривать их все сразу. Таким образом, описанный выше алгоритм примет вид:

Чтобы достичь требуемой асимптотики, надо реализовать шаги 2-3, выполняющиеся для каждой строки матрицы, за время (для прямоугольных задач — за ).

Для этого мы вспомним два факта, доказанных нами выше:

Отсюда вытекают ключевые идеи , позволяющие достичь требуемой асимптотики:

Таким образом, алгоритм принимает такой вид: во внешнем цикле мы добавляем в рассмотрение строки матрицы одну за другой. Каждая строка обрабатывается за время , поскольку при этом могло происходить лишь пересчётов потенциала (каждый — за время ), для чего за время поддерживается массив ; алгоритм Куна суммарно отработает за время (поскольку он представлен в форме итераций, на каждой из которых посещается новый столбец).

Итоговая асимптотика составляет — или, если задача прямоугольна, .

Реализация венгерского алгоритма за ()

Приведённая реализация фактически была разработана Андреем Лопатиным несколько лет назад. Её отличает удивительная лаконичность: весь алгоритм помещается в 30 строк кода .

Данная реализация ищет решение для прямоугольной входной матрицы , где . Матрица хранится в -индексации в целях удобства и краткости кода. Дело в том, что в данной реализации вводятся фиктивные нулевая строка и нулевой столбец, что позволяет написать многие циклы в общем виде, без дополнительных проверок.

Массивы и хранят потенциал. Изначально он нулевой, что верно для матрицы, состоящей из нуля строк. (Отметим, что для данной реализации не важно, имеются или нет в матрице отрицательные числа.)

Массив содержит паросочетание: для каждого столбца он хранит номер соответствующей выбранной строки (или , если пока ничего не выбрано). При этом для удобства реализации полагается равным номеру текущей рассматриваемой строки.

Массив содержит для каждого столбца вспомогательные минимумы, необходимые для быстрого пересчёта потенциала:

Массив содержит информацию о том, где эти минимумы достигаются, чтобы мы впоследствии смогли восстановить увеличивающую цепочку. На первый взгляд кажется, что в массиве для каждого столбца надо хранить номер строки, а также завести ещё один массив: для каждой строки запомнить номер столбца, из которого мы в неё пришли. Однако вместо этого можно заметить, что алгоритм Куна всегда попадает в строки, проходя по ребру паросочетания из столбцов, поэтому номера строк для восстановления цепочки всегда можно взять из паросочетания (т.е. из массива ). Таким образом, для каждого столбца содержит номер предшествующего столбца (или , если такого нет).

Сам алгоритм представляет из себя внешний цикл по строкам матрицы , внутри которого происходит добавление в рассмотрение -ой строки матрицы. Внутренняя часть представляет собой цикл "do-while (p != 0)", который работает, пока не будет найден свободный столбец . Каждая итерация цикла помечает посещённым новый столбец с номером (посчитанным на прошлой итерации; а изначально равным нулю — т.е. стартуем мы с фиктивного столбца), а также новую строку — смежную ему в паросочетании (т.е. ; а изначально при берётся -ая строка). Из-за появления новой посещённой строки нужно соответствующим образом пересчитать массив , заодно мы находим минимум в нём — величину , и в каком столбце этот минимум был достигнут (заметим, что при такой реализации могло оказаться равной нулю, что означает, что на текущем шаге потенциал можно не менять: новый достижимый столбец есть и без того). После этого производится пересчёт потенциала , соответствующее изменение массива . По окончании цикла "do-while" мы нашли увеличивающую цепочку, оканчивающуюся в столбце , "раскрутить" которую можно, пользуясь массивом предков .

Константа — это "бесконечность", т.е. некоторое число, заведомо большее всех возможных чисел во входной матрице .

Vector< int > u (n+ 1 ) , v (m+ 1 ) , p (m+ 1 ) , way (m+ 1 ) ; for (int i= 1 ; i<= n; ++ i) { p[ 0 ] = i; int j0 = 0 ; vector< int > minv (m+ 1 , INF) ; vector< char > used (m+ 1 , false ) ; do { used[ j0] = true ; int i0 = p[ j0] , delta = INF, j1; for (int j= 1 ; j<= m; ++ j) if (! used[ j] ) { int cur = a[ i0] [ j] - u[ i0] - v[ j] ; if (cur < minv[ j] ) minv[ j] = cur, way[ j] = j0; if (minv[ j] < delta) delta = minv[ j] , j1 = j; } for (int j= 0 ; j<= m; ++ j) if (used[ j] ) u[ p[ j] ] + = delta, v[ j] - = delta; else minv[ j] - = delta; j0 = j1; } while (p[ j0] ! = 0 ) ; do { int j1 = way[ j0] ; p[ j0] = p[ j1] ; j0 = j1; } while (j0) ; }

Восстановление ответа в более привычной форме, т.е. нахождение для каждой строки номера выбранного в ней столбца , делается следующим образом:

Vector< int > ans (n+ 1 ) ; for (int j= 1 ; j<= m; ++ j) ans[ p[ j] ] = j;

Стоимость найденного паросочетания можно просто взять как потенциал нулевого столбца (взятый с противоположным знаком). В самом деле, как легко проследить по коду, содержит в себе сумму всех величин , т.е. суммарное изменение потенциала. Хотя при каждом изменении потенциала изменяться могли сразу несколько величин и , суммарное изменение величины потенциала в точности равно , поскольку пока нет увеличивающей цепи, число достижимых строк ровно на единицу больше числа достижимых столбцов (только текущая строка не имеет себе "пары" в виде посещённого столбца):

int cost = - v[ 0 ] ;

Примеры задач

Приведём здесь несколько примеров на решение задачи о назначениях: начиная от совсем тривиальных, и заканчивая менее очевидными задачами:

  • максимальное паросочетание минимального веса (т.е. в первую очередь максимизируется размер паросочетания, во вторую — минимизируется его стоимость).

    Для решения просто строим задачу о назначениях, ставя на месте отсутствующих рёбер число "бесконечность". После этого решаем задачу венгерским алгоритмом, и удаляем из ответа рёбра бесконечного веса (они могли войти в ответ, если у задачи нет решения в виде совершенного паросочетания).

  • Дан двудольный граф, требуется найти в нём паросочетание максимальное паросочетание максимального веса .

    Решение опять же очевидно, только все веса надо умножить на минус единицу (либо в венгерском алгоритме заменить все минимумы на максимумы, а бесконечности — на минус бесконечности).

  • Задача детектирования движущихся объектов по снимкам : было произведено два снимка, по итогам которых было получено два набор координат. Требуется соотнести объекты на первом и втором снимке, т.е. определить для каждой точки второго снимка, какой точке первого снимка она соответствовала. При этом требуется минимизировать сумму расстояний между сопоставленными точками (т.е. мы ищем решение, в котором объекты суммарно прошли наименьший путь).

    Для решения мы просто строим и решаем задачу о назначениях, где в качестве весов рёбер выступают евклидовы расстояния между точками.

  • Задача детектирования движущихся объектов по локаторам : есть два локатора, которые умеют определять не положение объекта в пространстве, а лишь направление на него. С обоих локаторов (расположенных в различных точках) поступила информация в виде таких направлений. Требуется определить положение объектов, т.е. определить предполагаемые положения объектов и соответствующие им пары направлений так, чтобы минимизировать сумму расстояний от объектов до лучей-направлений.

    Решение — опять же, просто строим и решаем задачу о назначениях, где вершинами первой доли являются направлений с первого локатора, вершинами второй доли — направлений со второго локатора, а весами рёбер — расстояния между соответствующими лучами.

  • Покрытие ориентированного ациклического графа путями : дан ориентированный ациклический граф, требуется найти наименьшее число путей (при равенстве — с наименьшим суммарным весом), чтобы каждая вершина графа лежала бы ровно в одном пути.
  • Раскраска дерева . Дано дерево, в котором каждая вершина, кроме листьев, имеет ровно сыновей. Требуется выбрать для каждой вершины некоторый цвет из цветов так, чтобы никакие две смежные вершины не имели одинакового цвета. Кроме того, для каждой вершины и каждого цвета известна стоимость покраски этой вершины в этот цвет, и требуется минимизировать суммарную стоимость.

    Для решения воспользуемся методом динамического программирования. А именно, научимся считать величину , где — номер вершины, — номер цвета, а само значение — это минимальная стоимость раскраски вершины вместе с её потомками, причём сама вершина имеет цвет . Чтобы посчитать такую величину , надо распределить остальные цветов по сыновьям вершины , а для этого надо построить и решить задачу о назначениях (в которой вершины одной доли — цвета, вершины другой доли — вершины-сыновья, а веса рёбер — это значения соответствующих динамик ).

    Таким образом, каждая величина считается с помощью решения задачи о назначениях, что в итоге даёт асимптотику .

  • Если в задаче о назначениях веса заданы не у рёбер, а у вершин, причём только у вершин одной доли , то можно обойтись без венгерского алгоритма, а достаточно лишь отсортировать вершины по весу и запустить обычный алгоритм Куна (более подробно см. ).
  • Рассмотрим следующий частный случай . Пусть каждой вершине первой доли приписано некоторое число , а каждой вершине второй доли — . Пусть вес любого ребра равен (числа и нам известны). Решить задачу о назначениях.

    Для решения без венгерского алгоритма рассмотрим сначала случай, когда в обеих долях по две вершины. В этом случае, как нетрудно убедиться, выгодно соединять вершины в обратном порядке: вершину с меньшей соединить с вершиной с большей . Это правило легко обобщить на произвольное количество вершин: надо отсортировать вершины первой доли в порядке увеличения , второй доли — в порядке уменьшения , и соединять вершины попарно в таком порядке. Таким образом, мы получаем решение с асимптотикой .

  • Задача о потенциалах . Дана матрица . Требуется найти два массива и такие, что для любых и выполняется , но при этом сумма элементов массивов и максимальна.

    Зная венгерский алгоритм, решение этой задачи не составит никакого труда: венгерский алгоритм как раз находит именно такой потенциал , который удовлетворяет условию задачи. С другой стороны, без знания венгерского алгоритма решить такую задачу представляется почти невозможным.

Литература

  • Harold Kuhn. The Hungarian Method for the Assignment Problem
  • James Munkres. Algorithms for Assignment and Transportation Problems